
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9665

To cite this version :

Simon CROWLE, Alexandros DOUMANOGLOU, Benjamin POUSSARD, Michael BONIFACE,
Dimitrios ZARPALAS, Petros DARAS - Dynamic Adaptive Mesh Streaming for Real-time 3D
Teleimmersion - In: 20th International Conference on Web 3D Technology, Grèce, 2015-06-18 -
Proceedings of the 20th International Conference on 3D Web Technology - 2015

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/9665
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


Dynamic Adaptive Mesh Streaming for Real-time 3D Teleimmersion

Simon Crowle1 Alexandros Doumanoglou2 Benjamin Poussard3 Michael Boniface1

Dimitrios Zarpalas2 Petros Daras2

1: IT Innovation Centre, University of Southampton, SO16 7NS, U.K. Email: {sgc, mjb}@it-innovation.soton.ac.uk
2: Centre for Research and Technology Hellas, Information Technologies Institute,

6th Km Charilaou-Thermi rd, 57001, Thessaloniki, Greece. Email: {aldoum, zarpalas, daras}@iti.gr
3: Arts et Mtiers ParisTech, LAMPA, 2 Bd du Ronceray, Angers, France. Email: {benjamin.poussard}@ensam.eu

Figure 1: 3D-LIVE Mixed Reality Platform. In-Game Human 3D-Reconstruction.

Abstract

Recent advances in full body 3D reconstruction methods have lead
to the realisation of high quality, real-time, photo realistic cap-
ture of users in a range of tele-immersion (TI) contexts including
gaming and mixed reality environments. The full body reconstruc-
tion (FBR) process is computationally expensive requiring compar-
atively high CPU, GPU and network resources in order to maintain
a shared, virtual reality in which high quality 3D reproductions of
users can be rendered in real-time. A significant optimisation of
the delivery of FBR content has been achieved through the real-
time compression and de-compression of 3D geometry and tex-
tures. Here we present a new, adaptive compression methodology
that allows a TI system called 3D-LIVE to modify the quality and
speed of a FBR TI pipeline based on the data carrying capability of
the network. Our rule-based adaptation strategy uses network per-
formance sampling processes and a configurable rule engine to dy-
namically alter the compression of FBR reconstruction on-the-fly.
We demonstrate the efficacy of the approach with an experimen-
tal evaluation of system and conclude with a discussion of future
directions for adaptive FBR compression.

CR Categories: [Networks]: Network performance evaluation—
Network performance modeling, [Networks]: Network perfor-
mance evaluation—Network simulations, [Networks]: Network
performance evaluation—Network experimentation. [Networks]:
Network performance evaluation—Network performance analysis.
[Theory of Computation]: Design and analysis of algorithms—
Data structures design and analysis: Data compression.

Keywords: content adaptation, adaptive compression, network

monitoring, QoS.

1 Introduction

Tele-immersion (TI) technology aims to enable users in distributed
geographical locations to interact in real-time inside a shared virtual
world as if they were physically co-present [Hasenfratz et al. 2004].
To accomplish this, TI technology employs computer vision for im-
age and/or depth acquisition and 3D reconstruction; information
theory for data compression and coding; networking techniques for
data exchange between remote sites; and computer graphics for ren-
dering and 3D visualization.

In general, many different 3D scene representations for Tele-
immersion can be found in the literature that are extensively de-
scribed in [Smolic 2011]. These representations lie between two
extremes: image-based and geometry-based modelling. Image-
based modelling does not use any 3D geometry at all and virtual
views are synthesized from natural camera views by interpolation.
In geometry-based modelling, the scene is represented on the basis
of rendering 3D meshes. This means that in geometry-based mod-
elling robust 3D reconstruction that produces three dimensional
meshes is required; virtual views are rendered using the resultant
data using classical computer graphics methods. In between the
two extremes there are other methods that combine image-based
modelling with 3D information like depth maps [Fehn 2004], [Mat-
suyama et al. 2004].



In a demanding TI scenario, geometry based representations would
be preferable as opposed to image based ones [Alexiadis et al.
2014a]. Usually, a TI system would implement functionalities that
involve interactions between virtual world elements and the phys-
ical world being captured (e.g. collision detection). This kind of
functionality is rather difficult to be accomplished by any repre-
sentation other than geometry-based since camera view dependent
image projections cannot meaningfully represent volume in space.
Moreover, in a multi-party TI scenario, where multiple users in-
teract in the same virtual world and each user is being captured
by multiple cameras, the high computational cost for each client
to generate the synthesized view of the others, would degrade the
overall system’s performance. For these reasons the advantages of
geometry-based representation in realizing TI are considered more
effective for interactive systems of this kind.

To support this case, a key component of the TI pipeline is real-
time 3D reconstruction and the ability to scan a 360o view of the
human body in real-time is essential. To date the related work in
the literature in this particular field is quite limited. In [Alexiadis
et al. 2013a], a method is presented for full 3D model reconstruction
of moving objects from multiple RGB-Depth (Microsoft Kinect)
streams in real-time using step discontinuity constrained triangu-
lation (SDCT). Later, in [Alexiadis et al. 2013b] the same authors
presented a method that fuses implicitly the information from all
sensors to produce watertight textured models using the march-
ing cubes volumetric reconstruction algorithm. In [Alexiadis et al.
2014b] again the same authors propose a technique for producing
smooth watertight textured models but this time using a volumetric
reconstruction algorithm based on Fourier-Transform.

