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Abstract
Purpose – In this study, a new methodology to evaluate the performance of physics simulation engines (PSEs) when used in haptic virtual assembly
applications is proposed. This methodology can be used to assess the performance of any physics engine. To prove the feasibility of the proposed
methodology, two-third party PSEs – Bullet and PhysXtm – were evaluated. The paper aims to discuss these issues.
Design/methodology/approach – Eight assembly tests comprising variable geometric and dynamic complexity were conducted. The strengths and
weaknesses of each simulation engine for haptic virtual assembly were identified by measuring different parameters such as task completion time,
influence of weight perception and force feedback.
Findings – The proposed tests have led to the development of a standard methodology by which physics engines can be compared and evaluated.
The results have shown that when the assembly comprises complex shapes, Bullet has better performance than PhysX. It was also observed that the
assembly time is directly affected by the weight of virtual objects.
Research limitations/implications – A more comprehensive study must be carried out in order to evaluate and compare the performance of more
PSEs. The influence of collision shape representation algorithms on the performance of haptic assembly must be considered in future analysis.
Originality/value – The performance of PSEs in haptic-enabled VR applications had been remained as an unknown issue. The main parameters of
physics engines that affect the haptic virtual assembly process have been identified. All the tests performed in this study were carried out with the
haptic rendering loop active and the objects manipulated through the haptic device.

Keywords Bullet, Haptics, Virtual assembly, Physics simulation engines, PhysX

Paper type Research paper

1. Introduction

Virtual assembly platforms (VAPs) can be used as a tool to

interrogate product form, fit and function even before the

manufacturing of real prototypes, thereby shortening the design

cycle time and improving product manufacturability while

reducing assembly cost. Haptics is an evolving technology that

enhances the sense of presence, realism and interaction in

virtual reality applications through the sense of touch

(Jayaram et al., 1997). Haptic devices are capable to render

both tactile and kinematic force feedback, simulating the virtual

objects’ shape, roughness, stiffness, weight, inertia, etc. Haptic

devices are increasingly being chosen as interaction interfaces

for VAPs, over conventional glove-based devices or 3D-mice,

being the key benefit the kinaesthetic feedback that users receive

while performing a virtual assembly.

Howard and Vance (2007)mentioned that a successful virtual

assembly environment requires virtual parts to emulate real

world parts behaviour. According to Seth et al. (2011) this can be

achieved by means of physics-based modelling (PBM), which

uses physics simulation engines (PSEs) to simulate real world

physics properties, such as friction, gravity and contact forces to

perform the assembly. The use of PBM results in better

appreciation and understanding of part functionality and can

also lead to improved training ofmanual tasks (Wang et al., 2001;

Zerbato et al., 2011). However, there are several challenges

when integrating haptics with PSEs, e.g. synchronization,

non-effective collision detection, high computational cost and

a negative impact on the performance of the application

(Seugling and Rölin, 2006), mainly because simulation engines

have not been developed for haptic rendering, where the update

frequency is over 1 kHz while the physics simulation update rate

is around 100Hz (Ritchie et al., 2008a, b; Glondu et al., 2010).
The aim of this paper is to present a methodology to evaluate

the performance of PSEs by identifying their strengths,

limitations and weaknesses when used in haptically
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enabled VAPs. The proposed methodology consists on a set of

assembly testswith variable geometric anddynamic complexity.

In order to validate this methodology two of the most common

PSEs are evaluated, i.e. PhysX v2.8.4 and Bullet v2.81.

2. Related work

2.1 Virtual assembly systems

Several authors have developed VAPs using different assembly

techniques, such as feature matching recognition (Iacob et al.,

2011; Sato et al., 2011), constrained based modelling

(Zaldivar-Colado and Garbaya, 2009; Gutiérrez et al., 2010;

Tching et al., 2010), PBM (Gupta et al., 1997; Lim et al.,

2007; Garbaya and Zaldivar-Colado, 2009; Chamaret et al.,

2010; Aleotti and Caselli, 2011; Xia et al., 2012), import of

CAD assembly constraints (Jayaram et al., 1999; Chen et al.,

2010; Cheng-jun et al., 2010), and the use of haptics

(Ritchie et al., 2008b; Bordegoni et al., 2009; Ladeveze et al.,

2010; Liu et al., 2010; Ji et al., 2011; Christiand and Yoon,

2011). Some of these systems are summarized in Table I. Three

main applications of virtual assembly systems are identified:

assembly planning, maintenance (disassembly) analysis and

training. However, the effect of simulation parameters and

components, such as the force feedback, PSE, collision shape

representation, etc. on the haptic virtual assembly performance

has not been clarified. Several systems in literature use PBM to

simulate the assembly process and have reported problems

regarding the collision response and interpenetration between

virtual parts; for instance Howard and Vance (2007) used

triangle meshes for collision detection and reported that

whereas mesh-mesh assembly enabled accurate collision

detection, realistic physical response was not demonstrated,

particularly when objects had continuous contact with each

other.

