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ABSTRACT 

The hydrolytic degradation of fully cured polyester-urethane networks polymerized in the presence 

of several weight ratios of triacetin was monitored by the residual concentration in elastically active 

chains obtained from modulus and equilibrium solvent swelling measurements. The presence of 

triacetin does not change the water uptake but induces a lower rate of degradation. Comparisons 

were performed with networks in which triacetin was removed before ageing, and with networks in 

which polyester-urethane was first polymerized and then impregnated by triacetin. Data suggest that 

the presence of triacetin during polymerization induces the presence of elastically inactive chains 

such as dangling chains, loops… the hydrolysis of which does not change the elastic properties of the 

network. This explanation was checked from relaxation measurements by n.m.r and d.m.a, and by 

the analysis of the soluble fraction generated by hydrolysis. 
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INTRODUCTION 

Water induces degradation of polyester-based polymers. Their mechanical properties can be altered 

by essentially two ways: the plasticization induced by water penetration in the initially glassy 

network [1,2], or the chemical reaction between cleavable ester groups and water [2,3,4]. Both 

processes can take place together or separately. In the first case, an equilibrium state can be 

reached, whereas the second process is expected to lead to a continuous decrease of the network 

mechanical properties till a “degelation” point is reached. At this point, all elastically active chains are 

cut, the polymer becomes fully soluble, and it turns back to a liquid polymer.  

 

There is a well-documented literature dealing with several aspects of polymer hydrolysis: 

- structure-properties relationships highlighting the effect of structure on hydrophilicity [5,6], but 

there is much less work dealing with the relationship between macromolecular architecture and the 

sensitivity to chain scission. 

- kinetic modeling of direct, reversible and diffusion controlled hydrolysis [7,8]. 

- modeling of elastically active chains consumption exploring for example the influence of the 

average number of cleavable bonds hold by elastically active chains on the degelation process [9]. 

 

This literature is based on “model” systems: linear thermoplastic polymers, ideal networks (i.e., 

networks in which all chains are elastically active), polymers with only one kind of reactive units. Less 

is known about the cases where:  

- the polymer is compounded with additives such as plasticizers. The influence of plasticizers on 

rheological and initial mechanical properties is well documented [10,11,12,13]. Some studies already 

dealt with the influence of additives on physical ageing through the permeability of water into 

polymers [14,15], but additives can also participate in the hydrolytic process through catalytic effects 

as suggested by a recent work [16]. 
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- the polymer contains “structural defects” (i.e., is non-ideal), since the architecture of the final gel 

and the possibility of cyclization strongly depend on the presence of a solvent that would “swell” the 

polymer during its crosslinking [17], even if this issue was ignored for an elastomer cured in the 

presence of a plasticizer content up to 40% [12].  

 

Therefore, this paper investigates the hydrolytic degradation of polyester-urethane networks 

containing up to 75% weight ratios of triacetin, which is an inert plasticizer that does not participate 

“actively” to the crosslinking process [18,19]. Special attention will be paid to the effects of triacetin 

on: 

- Water permeation. 

- Network architecture. As a matter of fact, a plasticizer acts as a diluent in the polymerization 

medium and, consequently, is expected to change the network architecture and possibly its 

sensitivity towards hydrolysis. This is the reason why samples polymerized in the presence of 

triacetin will be compared with other samples polymerized without diluent but with the plasticizer 

added after polymerization. 

 

EXPERIMENTAL 

1. Materials 

1.1. Networks synthetized in the presence of triacetin 

The polyester under study is a polycondensate resulting from the reaction of 60% by weight adipic 

acid, 12% ethylene glycol and 28% diethylene glycol. Its number average molar mass is c.a. 2100 g 

mol-1 and its polydispersity index is close to 1.7. This macrodiol was crosslinked 14 days at 50°C by a 

stoichiometric amount of benzene triisocyanate in molds to produce foils of 2 mm thickness. 

Dogbone H3 samples of calibrated length (20 mm) and width (4 mm) were cut from these foils. 
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Figure 1. Structure of triacetin. 

In the present case, the polyester-urethane networks were synthetized in the presence of triacetin 

used as a plasticizer. The weight ratios of triacetin under investigation were 0, 0.25, 0.5 and 0.75. 

They will be considered equal to volume ratios since the density of polyester-urethane and triacetin 

are respectively close to 1.2 and 1.16. These materials will be denoted as P, P+TA 75/25, P+TA 50/50 

and P+TA 25/75 in the following. 