In order for interactive communications to become a reality, a
multi-disciplinary approach that embraces the scientific disciplines
described above is needed to achieve fast and efficient solutions for
full body reconstruction. In a typical TI pipeline a substantial fac-
tor for maximizing the system’s performance and interactiveness is
the data exchange rates between remote sites. Therefore, efficient
data compression algorithms that permit real-time transmission of
FBR data streams across networks of varying capability, are of sig-
nificant importance. While for mesh compression techniques the
scientific community has showed significant progress, the availabil-
ity of literature that specifically address adaptive mesh compres-
sion schemes that are sensitive to network conditions in real-time
is scare. Moreover, for reasons that will become clear in section 2
and particularly 2.3.5, adaptive mesh compression schemes in the
aforementioned sense are subject to additional requirements when
applied in TI scenarios.

The objectives of the work reported here are to study and propose
an efficient solution to the problem of delivering TI content (i.e.
3D reconstructed meshes) in its best possible quality to multiple re-
cipients, under varying network conditions, with the restriction of
minimum delay and maximum update rate, to ensure real-time in-
teractions. To this end a network monitoring method is proposed
that provides compression heuristics as input to the TI pipeline pro-
cess, provided by a run-time rule engine. The rule engine actively
determines the compression parameters to use in a variation of the
compression scheme in [Alexiadis et al. 2014a] ensuring best vi-
sual quality and real-time interactions under the observed network
conditions.

The rest of the paper is structured as follows: In section 2 related
work to the studied problem is given. Section 3 describes the pro-
posed methodology and the experimentation used to examine the
behaviour of our adaptive system in a real-world situation. Finally,
section 4 discusses the outcomes of the approach and offers conclu-
sions and ideas for future work.

2 Related work

The related work ahead is split into three categories: a) Tele-
Immersion systems b) Mesh compression schemes c) Networking.
In the rest of the section, relevant works are presented for each cat-
egory, followed by an evaluation of the techniques and their appli-
cation to the streaming of 3D FBR content.

2.1 Tele-Immersion systems

In the literature most of the TI systems indeed utilize geometry-
based representation. In the TI system of [Vasudevan et al. 2011]
RGB stereo cameras are used to generate depth maps. The depth
values from each of the maps are then transmitted to other parties
while at the rendering sites, intermediate views for different view-
points are synthesized by combining depth maps; reconstruction is
based on a specific triangulation rule. A conceptually similar sys-
tem is described in [Maimone and Fuchs 2011]. In that work, depth
maps are directly captured using multiple Microsoft Kinects but the
compression and transmission scheme is not studied. Another TI
system presented in [Mekuria et al. 2013] uses the 3D reconstruc-
tion scheme of [Alexiadis et al. 2013a] but the mesh connectivity
coding is restricted to a specific triangulation rule. Additionally,
in all the aforementioned works the mesh color is coded per ver-
tex. Thus, in order to avoid blurring and aliasing in the rendered
images, very dense geometric data are required to be compressed
and transmitted to other parties. This degrades the performance of
the system. In [Alexiadis et al. 2014a] a complete TI pipeline is
presented that includes capturing, 3D reconstruction that produces
textured meshes, mesh compression via static mesh coders, texture
compression via H264 video coding and transmission. Finally, a
TI system utilizing image-based representation with intermediate
views being interpolated in the capture site and compressed using
standard video coding is presented in [Dai and Yang 2013].

2.2 Mesh Compression Schemes

The result of a real-time 3D reconstruction process usually con-
stitutes a time-varying mesh (TVM) [Doumanoglou et al. 2014].
Time-varying meshes are a series of meshes with varying number
of vertices and triangles across frames. Real-time delivery of this
data between users connected via a typical real-world, consumer
network is highly challenging due to the large payload of TVM data
that it is produced at run-time. TVMs can be compressed via static
mesh compression, i.e. using coders that do not take advantage of
potential redundancy of mesh data over time. Alternatively, some
approaches to TVM compression have attempted to detect correla-
tions over time and encode these in a continuous data stream. For
the first case, the research community has presented many efficient
and mature algorithms with the state of the art being [Mamou et al.
2009]; other mature works include [Rossignac 1999] and [Coors
and Rossignac 2004]. On the other hand, temporally based TVM
compression schemes are not yet mature enough to support real-
time TI systems. The most mature method we know and the only
that can compress both geometry and connectivity for use in a real-
time TI environment is [Doumanoglou et al. 2014].

2.3 Networking

2.3.1 Network protocols

For networking in general, two network protocols are very com-
monly used to realise the foundations of computer communications:
the Transmission Control Protocol (TCP)[Information Sciences In-
stitute 1981] and the User Datagram Protocol (UDP) [Postel 1980].
TCP is optimized for accurate delivery rather than timely delivery,



and therefore, TCP sometimes incurs relatively long delays (on the
order of seconds) while waiting for out-of-order messages or re-
transmissions of lost messages. Thus, time-sensitive and real-time
applications often use the User Datagram Protocol (UDP) because
dropping packets is preferable to waiting for delayed packets. How-
ever, this protocol may also be considered too primitive because
guaranteed-order packet delivery is sometimes necessary. A variant
of UDP, not yet standardized, is called Reliable UDP which offers
enhancements to the original protocol; it extends UDP by adding
acknowledgement of received packets, retransmission of lost pack-
ets and a few more features. Reliable UDP could be selected as
an alternative to TCP, which although also more robust in the de-
livery of data, adds too much complexity/overhead for demanding,
real-time applications.