2.2 Physics simulation engines

According to Laurell (2008) five key points are identified in any

PSE: contact detection, contact resolution, force calculation,

integratingmotion and the impact of real time constraints (time

step), where anything below 25 frames per second (fps) is

perceived as slow and stammering.Moreover, Seth et al. (2011)

identified three main challenges that virtual assemblies must

overcome to increase the level of realism: collision detection,

inter-part constraint detection and PBM.
Seugling and Rölin (2006) compared three physics engines –

Newton, ODE and PhysX – with the following run-time

executions: friction on a sliding plane; gyroscopic forces;

restitution; accuracy against real; stability of piling (pile of

boxes); scalability of constraints; and complex contact between

primitive, convex and mesh models. In most of the tests PhysX

was the best evaluated PSE, except in the stability of piling and

the mesh-mesh collision detection tests, where undesired

behaviour was observed. Boeing and Bräunl (2007) carried out

a comparative evaluation between PhysX, Bullet, JigLib,

Newton, ODE, Tokamak and True Axis using PAL

(Physics Abstraction Layer). Their comparison criteria

Table I Haptic virtual assembly systems reported in the literature

System Description Haptic interface

VEDA Interactive manipulations through haptic device; auditory events (Gupta et al., 1997) Dual Phantom desktop

HIDRA (Dis)assembly environment; uses two fingers for manipulation (Coutee et al., 2001) Dual Phantom desktop

EADS CCR Two modes of interaction: translations and rotations; force and torque feedback with

only one three-DOF haptic device (Lecuyer et al., 2001)
Phantom desktop and spaceball

MIVAS Immersive environment; realistic hand interaction; documentation of assembly plans

(Wan et al., 2004)
Cybergrasp

SHARP Portable system; network module for collaborative assembly; subassemblies capability (Seth et al., 2006) Dual Phantom desktop

HAMMS Test bed to investigate user interactions and response while performing various engineering tasks,

physics-based (Ritchie et al., 2008a, b)
Single Phantom Omni

HIVEx Designed for training; imitates real scenarios; pleasurable to use; HMD visualization

(Bhatti et al., 2009)
Phantom Omni and data glove

VEDAP-II Multiple DOF force feedback; focused on modelling the dynamic behaviour of parts

(Garbaya and Zaldivar-Colado, 2009)

Cybergrasp

MRA Mixed reality application for the assessment of manual assembly; double hand assembly;

demonstrates assembly procedures (Bordegoni et al., 2009)
Virtuose 6D35-45 and CyberGlove

MAD

simulator

Oriented to assembly sequence planning; optimal assembly algorithm for haptic guidance

(Hassan and Yoon, 2010)

Single Phantom Omni

CAD-to-VR Human scale virtual environment; study the effects of haptic feedback in virtual assembly

(Chamaret et al., 2010)
SPIDAR, one hand

IMA-VR Virtual training; combines haptic, gestures and visual feedback; parts with dynamic behaviour

(Gutiérrez et al., 2010)
Phantom Omni, LHIfAM or GRAB

Intelligent

VAS

Optimal assembly path generation; training users with optimal assembly process

(Christiand and Yoon, 2011)

Single Phantom Omni

HVAS Imports topology, geometry and assembly information from CAD; combines physics and

constrained modelling (Xia et al., 2011)
Single Phantom premium

HITsphere Simulates ground walking and free manipulation of virtual objects; constrain based assembly

(Xia et al., 2012)
Single Phantom desktop



included: integrator performance, material properties, friction,

constraint stability, collision detection system and a stacking

test. They concluded that PhysX had the best integrator
method, whereas Bullet provided the most robust collision

system. Moreover, Coumans and Victor (2007) made a
comparison analysis of PhysX, Havok, ODE and Bullet.

Collision detection and rigid body features were used as the

comparison criteria. The results suggested PhysX as the most
complete PSE.
The previous comparative evaluations to investigate the

performance of PSEs were carried out without considering the

integration of haptic rendering. Regarding this, Glondu et al.
(2010) introduced the possibilities of implementing a modular

haptic display system that relies on physics simulation and

haptic rendering. Four physics simulation libraries were
evaluated: Havok, PhysX, Bullet and OpenTissue. The

performance criterion was based on computation time,
stability and accuracy. PhysX showed penetration in some of

the tests whilst Havok showed the best average computation
time, stability and friction accuracy. Although haptics was

considered in this evaluation, the tests were performed without

using a haptic device or a haptic rendering loop.