 

1.2. Networks containing a plasticizer added after synthesis 

Measurements of triacetin sorption by polyester-urethane P (polymerized in undiluted state and 

expected to be ideal networks – see “RESULTS” section) were performed at 23°C, 60°C and 80°C 

(Figure 2). The triacetin equilibrium mass uptake was almost constant (about 130 ± 10 %) in the 

whole temperature range under study and corresponded to a triacetin weight fraction of about 56 ± 

2%. For example, the triacetin content in a sample impregnated during ca 16h or 70 h at room 

temperature was ca 25 or 50% in weight. These materials are denoted as P+TA 75/25impregnated and 

P+TA 50/50impregnated. 

O
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Figure 2. Kinetics of triacetin mass uptake into polyester

NB: square root of time is chosen as abscissa axis for better clarity.

 

1.3. Networks in which the plasticizer added during synthesis is removed before ageing

Some comparisons were done with networks polymerized in 

the latter was totally extracted by 1,2

are denoted P+TA 50/50extracted and P+

 

2. Ageing tests 

The samples were submitted to humid ageing at 60°

from saturated solutions of MgCl

were checked regularly using a MicroLog PRO II Humidity Data Logger (Fourtec Technology).
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. Kinetics of triacetin mass uptake into polyester-urethane P at 23 (�), 60 (

NB: square root of time is chosen as abscissa axis for better clarity.

Networks in which the plasticizer added during synthesis is removed before ageing

Some comparisons were done with networks polymerized in the presence of triacetin and in which 

extracted by 1,2-dichloroethane (72 h at room temperatur

and P+TA 25/75extracted in the following. 

amples were submitted to humid ageing at 60°C under 29 and 75% relative humidity

from saturated solutions of MgCl2,6H2O and NaCl, respectively. Relative humidity and temperature 

using a MicroLog PRO II Humidity Data Logger (Fourtec Technology).

 

), 60 (�), and 80°C (�). 

NB: square root of time is chosen as abscissa axis for better clarity. 

Networks in which the plasticizer added during synthesis is removed before ageing 

presence of triacetin and in which 

(72 h at room temperature). These materials 

75% relative humidity obtained 

umidity and temperature 

using a MicroLog PRO II Humidity Data Logger (Fourtec Technology). 
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3. Characterization 

3.1. Water permeation by dynamic vapor sorption (DVS) 

The polymer affinity with water was measured by keeping ca. 20 mg samples in air at 1 bar with fixed 

water partial pressures between 0 and 90% in a dynamic vapor sorption apparatus DVS-1000 from 

Surface Measurement Systems. DVS measurements were also used for comparing the affinity of each 

sort of polyester-urethane with 1,2-dichloroethane used as a solvent for sol-gel analysis. 

 

3.2. Modulus measurement by mechanical tests 

Uniaxial tension was performed at 20°C and at 10 mm min-1 (8.33×10-3 s-1) strain rate, using an 

INSTRON 4301 machine with a 100 N cell. The engineering stress F/S0 was recorded against (λ – λ-2), 

where λ denotes the draw ratio, so that the initial slope of the curve is the shear modulus G from 

which the concentration in elastically active chains is deduced [20]. 

 

3.3. Sol gel analysis 

Virgin or aged samples were characterized by monitoring their equilibrium swelling ratio in 1,2-

dichloroethane (ACS reagent, Carlo Erba). Data were exploited for quantifying:  

1) the soluble fraction SF = (m0 – mdry )/m0, 

2) the equilibrium swell ratio SW = mswollen/mdry from which the polymer volume ratio in swollen 

network (denoted by φ2) can be calculated: 

φ2 = �1 + ρ2

ρ1

·(SW - 1)�
-1

                                  (1) 
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where ρ1 and ρ2 denote the 1,2-dichloroethane density and the polymer density, respectively. The 

elastically active chain concentration in the dry polymer ([EAC]) is then calculated using the Flory-

Rehner theory [20]: 

[EAC] = -
ln�1-φ2� + φ2 + χ12φ2

2

V1m. �φ2
1/3 - 2

f ·φ2	                     (2) 

   

where V1m is the solvent molar volume, f is the crosslink functionality (taken equal to 3), χ12 is the 

polymer-1,2-dichloroethane interaction parameter taken equal to 0.3 from DVS measurements at 

room temperature. It was checked that χ12 was very close for all the materials under study. 