2.3.2 Streaming

“Streaming” means sending audio, video or other kind of data in
a way that the data can be processed before completely received.
Streaming is not to be confused with progressive downloading. Pro-
gressive downloading is about receiving an ordinary file and start-
ing to process it before it’s completely downloaded. It does not
require any special protocols, but it requires an appropriate file for-
mat that can be processed based on partial content. On the other
hand, “streaming” uses a network streaming protocol to control the
transfer. In this approach, during “Streaming” the content quality
automatically changes in response to the transfer conditions. This
is called “adaptive streaming”: the content sender typically low-
ers (in a progressive fashion) the quality of the delivered content in
order to ensure a delivery rate that is appropriate for the capabili-
ties receiver. Streaming can be broadly divided into two categories:
on-demand and real-time. With on-demand streaming, the client
requests the content to receive, e.g. a recording or movie, among
various different contents. In contrast, real-time streaming allows
the sender to determine the sending content and the receiver plays
it back as it is sent, with a slight and consistent delay. In both cases,
the receiver plays the content back as soon as it is received. How-
ever, to keep up with transmission time and decoding processing
time, a buffering mechanism of several seconds is employed to pre-
vent skipping frames while playing back. Thus, playback is not
synchronized with the source [McGath 2013].

The Real Time Transport Protocol (RTP) [Schulzrinne et al. 2003]
is a transport protocol which is built on UDP and designed specif-
ically for real-time transfers. It’s closely associated with the Real
Time Control Protocol (RTCP) [Schulzrinne et al. 2003], which op-
erates at the session layer. The primary function of RTCP is to
provide feedback on the quality of the data distribution, allowing
actions such as adjusting the data rate. The Real Time Streaming
Protocol (RTSP) [Schulzrinne et al. 1998] is a presentation-layer
protocol that is described as a “network remote control”, enabling
the client to issue play, pause and forward/backward operations in
the server’s stream. The protocol stack of RTP, RTCP, and RTSP is
sometimes referred to as “RTSP” and often used in streaming.

2.3.3 Network protocols and techniques used in on-line
games

In on-line games it is common that TCP, UDP or both are utilized.
In order to support real-time interaction between players, special
network latency-hiding techniques are applied. For example, in a
Real Time Strategy (RTS) game, user interactions with objects in
a virtual world will first result in auditory feedback to the user to
confirm the action has begun. The game engine will then provide
visual feedback in the form of a ‘preliminary’ animation and only
after that the object will perform the requested action. However,
the network message for the intent of the action (as part of a logical

game state change) is sent immediately; so by the time the screen
responds to the player’s input, the network messages have already
been sent and acknowledged. Moreover, introducing an additional
small delay (eg, 100ms) between the mouse click and the game ob-
ject’s response allows for timely network transmission while game
responsiveness is not affected. Another trick for handling a possi-
ble delay between a command and its execution is something called
a local perception filter. If the game client receives a move or-
der some time after the actual order was given, the client actually
knows when the unit should have started moving and also knows its
end destination. Instead of tele-porting the game object to its cor-
rect location, the client may start its movement late and then utilize
physics to speed it up slightly so that it can catch up to where it’s
supposed to be, and then slow it back down to put it in the correct
place. Another technique commonly used is dead-reckoning [Mur-
phy 2011]. Dead-reckoning is the name of a technique that uses
details regarding an object’s past location, direction and speed in
order to predict its current location. Applying dead-reckoning to
hide the lag time inside the game is called client-side prediction.

2.3.4 Network Protocols in Tele-immersion

In the literature, the only work we found to be related to TI net-
work protocols was [Leigh et al. 2001]. In the respective paper, the
use of Forward Error Correction (FEC) codes over UDP for real-
time tele-immersion is suggested. This enables the receiver to re-
cover when the number of errors in a packet’s transmission is below
some threshold without the need of retransmission and at the cost
of sending redundant data within each network packet. An alter-
native suggestion includes using multiple parallel TCP sessions in
order to transmit data possibly improving throughput and reducing
the overall retransmission delay of the message.

2.3.5 Discussion

For a tele-immersion scenario, streaming in the sense described in
section 2.3.2, is not applicable. The RTSP protocol targets scenar-
ios that are different. In tele-immersion there is no sense of control-
ling the stream via play/pause/backward/forward commands. In-
stead, fast and reliable delivery of the live stream, without buffering,
is what matters. Tele-immersion is most like real-time streaming
with the additional constraint of playback being as “simultaneous
with the source” as possible. Moreover, the way lag is hidden in
online-games has little to do with how lag of transmitting recon-
struction data may be handled in TI. Using FEC codes over UDP,
as described in section 2.3.4, may be beneficial. However it can
be argued that utilizing multiple TCP sessions in parallel in order
to reduce transmission delay and improve throughput is doubtful.
[Natarajan et al. 2009].

3 Methodology

Our approach to the design and development of a responsive mecha-
nism to deliver adaptive, real-time 3D reconstructed mesh data was
grounded in a real world interactive system created as part of an
EU funded project, 3D-LIVE. [3D-LIVE ]. The 3D-LIVE project
provides three game based scenarios (skiing, golfing and jogging)
in which remotely connected users simultaneously take part in a
shared sporting activity. Whilst it is possible to configure the 3D-
LIVE systems for a variety of game players using a wide range of
interaction modalities (ranging from outdoor augmented reality and
immersive CAVE environments), the current architecture supports
the capture and delivery of full body reconstruction for ’indoor’
users only. In this case, we imagine two users in geographically
separate locations engaging in game play using the 3D-LIVE sys-
tem; one of the users plays within a full body reconstruction game



Figure 2: Abstracted reconstruction pipeline

area - the other engages in a simpler gaming room (realistic for an
’at home’ user) in which she can see the other player fully recon-
structed in 3D within the virtual environment. Towards develop-
ing and evaluating our adaptive algorithm, we adopted a synthesis
of model-based and empirical methods. These were comprised of
three main phases: i) abstraction of the 3D content pipeline and its
constituent processes, ii) design and implementation of an adaptive
architecture to support dynamic behaviour in the pipeline; and iii)
an empirical, experimental evaluation of the adaptive process us-
ing a sub-set of the 3D-LIVE platform updated to include real-time
adaptive mesh compression whilst operating in real-world network
conditions.