2.3 Contact forces

In order to provide realistic and stable reaction forces, the PSE

must provide a continuous contact resolution when
manipulating objects. PSEs use numerical integration to move

on from a current state Y(t0) to a new state Y(t0 þ Dt), whereDt
is the time step size. The collision detection component must
check each new state for possible intersection between objects.

If no overlapping is detected the system adopts this new state as
the current state. Otherwise, the systemmust compute the time

when the first collision occurred andmove on to that state.Once
all the points of contact are determined, the system must

compute the constraint forces that prevent interpenetration

(Baraff, 1995).
The result of a collision between two rigid bodies is a

discontinuity in the objects velocity, which can be accurately
modelled by applying impulsive forces to virtual objects (Baraff,

1995; Ruspini and Khatib, 1997). These impulsive forces can
be computed by analytical or penalty based methods (Ruspini

and Khatib, 1997). Analytical methods numerically solve for

the exact contact forces and impulses required to guarantee that
the simulated bodies never inter-penetrate. Penalty based

methods compute restoring forces, typically proportional to the
amount of penetration, only after the objects have overlapped.

According to Baraff (1989), three constraints must be satisfied

when a collision occurs:
1 the velocity after the collision is required to be at least –

1 times the relative velocity at the contact point, where 1 is
the restitution coefficient;

2 the impulse forces at the contact point can only push but
not pull objects; and

3 the contact forces occur only at contact points.

2.4 Haptic perception

Huang et al. (2002) studied the effects of haptic feedback on

user performance during a dynamic task. The results showed

that high feedback conditions improve user performance. In a
similar work, Lim et al. (2007) investigated the impact of haptic

rendering on user efficiency in assembly tasks. It was observed
that small changes in shape, the use of full collision detection

and the use of stereo-view, can affect assembly times in haptic

virtual assembly environments. Similar results were obtained

by Garbaya and Zaldivar-Colado (2007), who observed that

human operators have better performance when force feedback

is provided during assembly tasks.
The previous background studies indicate that several

research works have been focused on virtual assembly

simulation. However, when PBM is used in haptic virtual

assembly, the PSE exhibited certain problems, e.g. unreal

collision response and low update rates. Various evaluations

have been conducted to assess the performance of different

PSEs, but these evaluations have not considered the effect of

haptics. The proposed methodology considers the effect of

haptic rendering on the performance of PSEs within a physics

based virtual assembly environment. The collision detection

response is also considered within this methodology. The

performance of PSEs is measured in terms of the task

completion time (TCT), weight perception and force feedback.

3. System overview

A haptic virtual assembly system, named as HAMS

(González-Badillo et al., 2013), Figure 1(a), was used to

validate the methodology. HAMS integrates two PSEs, PhysX

v2.8.4 and Bullet v2.81. Single and dual haptic interaction is

provided via two Phantom Omni haptic devices (Figure 1(b)).
HAMS also includes the Gilbreth’s chronocyclegraphs

(Ritchie et al., 2008a) which track all user movements and

allow the graphical analysis of assembly paths. Virtual models

can be imported into HAMS as STL or OBJ format files.When

a model is loaded, three representations of it are generated:
1 a graphic representation, used for graphic rendering on

the screen;
2 a haptic representation, used to recognize and manipulate

virtual objects using the haptic device; and
3 a physics representation (collision shape) to provide

physics-based behaviour and collision detection to virtual

object by means of the PSE.

4. Evaluation methodology

The proposed methodology consists of eight tests with variable

levels of complexity (Table II ). These tests have been defined to

broadly evaluate the performance of PSE in virtual assembly

applications.Tests1-6evaluate individualproperties of eachPSE

suchas collision responseand stability under different simulation

conditions. Tests 7 and 8 comprise the virtual assembly of

complex components representing real parts, the aim is to assess

the PSE performance in more general assembly tasks.

4.1 Free-fall test

The objective is to assess the integrator method of each PSE,

which is related to the numerical algorithms used to calculate the

new position of an object at each time step during the

simulation. Its performance is affected by several factors such

as the simulation time step, virtual model complexity, scene

complexity, the number of objects in the scene, etc. The

integrator performance affects the user perception of the

simulation; a bad performance may create different effects such

as low gravity behaviour (moon effect), the penetration among

models, instability of the assembled components, and even the

discontinuity of the simulation. An adequate integrator

performancewill result ina fast, accurate and smooth simulation.



The free-fall test consists on dropping virtual objects from an

elevation of 500 units and measuring the time to reach the floor
(Figure 2). The free-fall time reflects how fast the integrator

methodworks. A short free-fall time suggest a good performance
of the integrator method. Two conditions were evaluated:
1 influence of shape complexity (number of triangles); and
2 influence of haptic loop on the integrator performance.