 

3.4. Low field nuclear magnetic resonance (NMR) 

The low field NMR apparatus (20 MHz) is supplied by Bruker under the commercial name of 

Minispec®. The measurement temperature was regulated with ± 0.1 K accuracy and manually 

checked with a thermocouple. Different NMR relaxation sequences were used to determine the 

structure and the organization of the materials by studying the various mobility modes: 

1) T1 by inversion-recovery (180°-τ-90°) [21,22]. 

2) T2 by spin (Hahn) echo (90°-τ-180°-τ-echo) [23] and by solid echo [21]. The solid echo studies were 

realized with τ = 0.0095 ms. The Hahn echo studies were realized first at  one echo time (τ = 0,0095 

ms) and then with a varying echo between τ = 0.0095 ms and τ = 10 ms. 

3) T2 by the Carr-Purcell-Meiboom-Gill (CPMG) method (90°x(-τ-180°y-τ-echo-)n) [20,21]. The echo 

time was τ = 0.05 ms.  
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3.5. Dynamical mechanical analysis (DMA) 

The samples were characterized by dynamic mechanical analysis using a DMA Q800 apparatus (TA 

Instruments) driven by Q Series Explorer. The samples were submitted to: 

1) Temperature sweep tests performed at 2°C min-1 heating ramp, at 1 Hz frequency in tension 

mode, at a 0.1% strain with a 0.5 N preload force. 

2) Frequency sweep tests at several temperatures in tension mode at a 0.1% strain with a 0.5 N 

preload force. 

2) Relaxation tests at –30°C under 5 % strain with a 0.001 N preload force. 

 

3.6. Fourier transform infrared spectroscopy (FTIR) 

The hydrolytic stability of triacetin was also investigated by the analysis of virgin or aged triacetin 

directly dropped on the ATR crystal of the FTIR apparatus. The analysis consisted in the average of 32 

scans at a 4 cm-1 resolution. 

 

RESULTS 

1. Initial characterization of networks 

1.1. Water permeation 

The water uptake was recorded and the resulting sorption isotherms at 60°C are presented in Figure 

3 for polyester-urethane P and P+TA 50/50. The presence of triacetin appears not to change 

significantly the water uptake in polyester-urethane whatever the relative humidity. This is 

consistent with the above observation on 1-2 dichloroethane absorption. 



 

Figure 3. Water uptake measurements recorded by DVS at 60°C at several 

for polyester

 

1.2. Concentration in elastically 

Figure 4 shows the tensile stress

presence of triacetin. The curves were replotted as nominal stress 

ratio. These plots are linear and 

[24]: 

F

S0

  
With:  

[

where φP is the polymer volume fraction in 

the molar mass between crosslink nodes. 
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. Water uptake measurements recorded by DVS at 60°C at several partial 

olyester-urethane P (---) and P+TA 50/50 (―). 

lastically active chains  

shows the tensile stress-strain curves for the polyester-urethanes polymerized

urves were replotted as nominal stress vs. (λ – λ-2), 

and their slopes give the concentrations in elastically 

F

0

 = [EAC].φ
P

1/3.RT.(λ-λ
-2

)														     (3)  

�EAC� = 
ρ

2

Mc

																																											(4) 

is the polymer volume fraction in the polyester-urethane plus triacetin

the molar mass between crosslink nodes.  

 

partial water pressures (…) 

urethanes polymerized in the 

), λ being the stretch 

lastically active chains by 

triacetin mixture, and Mc is 



 

The resulting concentrations in elastically active chains 

1) For the pure polyester-urethane network, 

prepolymer (2.1 kg mol
-1

), which suggests

chains are elastically active. 

2) [EAC] decreases continuously when the 

here to take into account the diluting effect of triacetin

observed decrease of [EAC] suggests that P+TA 75/25, and more specially P+

25/75, have a macromolecular architecture 

 

 

Figure 4. Stress strain curves for polyester

 

The networks were also characterized by 1

initial slopes of the sorption isotherms, which determine

were found almost independent of 

unique dipolar contribution to cohesive energy is due to the ester group

P 
P + TA 75/25

P + TA 50/50

P + TA 25/75
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concentrations in elastically active chains (Table 1) can be commented as follows

urethane network, Mc = ρ/[EAC] is close to the average molar mass of 

, which suggests this network is very close to ideality, 

decreases continuously when the triacetin/polymer ratio increases. Sinc

into account the diluting effect of triacetin (through the φP
1/3

 

[EAC] suggests that P+TA 75/25, and more specially P+

have a macromolecular architecture that differs from the pure polyester-urethane network.