3.1 Phase 1: Pipeline performance modelling

In the first phase, our objectives were to define the macro-level
stages of the TI pipeline and then identify those elements in the
process that could impact the delivery of FBR frames to the end
user. We began by developing an abstracted view of the reconstruc-
tion pipeline in its simplest form: one sender of FBR frame data
to one receiver. This process can be decomposed into two ’local’
processing phases and an intermediate network transmission phase,
see figure 2. In the first local phase, vector λ1 represents the FBR
frame inter-arrival time (an aggregate of the time required for mul-
tiple Kinect image data sets to be captured and then fused into a
single 3D model). The FBR frame is then compressed adaptively
(this is described in more detail in section 3.2.2) at node µ1 before
entering the network transmission phase.

Transmission across the network is approximated by two network
data carrying steps λ2 and λ3 and a data distribution processing
operation carried out on a message brokering system (RabbitMQ
[RabbitMQ ] in this case) during which FBR frame data is routed
to the appropriate target. Finally, phase 3 represents the reception,
decompression and rendering of the FBR frame by the machine that
renders the 3D mesh to the end user (nodes µ3 and µ4).

The implementation of the first, local phase of our TI pipeline, start-
ing at the sender’s side is depicted in Fig 3. It is a multi-threaded
phase consisting of 4 different modules, each one running in a sep-
arate thread. The pipeline is very much alike to the pipeline de-
scribed in [Alexiadis et al. 2014a]. Capturing is performed via 4
Microsoft Kinects while 3D Reconstruction is utilizing the algo-
rithm from [Alexiadis et al. 2014a]. Moreover, the compression
module uses OpenCTM [OpenCTM ] for mesh compression (like
[Alexiadis et al. 2014a]) while for textures it makes use of standard
JPEG compression [Wallace 1991], instead of the H264 codec [ITU
2003] that was used in [Alexiadis et al. 2014a].

As already mentioned, the network transmission in this process is
supported using the TCP-based message broker system, RabbitMQ.
This TCP-based approach was selected in favour of a UDP imple-
mented for the reason that it maintains frame data integrity. Com-
pressed FBR frame data would span across multiple UDP packets
due to its increased size making it more likely to be subject to par-

Figure 3: Tele-Immersion Pipeline at the sender’s side

tial data loss. The mesh decompression algorithm employed would
not be able to cope with packet loss, unless FEC codes were used.
Although FEC codes would improve the performance of the sys-
tem, even then, the transmission reliability is not certain. To cope
with the real-time nature of the system and interactive frame-rates,
RabbitMQ was configured to use a queue size of 1 message. Thus,
whenever a new 3D FBR frame is available, any yet undelivered
3D frame is dropped (and thus never delivered to the client). This
eliminates buffering and minimizes the effect of the receiver lag-
ging behind the transmitter.

An examination of the performance characteristics of in-memory
processes of the pipeline was addressed to determine the localised
factors influencing transmission performance; these could be eas-
ily controlled and observed on a single machine. Data processing
throughput of nodes λ1, µ1, µ3, λ4 and µ4 were modelled using
normal distributions calculated from a series of instrumented ob-
servations of FBR data processing run on ‘sender’ and ‘receiver’
machines respectively. In order to constrain the problem space for
these benchmarking exercises, we defined three levels of FBR re-
construction compression quality (with an inversely related level of
data compression) that would be applied at the compression step
(see table below and Fig. 4). To evaluate the visual quality of the
compressed reconstruction, the Peak Signal to Noise Ratio (PSNR)
metric is used. The 3D reconstructed mesh is rendered from a view-
point defined by the Kinect camera’s extrinsic parameters and pro-
jected to the image plane using the Kinect camera’s intrinsic param-
eters. All the four views, one for each kinect, are used for PSNR
calculation. Let Itv(i, j, c) denote the value of pixel (i,j) in channel
c (standard 3-channel RGB is assumed, c ∈ {0, 1, 2}) for the v-th
kinect and frame t. Similarly, Kt

v(i, j, c) represents the image pro-
duced by the (compressed) rendered 3D-Reconstruction. The Mean
Squared Error (MSE) is then computed as follows:

MSE =
1

3TVMN

T−1∑
t=0

V −1∑
v=0

M−1∑
i=0

N−1∑
j=0

2∑
c=0

(Itv(i, j, c)−Kt
v(i, j, c))

2,

(1)

where T is the total number of frames, V the number of Kinects and
M , N the vertical and horizontal resolution of the kinect images,
respectively. The PSNR is then computed by:

PSNR = 10 log10

(
1

MSE

)
, (2)



Figure 4: From left to right: Uncompressed, low compression,
medium compression, high compression

where the pixel values for each channel is assumed to lie in the
interval [0,1].

The results of the PSNR calculation are given in Table 1. The
PSNR of the uncompressed reconstruction was measured as well
and found equal to 23.1 dB. Thus, the chosen different compres-
sion levels correspond to sufficiently varying visual quality levels.