Four virtual models with different complexity were selected to

perform this test: a box, a pin, a gear and a housing. For each
model, five tests were performed.

4.2 Balancing test

The objective of this test is to evaluate the collision response
accuracy. The test comprises a set of experiments based on

a virtual balance and two spheres of the same size (Figure 3).

At thebeginningof the test thebalance is static andhorizontal, and

then the two spheres are placed into twoboxes located at each end

of the balance. Each box contains the sphere tightly to restrict its

movement. Once the two spheres are placed within the boxes

the balance’s status is changed to dynamic. In theory, the balance

should remain in equilibrium, but if the collision response of one

sphere is different to the other, then thebalancewill tilt to one side

meaning that the collision response is not accurate. Regarding to

virtual assembly, inaccurate collision responsemay result in inter-

penetration among virtual objects or unreal force feedback,

affecting the performance and results of the simulation.
The balance is created using a triangular mesh. The two

spheres are createdusingdifferent collision shape representation

algorithms, i.e. primitives,GIMPACT(2011),HACD(Mamou

and Ghorbel, 2009), and ConvexFT (Gonzalez et al., 2012).

Figure 1 HAMS

(a) (b)

Notes: (a) Graphic user interface; (b) system hardware

Table II Performance evaluation tests for PSEs

Test Objective Properties to be assessed Evaluation parameter

1. Free-fall Assess the integrator method of each

PSE

Simulation speed and stability, influence of

shape complexity, haptic loop influence

Free-fall time

2. Balancing Assess the precision of collision

response

Accuracy of collision response, shape

representation influence

Tilt angle

3. Pile of boxes Evaluate the performance of

accumulative contacts in planar

surfaces

Behaviour of accumulative contacts, collision

response and stability

TCT and number of piled

boxed

4. Packing box Evaluate collision response and

stability of multiple contacts in

different directions

Behaviour of multi-directional contact,

collision response and stability

TCT and stability

5. Weight perception Assess the influence of virtual

object’s weight

Virtual objects manipulability, weight

influence

TCT and object manipulability

(chronocyclegraphs)

6. Size test Evaluate performance of the PSE

when using small size meshes

Influence of size TCT and physics simulation

time

7. Bearing puller Evaluate the performance of PSE

when carrying out virtual assemblies

of real objects with conventional

features

Performance in real applications TCT, forces and physics

simulation time

8. Bench vice Evaluate the performance when

performing assemblies of real objects

with complex features

Performance in real applications TCT, forces and physics

simulation time

http://www.emeraldinsight.com/action/showImage?doi=10.1108/AA-05-2013-046&iName=master.img-000.jpg&w=453&h=158


When using primitives, the collision shape of the spheres is

created by specifying only its diameter. If the spheres are created

using GIMPACT, HACD or ConvexFT, the collision shape is

generated by a triangular mesh.

4.3 Pile of boxes test

This test comprises 15 flat boxes that must be stacked using

the haptic device (Figure 4). During this task the PSE must

solve the collision response for accumulative contacts of

planar surfaces. A low performance of the PSE will result in a

poor stability of the pile, difficulty to build the pile and

longer TCT. This test is intended to evaluate the ability of the

PSE for handling accumulative contacts between planar
surfaces, which is a common condition in assembly tasks.

4.4 Packing box assembly test

The objective of this test is to evaluate the PSE collision
response and stability when multiple contacts in different
directions occur. The test consists of packing eight boxes into
a container using the haptic device (Figure 5). The first box
must be placed at the bottom left corner of the container, the
second at the bottom right, the third at the top left corner, the
fourth in the top right corner. The second layer of boxes follows

a similar assembly sequence. Once the eight boxes are inside the
container the assembly is completed. In this task the PSE must
compute collision response inmultiple directions, e.g. collisions
between themanipulated box and the floor, the left wall and the
front wall at the same time. A low PSE performance will cause
the manipulated part to shiver and interpenetration between
objects, resulting in longer TCT.

4.5 Weight perception test

The objective of this test is to evaluate the influence of virtual
object’s weight on the PSE and assembly performance. The

weight of virtual objects can be computed by the PSE and
rendered to the user by means of the haptic device. The gear oil
pump assembly (Figure 6), was selected as the test model
(Ritchie et al., 2008a). Eight weight levels, L1-L8, were defined
for each pump component (Table III ). The virtual weights
were generated by scaling the density of virtual objects.
The maximum force supported by the Phantom Omni Device
(3.3N) was considered when assigning the weight to the
heaviest manipulated object, the large gear at level L8.

The housing is considered as the base part and remains static.
The assembly of the real component (Figure 7), was also used
for comparison purposes. TCT and chronocyclegraphs were
used as the performance evaluation parameters.