Quality level Average bytes/frame Std.dev bytes/frame PSNR (dB)
High 244391.52 17013.72 22.2
Medium 192811.64 15219.44 21.6
Low 163358.56 17013.72 20.8

Table 1: Average file size per frame and PSNR for different visual
quality levels

Frame inter-arrival rate (λ1), representing the arrival of a ‘raw’ FBR
frame (and therefore not compressed at this stage) is sensitive to
the physical person or object that is being virtual reconstructed at
run-time. In this case, we took a representative sample from a pre-
viously conducted 3D-LIVE experiments (see [Crowle et al. 2014]
for more information on 3D-LIVE trials) and used this as a stan-
dard: this value was benchmarked at an average rate of 155.3ms
per frame (or about 6.4 frames/second).

Message brokering process time was modelled in a similar fashion
by passing pre-recorded FBR frames through the RabbitMQ server
operating on a local machine and calculating the normal delay dis-
tribution. A summary of the in-process benchmarks for these com-
ponents of the pipeline are summarized in the table below, showing
performance measures for corresponding FBR frame quality.

Pipeline node High quality Medium quality Low quality
µ1 average (ms) 91.77 91.62 91.48
µ2 average (ms) 1.6198 1.4994 1.4294
µ3 average (ms) 30.77 28.56 28.8
µ4 average (ms) 33.3 33.3 33.3

Our results showed that the in-memory performance characteristics
for FBR frame data carried at our pre-defined quality levels remain
stable and are processed uniformly - meaning they can be treated
as effective constants within the pipeline model. By a process of
elimination, we had now only to consider the effect that network
performance might have on the transmission phase of the pipeline.
In real-world network contexts such as those used by the 3D-LIVE
platform, users will have little or no control over these factors and
so instead the system itself must respond to prevailing conditions
(such as fluctuations in bandwidth, latency, packet loss and other
factors). With these factors in mind, and our mitigating control be-
ing that ability to change the quality (or level of data compression)
of the FBR frame data, we proceeded to designing an adaptation
framework.

Figure 5: NAS architecture overview

3.2 Phase 2: Adaptation design and implementation

Selecting the 3D-LIVE platform provided concrete architectural re-
quirements against which to define an adaptive compression algo-
rithm and system design as well as a known set of performance
characteristics for full body reconstruction that we previously cap-
tured (in a non-adaptive system) in earlier experiments [Crowle
et al. 2014]. Based on this, the primary requirements that shaped
the conceptualisation of the adaptive algorithm and system design
were as follows:

• Adaptation must be configurable for use in different network
conditions.

• Optimisation must be parity driven, delivering FBR data at a
level of quality that is consistent for all users.

• Implementation of the adaptive behaviour must have a low
impact on the 3D-LIVE system architecture.

Following on from these guiding principles, the Network Adapta-
tion Service (or NAS) was designed and implemented to run in par-
allel with existing 3D-LIVE system architecture (for more informa-
tion on the 3D-LIVE architecture, see [Poussard et al. 2014]). Here
we restrict our description of the design of the NAS to its high-level
architecture and the algorithmic process used to enact adaptation of
time-varying mesh delivery at run-time.

3.2.1 NAS architecture

The NAS system is formed of distributed components that are con-
nected via the same message brokering system already used in 3D-
LIVE. This approach was chosen as it was well aligned with the
communication software modules already in place and also pro-
vides us a means to approximate prevailing network conditions that
reflect the direction of travel taken by FBR data frames during game
play.

NAS architecture comprises of a central, on-line service that is re-
sponsible for estimating the overall network conditions (as defined
in by the pipeline model) between 3D-LIVE game players and rec-
ommending adaptive actions to be taken by the full body recon-
struction process. The indicative roles of components in our archi-
tectural design of the NAS (Figure 5) are summarised below.

Network Adaptation Client
This is a software client that controls the NAS through a series of
commands sent via the RabbitMQ server. These commands con-
trol the network performance sampling behaviour of the service and
also allows the client to query the Network Adaptation Service for a
recommended compression level for full body reconstruction data.



Network Adaptation Service
Central to the system, the Network Adaptation Service orchestrates
the sampling of network performance through communication with
Monitors that run on game clients and are capable of capturing net-
work statistics that are representative of network performance be-
tween the game client and the RabbitMQ server.

Game clients (Network Adaptation Monitors)
Each game client represents a machine that runs a) a 3D-LIVE in-
door application and b) a Network Adaptation Monitor that sam-
ples network performance between itself and the RabbitMQ server.
Sampling is carried out using third party network performance
clients that connect to a network performance server (also installed
on the RabbitMQ server machine). Network performance statis-
tics are returned to the Network Adaptation Service via RabbitMQ.
Monitors are defined as either senders (representing game clients
sending FBR data) or receivers (game clients receiving FBR data).

RabbitMQ server
This server is used by the 3D-LIVE system to carry game content
messages between all users during game play. An approximation of
FBR data transmission performance between any two users in the
game can be achieved by aggregating network performance statis-
tics between each player and this server. Third party network per-
formance services are installed on the RabbitMQ server machine
and used by the game clients to capture network performance be-
tween it and them.

Net Perf Client
Network Adaptation Monitors use the corresponding third party
network performance clients to gather statistics about their con-
nection to the RabbitMQ server. In this case we used standard
tools to approximate bandwidth and latency (iPerf [iPerf ] and
ping[Microsoft Corporation 2015b] respectively).

At run-time, the NAS periodically aggregates network performance
statistics from the attached monitors and maintains a live approx-
imation of the all paths leading from full body reconstruction
senders to receivers (of which there may be multiples in both cases).