4.6 Size test

VAPs are particularly useful in the assembly planning of small and
micro-components. However, each PSE has a minimum object’s
size where the collision detection is accurate. Small objects may
produce unreal collision responses leading to virtual assembly
process difficult to be completed.Thus, the objective of this test is

to evaluate thePSEperformancewhen carrying out haptic virtual
assemblies of small andvery small size components. In this test the
peg-in-hole assembly task is performed using seven levels of scale
(Table IV ). A graphic comparison of the first four scales can
be observed in Figure 8. TCTandphysics simulation time (PST)
are the evaluation parameters.

Figure 3 Balancing test

Figure 4 Pile of boxes assembly test

Figure 2 Free-fall test
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4.7 Bearing puller assembly test

The assembly analysis of real complex components is the main
purpose of any VAP. Therefore, the objective of this test is to
evaluate the overall PSE performance when carrying out haptic
virtual assemblies representing real complex components. Thus,
the assembly of a bearing puller is considered and comprises six

parts with cylindrical features: puller base, puller screw, two arms

and two pins (Figure 9(a)). The puller base is defined as the base

part and remains staticduring the assemblyprocess (Figure9(b)).

TCT, force feedback and physics simulation time are considered

as the evaluation parameters. The real assembly was also

performed for comparison purposes (Figure 9(c)).

4.8 Bench vice assembly test

Theobjectiveof this test is toevaluate thePSEperformancewhen
carrying out virtual assemblies representing real components

with complex features. For this, the bench vice assembly that

comprises four parts: a large jaw, a short jaw, a screw and a pin,

was considered (Figure 10(a)). The large jaw comprises a slider

where the short jaw must be slipped on. This imposes different

simulation conditions than cylindrical features, resulting in a

multidirectional collision response. If the PSE is not effective in

handling this condition the collision response may be excessive

impeding the assembly. The large jaw is defined as the base part

and remains static during the assembly process (Figure 10(b)).

TCT, force feedback and physics simulation time are considered

as the evaluation parameters. The real assembly of the bench vice

was also considered (Figure 10(c)).

5. Results and discussion

5.1 Free-fall test results

The results regarding to the influence of the number of

triangles (shape complexity) on the integrator performance are

shown in Figure 11. It can be observed that when the number of

triangles of themodel is less than 300, e.g. box, pin and gear, the

integrator performance of PhysX is not affected, whereas in the

case of Bullet an increase of up to 43 per cent in the gear free-fall

time is observedwith respect to the pin test. However, when the

Figure 5 Packing box assembly test

Figure 6 Gear oil pump virtual assembly task

Table III Levels and weights (N) of pump components

Level Housing (N) Large gear (N) Short gear (N) Bearings (N)

L1 0.02 0.02 0.02 0.02

L2 1.3 0.17 0.13 0.1

L3 3.3 0.41 0.34 0.29

L4 .4 0.82 0.66 0.51

L5 .4 1.11 0.9 0.69

L6 .4 1.64 1.31 1.01

L7 .4 2.23 1.81 1.34

L8 .4 3.24 2.71 1.47

Real 16.7 6.7 5.2 1.6

Figure 7 Real gear oil pump components
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Figure 8 Scaled hole: 1 £ , 0.1 £ , 0.01 £ and 0.001 £

Table IV Scale levels

Scale Hole bounding box size (mm) Volume (mm3) Triangles

1 3 (regular) 65 £ 65 £ 40 169,000 160

0.1 3 6.5 £ 6.5 £ 4.0 169 160

0.01 3 0.65 £ 0.65 £ 0.4 0.169 160

0.001 3 0.065 £ 0.065 £ 0.04 1.69 £ 1024 160

0.0001 3 0.0065 £ 0.0065 £ 0.004 1.69 £ 1027 160

0.00001 3 0.00065 £ 0.00065 £ 0.0004 1.69 £ 10210 160

0.000001 3 0.000065 £ 0.000065 £ 0.00004 1.69 £ 10213 160

Figure 9 Bearing puller

(a) (b) (c)

Notes: (a) Virtual parts; (b) virtual assembly; (c) real assembly

Figure 10 Bench vice assembly

(a) (b) (c)

Notes: (a) Virtual parts; (b) virtual assembly; (c) real assembly
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object comprises around2,000 triangles, i.e. the pumphousing,

the integrator performance is greatly affected. An increase of

about 60 per cent in the free-fall time is observed when using

Bullet and 100 per cent when using PhysX, with respect to the

gear test. Themaximumstandard deviation (SD) obtainedwith

Bullet was 0.059 s, indicating that all the tests have excellent

repeatability. The maximum SD obtained with PhysX was

0.293 s, corresponding to the housing test. These results

indicate that PhysX is greatly affected by shape complexity.