3.2.2 Configurable rule model

Based on our earlier pipeline investigation, our working hypothesis
was that the NAS should be sensitive to network performance met-
rics and provide appropriate changes to mesh compression levels.
These changes resolve to greater or lesser levels of compression
being applied to FBR frames at run-time with the idea that, if the
network allows, higher quality 3D reconstruction can be presented
to the end user. Conversely, lower quality 3D frames may be sent to
the user but at an increased update rate. Upper bounds on the move-
ment along this quality/speed scale are determined by the constant
factors in the pipeline process (λ1, µ1, µ2 and µ3). Lower bounds
are defined by compression level and available network conditions
as defined by λ2 and λ3.

Therefore we developed a flexible and extensible rule engine that
could be used to encapsulate a variety of network performance met-
rics as input parameters and select between them using run-time
configurable rules to determine a compression level. The NAS as-
sociates the aggregated network statistics it collects with a specific
rule set managed by the rule engine. For example, measurements
of network throughput are mapped to a throughput rule set. Each
rule classifies the statistics it finds into levels (high, medium and
low are used). Once data for all rule sets are available, rules mod-
ify control flow through a reasoning process based on their current
classifications of network performance to reach a terminating result
that specifies the upper and lower bounds for mesh compression
(see figure 6). In cases where the network is unable to sustain any

Figure 6: Example of the NAS configurable rule process (two rule
sets)

kind of acceptable full body reconstruction data (at any quality or
speed), the FBR data stream should be replaced by skeleton motion
data (used to animate a conventional avatar instead).

3.3 Phase 3: Real-world experimentation

The NAS was developed to integrate with the 3D-LIVE game plat-
form which is intended to support game players on multiple sites
in geographically disparate locations. We took steps to replicate
this arrangement whilst at the same time applying as many reason-
able controls over extraneous influences on system behaviour as
possible. To realise a real-world network deployment, we set up
a 3D-LIVE full body reconstruction environment in Thessaloniki,
Greece; a reconstruction receiver game client in Laval, France; the
NAS adaptation service in Southampton, United Kingdom and the
RabbitMQ server in Germany. To further mitigate against unex-
pected and difficult to repeat real-world conditions, we created a
static, physical model that would be continuously reconstructed
at run-time. This constraint provides us with the ability to hold
λ1 constant at run-time. The experiment procedure and metrics
data capture was managed using the on-line experimentation sys-
tem ‘EXPERImonitor’ from the EXPERIMEDIA project [Boni-
face et al. 2013] which controls experiment flow; aggregates metric
meta-data and observations; and provides live visualisation and data
export for subsequent analysis.

3.3.1 NAS benchmarking and configuration

Experimentation began with a benchmarking process that allowed
us to configure the NAS to work within the real-world conditions
available to us. The NAS was set up with two network metric mon-
itoring instruments per user: a throughput sampler (based on iPerf )
and a latency sampler (based on ping). Using NAS sampling, we
were able to take benchmark values for the best currently avail-
able network conditions between the two 3D-LIVE machines, there
were:

3D-LIVE machine Latency to Rabbit Throughput from/to Rabbit
Sender 48.45 ms (average) 12.48Mbps (average)
Receiver 50.8 ms (average) 8.398 Mbps (average)

In order to establish some influence over network conditions be-
tween the two users, we used Microsoft’s Network Emulator for
Windows Toolkit (NEWT) [Microsoft Corporation 2015a] to locally
constrain network traffic on a single machine (on the sender side)
whilst mainlining optimum network conditions on the receiver end.
A series of preliminary, exploratory tests using NEWT to change a
number of network behaviours whilst streaming live reconstruction
data lead us to select available bandwidth as the principal factor to



Figure 7: Real-world benchmarking results for NAS configuration

Figure 8: NAS rule configuration

investigate as an impact on the transmission of FBR data between
users.

Our exploration of this influence was conducted at five bandwidth
levels whilst at the same time changing FBR frame data compres-
sion. The results provided us with enough data to create a rule set
that would allow us define a trial NAS rule set (based on bandwidth
metrics) and a nominal threshold below which full body reconstruc-
tion would be considered non-viable (this was set a 3fps).

Figure 8 visualises the rule set that developed for subsequent run-
time evaluation trials. The three classification boundaries were
mapped to the benchmarking results and the resultant ranges where
quality can be traded off for speed indicated. In this simple case, we
can see that in high-bandwidth scenarios, high quality FBR frames
can be sent at close to maximum performance. As available band-
width drops, highest quality FBR frames can be maintained, but at
the cost of a reduced frame-rate. Finally, in low bandwidth condi-
tions, quality is initially limited and is then dropped altogether once
frame rate falls below 3fps.

3.3.2 Run-time evaluation

Once calibrated, the NAS was integrated with the 3D-LIVE gaming
platform to verify system adaptation responses to available network
resources. Using the three bandwidth levels as use-cases, we ran
the NAS and reconstruction streaming processes and periodically
issued commands to either increase the speed or the quality of the
full body reconstruction. During this time we observed the rate at

Figure 9: Comparative adaptation of FBR compression in response
to network conditions

which FBR frames arrived at the receiver side and also noted the
NAS responses to demands for change in quality of speed.

Figure 9 visualises FBR receiving frame rate changes over time in
each of the three experimental bandwidth levels tested; we indicate
the points in each series where changes in quality of speed were
requested with diamond markers and selectively highlight points
where these changes impact frame rate. Under the high bandwidth
scenario, the full range of quality is available at the maximum rate
at which FBR frames can be reconstructed by the sending machine:
in this case there was no advantage to reducing the quality of frames
sent.

Under medium bandwidth conditions we see a much clearer case
that demonstrates where dynamically sacrificing quality at run-time
can produce improvements in FBR frame throughput. In the table
below we enumerate the six QoS medium bandwidth markers, com-
paring QoS change requests with NAS compression recommenda-
tions.

Marker QoS request NAS compression response
1 Quality+ Medium
2 Quality+ Low
3 Quality+ Low
4 Speed+ Medium
5 Speed+ High
6 Speed+ High

Marker and highlight 1 show the first change in QoS changing from
an initial low quality setting to a medium quality - the NAS re-
sponds correctly with a reduction from high to medium compres-
sion. At a medium bandwidth level this change of quality can be
sustained at the maximum reconstruction frame rate. Highlight 2
(and marker 2) shows the point where we make a further QoS re-
quest for quality and in this case compression goes down, but so
too does FBR receiving frame rate. The next QoS change request
(marker/highlight 3) shows that the system has reached the ‘floor’
of its QoS range and we see no change in performance or quality.
Finally for this series, marker/highlight 4 begins a QoS change in
the opposite direction towards improvements in speed which even-
tually return to the ‘ceiling’ frame rate.

A similar pattern for the low bandwidth scenario was also observed,



but to a smaller degree. Highlight 5 indicates the point where we
request an increase of speed from an initial starting point of medium
quality (NAS rules prevent high quality FBR reconstruction in this
case). The low bandwidth series continues with attempts to increase
speed: here the NAS starts to recommend avatar skeleton data as an
alternative (FBR streaming is continued in any case). At the last
highlight in figure 9 we show the first request for an improvement
in quality - here there was an short delay before changes in frame
rate by the receiver were observable.

4 Conclusions & Future work

Our results confirmed that the NAS responded with the appropri-
ate mesh compression recommendations which were affected by
the 3D-LIVE FBR service in real-time in three varying levels of
network capability. The full body reconstruction frames per sec-
ond performance at highest quality in these controlled tests are rep-
resentative of the current maximum real-time performance for an
interactive TI context. These compare with earlier 3D-LIVE user
trials [Crowle et al. 2014] where equivalent observations of receiv-
ing frame rate were slightly lower than this performance ceiling -
possibly due to the additional overhead of other game processes
(such as voice communication). We also note that our bandwidth
sampling processes had a significant impact on streaming when ex-
ecuted concurrently, meaning that we had to sample this network
characteristic in-between simulated game sessions. Significant im-
pacts to game performance caused by heavy-weight network per-
formance sampling would not be acceptable to users and so would
either have to be carried out at strategic moments during game-play
(such as during game set-up scenes) or replaced with light-weight
‘passive’ methods.

This exploratory work offers a novel approach, design and evalua-
tion methodology to realise an adaptive compression framework for
real-time full body reconstruction in a tele-immersion environment.
Based on this foundation, we anticipate further refinements and im-
provements to the approach. These include the ability of the NAS
to automatically generate its own rule set based on an automated
benchmarking process of the network and the TI pipeline itself;
the development of low-impact, passive network capability sam-
pling methods integrated into the NAS protocol; and enhancements
to data compression techniques including support for layered bit-
streams similar to the methods used in contemporary video stream-
ing technologies, by utilizing progressive compression of geometry
and textures.

5 Acknowledgements

This work was supported by the EU funded project 3DLIVE, GA
318483. http://3dliveproject.eu/.

References

3D-LIVE. 3D-LIVE: 3D Living Interactions through Visual Envi-
ronments. [Online] http://3dliveproject.eu/wp/.

ALEXIADIS, D. S., ZARPALAS, D., AND DARAS, P. 2013. Real-
time, full 3-d reconstruction of moving foreground objects from
multiple consumer depth cameras. IEEE Transactions on Multi-
media 15, 2, 339–358.

ALEXIADIS, D. S., ZARPALAS, D., AND DARAS, P. 2013. Real-
time, realistic full-body 3d reconstruction and texture mapping
from multiple kinects. In 11th IEEE IVMSP Workshop: 3D
Image/Video Technologies and Applications, Yonsei University,
Seoul, Korea, 10-12 June.

ALEXIADIS, D. S., DOUMANOGLOU, A., ZARPALAS, D., AND
DARAS, P. 2014. A case study for tele-immersion communi-
cation applications: From 3d capturing to rendering. In 2014
IEEE Visual Communications and Image Processing Confer-
ence, VCIP 2014, Valletta, Malta, December 7-10, 2014, 278–
281.

ALEXIADIS, D. S., ZARPALAS, D., AND DARAS, P. 2014. Fast
and smooth 3d reconstruction using multiple rgb-depth sensors.
In 2014 IEEE Visual Communications and Image Processing
Conference, VCIP 2014, Valletta, Malta, December 7-10, 2014,
173–176.

BONIFACE, M., PHILLIPS, S., VOULODIMOS, A., SALAMA, D.,
AND MURG, S. 2013. Experimedia: Technology enablers for a
future media internet testing facility. In Proceedings of the NEM
Summit 2013, Eurescom GmbH, Heidelberg, Germany, 28–30.

COORS, V., AND ROSSIGNAC, J. 2004. Delphi: geometry-based
connectivity prediction in triangle mesh compression. The Visual
Computer 20, 8-9, 507–520.

CROWLE, S., BONIFACE, M., POUSSARD, B., AND ASTERI-
ADIS, S. 2014. A design and evaluation framework for a tele-
immersive mixed reality platform. In Augmented and Virtual Re-
ality, L. T. De Paolis and A. Mongelli, Eds., vol. 8853 of Lecture
Notes in Computer Science. Springer International Publishing,
151–158.

DAI, B., AND YANG, X. 2013. A low-latency 3d teleconferencing
system with image based approach. In Proceedings of the 12th
ACM SIGGRAPH International Conference on Virtual-Reality
Continuum and Its Applications in Industry, ACM, New York,
NY, USA, VRCAI ’13, 243–248.