Moreover, the free-fall times values are smaller and closer to the

theoretical time (0.316 s) using Bullet than PhysX. It is

important to mention that although the falling time is affected

by several parameters such as simulation time step, CPU

characteristics, system configuration, etc. the previous tests

were performed in equal conditions for both PSEs, i.e. same

CPU, same time step, etc.
In order to quantify the influence of the haptic loop on the

integrator performance, a second set of tests were carried out.

In these experiments, the free-fall tests were first performed

without the haptic rendering loop, i.e. only physics þ graphics,

and afterwards the tests were repeatedwith the haptic rendering

loop running, i.e. haptics þ physics þ graphics. Table V shows

the percentage increase in the free-fall time when the haptic

rendering loop is active. Bullet exhibited a time increment of up

to 50 per cent, while PhysX showed amaximum time increment

of 2 per cent. This suggests that the integrator method of PhysX

is more suitable to be used with haptics.

5.2 Balancing test results

The balance tilt angle was measured over one minute after the

release of the two spheres. If the tilt angle at the end of a test was

smaller than 18, then the systemwas considered to be balanced.

When the angle was larger than 18 but smaller than 58,

the reaction forces tend to be slightly different on each side of

the balance and the system tilts to one side. In this case the result

is expressed as “left” or “right”, depending on the inclination of

the balance. Finally if the tilt angle was larger than 58, then the

systemwas considered unbalanced and the result is expressed as

“left þ ” or “right þ ”. Each test was performed five times for

each PSE and each collision shape representation algorithm. In

order to validate the results, the positions of the spheres were
exchanged from the left side to the right side and vice versa.
Table VI shows the results of the balancing test. It can be

observed that when primitives are used in both PSEs, Bullet and

PhysX, the balance remained in equilibrium (horizontal) for all
the repetitions. This suggests that the reaction force and collision
responsewhenusing primitives is stable and precise.When using
GIMPACT, ConvexFT or HACD the balance tilted to both
sides, indicating that the collision response is not very precise.

This is caused by the different number and characteristics of
contact points.Acontact point produces a forceor impulsewitha
defined magnitude and direction. Two objects with the same
shape can have different contact points defined by the object’s
triangular mesh, position and orientation.

5.3 Pile of boxes results

Two collision shape representation algorithms were used for
each PSE: GIMPACT for Bullet, ConvexFT for PhysX and

HACD for both. Five repetitions were performed for each
collision shape and eachPSE; the results are shown inTableVII.
It was observed that when Bullet-HACD was used and the

boxes had dynamic behaviour, the collision response showed

low stability, allowing the piling of only ten boxes. In the case of
Bullet-GIMPACT, it was not possible to perform the task
because the collision response was excessive, producing
instabilities that prevented placing a box on the top of
another. PhysX showed better stability even when the
assembled boxes had dynamic behaviour. In this case the

15 boxes could be piled using both representations.

5.4 Packing box test results

In this test theHACDrepresentationalgorithmwasused to create
the collision shapes. Five repetitions were performed for each
PSE. PhysX led to the minimum TCT, 2:09.7min (3.8 s SD),
whilst Bullet posted 4:17.4min (16.2 s SD). Collision response
and assembly stability were qualitatively evaluated according to
Table VIII. The best stability of the final assembly was observed

whenusingPhysX, but the best collision response ofmanipulated
objects was observed when using Bullet.

5.5 Weight perception test results

The collision shapes were created using triangular mesh
representation algorithms, i.e. GIMPACT for Bullet and
ConvexFT for PhysX. Five repetitions were carried out for

Table V Percentage increase of the free-fall time

Object Bullet (%) PhysX (%)

Box 3.65 0.195

Cylinder 3.8 0.139

Gear 50.42 2.16

Table VII Pile of boxes assembly, TCT results

Representation/PSE Bullet (min) PhysX (min)

HACD 02:47.2 (35.2 s SD) 1:57.3 (0.3 s SD)

GIMPACT/ConvexFT Not feasible 1:54.3 (13.6 s SD)

Table VI Balancing test results using Bullet physics

PSE Collision shape Left 1 Left Balanced Right Right 1

Bullet Primitive 0 0 5 0 0

PhysX Primitive 0 0 5 0 0

Bullet GIMPACT 2 0 1 1 1

PhysX ConvexFT 4 0 0 0 1

Bullet HACD 3 0 2 0 1

PhysX HACD 3 1 0 0 0

Figure 11 Free-fall time with respect to shape complexity (number of
triangles)
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each PSE. The results are shown in Figure 12, where the mean

TCT using PhysX is shown as a red dashed line whereas the

mean TCTusing Bullet is shown as a green dotted line.
The maximum TCT value, 2:09.7min (41.7 s SD),

corresponds to the use of PhysX and weight level L8, whereas

the minimumTCT value, 49.7 s (7.3 s SD), corresponds to the

use of Bullet and weight level L1. The average TCTof the real

assembly process is 37 s (12.79 s SD). The chronocyclegraphs

of the pump assembly test using weight levels L1 and L8 are

shown in Figure 13(a) and (b), respectively. The red spheres

represent the manipulation path of the virtual objects and the

distance between each sphere represents the motion speed.