DOUMANOGLOU, A., ALEXIADIS, D. S., ZARPALAS, D., AND
DARAS, P. 2014. Toward real-time and efficient compression of
human time-varying meshes. IEEE Trans. Circuits Syst. Video
Techn. 24, 12, 2099–2116.

FEHN, C. 2004. 3D-TV using depth-image-based rendering. Pro-
ceedings of the of Picture Coding Symposium (PCS), San Fran-
cisco, CA, USA.

HASENFRATZ, J.-M., LAPIERRE, M., AND SILLION, F. 2004.
A real-time system for full body interaction with virtual worlds.
In Proceedings of the Tenth Eurographics Conference on Virtual
Environments, Eurographics Association, Aire-la-Ville, Switzer-
land, Switzerland, EGVE’04, 147–156.

INFORMATION SCIENCES INSTITUTE, U. O. S. C., 1981. Rfc 793:
Transmission control protocol.

IPERF. [Online] https://iperf.fr/.

ITU, I. T. S. S. O., 2003. H.264: Advanced Video Coding for
Generic Audiovisual Services. [Online] http://www.itu.int/rec/T-
REC-H.264-200305-S/en.

LEIGH, J., YU, O., SCHONFELD, D., ANSARI, R., HE, E.,
NAYAK, A., GE, J., KRISHNAPRASAD, N., PARK, K., CHO,
Y.-J., HU, L., FANG, R., VERLO, A., WINKLER, L., AND
DE FANTI, T. 2001. Adaptive networking for tele-immersion.
In Immersive Projection Technology and Virtual Environments
2001, B. Frhlich, J. Deisinger, and H.-J. Bullinger, Eds., Euro-
graphics. Springer Vienna, 199–208.

LIEN, J.-M., KURILLO, G., AND BAJCSY, R. 2009. Multi-camera
tele-immersion system with real-time model driven data com-
pression: A new model-based compression method for massive
dynamic point data. Vis. Comput. 26, 1 (Nov.), 3–15.



MAIMONE, A., AND FUCHS, H. 2011. Encumbrance-free telep-
resence system with real-time 3d capture and display using com-
modity depth cameras. In 10th IEEE International Symposium
on Mixed and Augmented Reality, ISMAR 2011, Basel, Switzer-
land, October 26-29, 2011, 137–146.

MAMOU, K., ZAHARIA, T. B., AND PRÊTEUX, F. J. 2009. TFAN:
A low complexity 3d mesh compression algorithm. Journal of
Visualization and Computer Animation 20, 2-3, 343–354.

MATSUYAMA, T., WU, X., TAKAI, T., AND NOBUHARA, S.
2004. Real-time 3d shape reconstruction, dynamic 3d mesh de-
formation, and high fidelity visualization for 3d video. Comput.
Vis. Image Underst. 96, 3 (Dec.), 393–434.

MCGATH, G., 2013. Basics of streaming protocols. [Online]
http://www.garymcgath.com/streamingprotocols.html.

MEKURIA, R., SANNA, M., ASIOLI, S., IZQUIERDO, E., BUL-
TERMAN, D. C. A., AND CÉSAR, P. 2013. A 3d tele-immersion
system based on live captured mesh geometry. In Multimedia
Systems Conference 2013, MMSys ’13, Oslo, Norway, February
27 - March 01, 2013, 24–35.

MICROSOFT CORPORATION, 2015. Network
emulator for windows toolkit. [Online]
https://blog.mrpol.nl/2010/01/14/network-emulator-toolkit/.

MICROSOFT CORPORATION, 2015. Ping. [Online]
https://technet.microsoft.com/en-us/library/cc940091.aspx.

MURPHY, C. 2011. Game Engine Gems 2, Believable Dead Reck-
oning for Networked Games. ch. 18, 307328.

NATARAJAN, P., BAKER, F., AND AMER, P. D., 2009. Multiple
TCP Connections Improve HTTP Throughput-Myth or Fact?

OPENCTM. [Online] http://openctm.sourceforge.net/.

POSTEL, J., 1980. RFC 768: User Datagram Protocol.

POUSSARD, B., RICHIR, S., VATJUS-ANTTILA, J., ASTERIADIS,
S., ZARPALAS, D., AND DARAS, P. 2014. 3dlive: A multi-
modal sensing platform allowing tele-immersive sports applica-
tions. In Signal Processing Conference (EUSIPCO), 2014 Pro-
ceedings of the 22nd European, 356–360.

RABBITMQ. http://www.rabbitmq.com/.

ROSSIGNAC, J. 1999. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualization and
Computer Graphics 5, 1 (Jan.), 47–61.

SCHULZRINNE, H., RAO, A., AND LANPHIER, R., 1998. Real
Time Streaming Protocol (RTSP).

SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND JACOB-
SON, V., 2003. RTP: A Transport Protocol for Real-Time Appli-
cations.

SMOLIC, A. 2011. 3d video and free viewpoint video-from capture
to display. Pattern Recogn. 44, 9 (Sept.), 1958–1968.

VASUDEVAN, R., KURILLO, G., LOBATON, E. J., BERNARDIN,
T., KREYLOS, O., BAJCSY, R., AND NAHRSTEDT, K. 2011.
High-quality visualization for geographically distributed 3-d
teleimmersive applications. IEEE Transactions on Multimedia
13, 3, 573–584.

WALLACE, G. K. 1991. The jpeg still picture compression stan-
dard. Commun. ACM 34, 4 (Apr.), 30–44.