Weight level L8 exhibited a lower speed than weight level L1.

Thus, it can be said that as the inertia of virtual objects

increases, the manipulation speed decreases and therefore the

TCT increases, just as it happens in the real world.

5.6 Size test results

Two kinematics configurations were evaluated:
1 dynamic; and
2 static behaviour of the box (i.e. base part).

Five repetitions were performed for each scale, each PSE and

each kinematic configuration.The results are shown inTable IX.

The data marked with * indicate that the collision detection was

not accurate and a light penetration between models was

observed. “NP” indicates that the assemblywas not possible due

to excessive penetration between models.
When using Bullet with dynamic behaviour the assembly

could be performed using all sizes, even for the smallest scale of

0.0000001 £ . However, a satisfactory performance of this

configuration was observed only at scale of 0.001 £ or larger,

for smaller scales the PST increases. In the case of PhysX with

dynamic behaviour, the minimum scale for a satisfactory

performance was 0.1 £ . At 0.01 £ scale the collision detection

was not accurate and the PST increased. In the case of Bullet

with static behaviour, the assembly could be performed with a
satisfactory performance at scales of 0.001 £ or larger; smaller
scales resulted in the lack of collision detection and response.
When using PhysXwith static behaviour, the assembly could be

carried out with a satisfactory performance using a 0.0001 £

scale or larger.

5.7 Bearing puller assembly results

Triangular mesh representation algorithms – GIMPACT and
ConvexFT – were used to create the collision shapes.
Six repetitions were carried out for each PSE using a one
handed configuration for virtual object manipulation. The

results are shown in Table X.
It can be observed that the smallest TCTwas obtained when

using Bullet. The mean and maximum forces are smaller when

using Bullet than when using PhysX. This suggests that Bullet
offers a more stable collision response and object manipulation
than PhysX. The PST is ameasure of the PSE update rate, both
Bullet and PhysX exhibited similar simulation times, around
4.5ms. The assembly of the real component took an average

TCTof 17.5 s (2 s SD), smaller than the virtual TCT.

5.8 Bench vice assembly results

In the case of the bench vice assembly, the collision shapes were
created using the ConvexFT algorithm in PhysX, but very
strong collision responses between the short jaw and the large
jawwereproduced and the assembly of the two componentswas
impossible. To overcome this problem, the collision shapes in

PhysX were created using the HACD algorithm for dynamic
objects, and static triangular meshes for static parts.
Six repetitions were carried out for each PSE using a one
handed configuration for virtual objects manipulation. The

results are shown in Table XI.
The results show that TCT, mean force and maximum force

are smaller when using Bullet. This suggests that a better

manipulation of objects and more stable collision response can
be obtainedwithBullet. The use of static objects inPhysX led to
a significantly smaller PST (0.93ms) than in Bullet (4.37ms).
However, although PhysX offers a better simulation update
rate, the collision detection and collision shape representation

algorithms must be improved. The assembly of the real
component was also performed, resulting in a TCT of 10.9 s
(1.0 s SD), smaller than the TCTof the virtual assembly.

5.9 Results summary

A summary of results is presented in Table XII. From this table
it is notable that PhysX displayed better performance than

Bullet in simple assembly tasks such as the pile of boxes or the
packing box, where simple, non-convex models, were used.
However, for more complexmodels or assembly tasks – such as
the gear oil pump, bearing puller or bench vice assembly –
Bullet showed better performance, TCT and collision

responses, than PhysX. It can also be seen that in the free-fall
test the integrator method of Bullet is less sensitive to complex

Table VIII Qualitative evaluation parameters

Value Collision response Assembly stability

3 The response is similar to real world The objects remain static in the assembly position

2 Strong responses or penetration, occasionally The objects shiver in the assembly position

1 Excessive response, objects are launched away Some objects drop out of assembly position

0 No collision response, excessive penetration The assembly explodes

Figure 12 Oil pump assembly with different weight levels
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models than the integrator of PhysX. However, PhysX is more

independent of the haptic rendering loop. From the balancing

test it can be concluded that only the primitive collision shape

representationmethods resulted in a goodperformance for both

Bullet and PhysX.The rest of the collision shape representation

algorithms, i.e. HACD, GIMPACT and ConvexFT, showed

different collision responses in each test.

6. Conclusion

A new methodology to evaluate the performance of PSEs in

haptic virtual assembly environments has been proposed. This

methodology comprises eight tests with variable geometric and

dynamic complexity to assess the performance of any PSE. The

proposed methodology was implemented and validated by

assessing the performance of Bullet v2.81 and PhysX v2.8.4. In

all the tests the haptic device and/or haptic rendering loop was

activated in order to analyse its effect on the PSE performance.

The results of the validation suggested that for simple assembly

tasks that involve non-complex geometries, PhysX offers a

better performance than Bullet. Nevertheless, when the

assembly comprises more complex shapes, e.g. non-convex

objects, Bullet has better performance. PhysX offers a better

simulation update rate and final assembly stability than Bullet.

It was also observed that the TCT is directly affected by the

weight of virtual objects; as the inertia of virtual objects

increases, the manipulability and assembly performance

decrease. Regarding objects’ size, Bullet offers the ability to

handle collisions for smaller dynamic components than PhysX.
Finally it can be concluded that the PSE greatly affects the

performanceandaccuracyof virtual assembly systems.However,

by using the proposedmethodology the strengths and limitations

of PSEs used in VAPs can be identified. The characterization or

evaluation of PSEs will lead to the design of faster and more

reliable systems which can be used in real applications.
Futurework considers amore comprehensive study to use the

proposed methodology in others VAPs and to evaluate other

PSEs. Also the influence of collision shape representation

algorithms on the performance of haptic virtual assembly tasks

must be considered. In some of the tests performed during this

evaluation, strong collision responses were produced

occasionally when virtual objects had contact. In order to

evaluate these strange responses, a study to find a way to

measure the fluctuations in the excitation functions of

dissipative collisions is currently under development.

Figure 13 Oil pump assembly chronocyclegraphs

(a) (b)

Notes: (a) Weight L1; (b) weight L8

Table IX Size test results

Bullet –

dynamic

PhysX –

dynamic

Bullet –

static

PhysX –

static

Scale

TCT

(s)

PST

(ms)

TCT

(s)

PST

(ms)

TCT

(s)

PST

(ms)

TCT

(s)

PST

(ms)

1 3 6.1 1.80 12.7 16.46 11.2 2.36 5.2 0.67

0.1 3 5.4 1.84 6.2 11.02 9.1 2.40 5.2 0.59

0.01 3 5.1 1.80 11.0 * 20.12 12.0 3.44 5.5 0.52

0.001 3 4.4 1.96 NP NP 7.7 2.72 5.7 0.54

0.0001 3 4.0 5.05 NP NP NP NP 8.0 0.54

0.00001 3 4.7 5.24 NP NP NP NP 6.3 * 1.05

0.000001 3 4.9 * 4.85 NP NP NP NP NP NP

0.0000001 3 6.1 * 6.30 NP NP NP NP NP NP

Table X Measured parameters in the bearing puller assembly
simulation

Bullet PhysX

Parameter Value SD Value SD

Assembly time, TCT (min) 01:19.3 00:11.8 03:38.7 00:31.5

Mean force feedback (N) 0.55 0.098 0.62 0.097

Max force feedback (N) 1.88 0.16 3.55 0.34

Physics simulation time, PST (ms) 4.65 0.97 4.43 0.35

Table XI Bench vice assembly simulation results

Bullet PhysX

Parameter Value SD Value SD

Assembly time (min) 01:15.3 00:09.5 01:18.2 00:21.6

Mean force (N) 0.46 0.084 0.58 0.044

Max force (N) 1.89 0.24 2.76 1.14

Physics simulation time (ms) 4.37 0.33 0.93 0.16
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González-Badillo, G., Medellı́n Castillo, H.I. and Lim, T.

(2013), “Development of a haptic virtual reality system for

assembly planning and evaluation”, 3rd Iberoamerican

Conference on Electronics Engineering and Computer Science,

CIIECC2013, Procedia Technology, Vol. 7, Elsevier,

Amsterdam, pp. 265-272.

Table XII Summarized results of the evaluation tests
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Weight perception 0:49.7 min 01:04.2min Minimum TCT at weight level L1 (min)

Size test dynamic 0.065 £ 0.065 £ 0.04mm 6.5 £ 6.5 £ 4.0mm Minimum size of hole bounding box

Size test static 0.065 £ 0.065 £ 0.04mm 0.0065 £ 0.0065 £ 0.004mm Minimum size of hole bounding box

Bearing puller assembly 01:19.3 min 03:38.7min TCT

Bearing puller assembly 4.65ms 4.43ms Physics simulation time

Bench vice assembly 01:15.3 min 01:18.2min TCT

Bench vice assembly 4.37ms 0.93ms Physics simulation time

Note: Best performance italicised
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