. Stress strain curves for polyester-urethanes polymerized in the presence of triacetin.

etworks were also characterized by 1-2 dichloroethane sorption using DVS measurements. The 

tion isotherms, which determine the interaction parameter value 

found almost independent of the triacetin weight fraction. This is not surprising

ribution to cohesive energy is due to the ester groups in 

P + TA 75/25 
P + TA 50/50 
P + TA 25/75 

) can be commented as follows: 

is close to the average molar mass of 

 i.e., all the polyester 

Since [EAC] is corrected 

 term in Eq. 3), the 

[EAC] suggests that P+TA 75/25, and more specially P+TA 50/50 and P+TA 

urethane network. 

 

presence of triacetin. 

sorption using DVS measurements. The 

the interaction parameter value χ12 [20], 

triacetin weight fraction. This is not surprising, since the 

in the polymer and in 



 

triacetin. Using the same interaction parameter value

[EAC] estimations from mechanical tests and 

in good agreement (Table 1) and 

 

Table 1. Initial characterization of 

 

 

(a) 

Figure 5. Storage modulus 

Figure 5 shows the results of a temperature sweep monitored by DMA for pure polyester

polyester-urethane with 50 and 75% of triacetin, and for these two materials after triacetin removal. 

These results call for the following comments:

1) DMTA and tensile testing lead to consistent results 

be equal to 3.G where G = σnom/(

σnom/(λ-λ
-2

) (MPa)

EAC (mol l
-1

)

Swelling Ratio

EAC (mol l
-1

)

E'glassy (MPa)

E'rubbery (MPa)

Tg (°C)

(tan delta)max

tensile test

sol gel

DMTA

P (―) 
P + TA 50/50 (--) 
P + TA 25/75 (--) 
P + TA 50/50extracted (―) 
P + TA 25/75extracted (―)  

12 

ame interaction parameter value χ12 = 0.3 for all the samples under study, 

estimations from mechanical tests and from equilibrium swelling using the above equations are 

in good agreement (Table 1) and they will be used without distinction in the following.

Table 1. Initial characterization of the polyester-urethane networks (see Figures 

     (b) 

. Storage modulus E’ (a) and loss factor (b) versus temperature.

 

Figure 5 shows the results of a temperature sweep monitored by DMA for pure polyester

urethane with 50 and 75% of triacetin, and for these two materials after triacetin removal. 

the following comments: 

tensile testing lead to consistent results since E’ measured from DMTA is expected to 

/(λ-λ-2) measured from tensile testing. 

P P+TA (75/25) P+TA (50/50) P+TA (25/75) P + TA 50/50

1.206 0.768 0.306 0.107

0.487 0.341 0.156 0.068

4.191 4.462 7.283 10.252

0.454 0.393 0.118 0.069

720 2010 2450

3.63 0.91 0.18

-28 -43.8 -54.9

1.66 2.88 5.54

P (―)
P + TA 50/50 (
P + TA 25/75 (
P + 
P + TA 25/75

or all the samples under study, the 

e above equations are 

will be used without distinction in the following. 

 

(see Figures 4 and 5). 

 

(a) and loss factor (b) versus temperature. 

Figure 5 shows the results of a temperature sweep monitored by DMA for pure polyester-urethane, 

urethane with 50 and 75% of triacetin, and for these two materials after triacetin removal. 

measured from DMTA is expected to 

P + TA 50/50extracted P + TA25/75extracted

1200 1650

1.36 0.5

-30.1 -34.9

1.86 1.81

P (―) 
P + TA 50/50 (--) 
P + TA 25/75 (--) 
P + TA 50/50extracted (―) 
P + TA 25/75extracted (―)  
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2) The comparison of the “swollen” samples P+TA 50/50 and P+TA 25/75 with the corresponding 

extracted samples P+TA 50/50extracted and P+TA 25/75extracted shows the diluting effect of triacetin. The 

moduli of swollen and extracted samples do differ by a factor close to φP
1/3. 

3) Concerning glass transition temperatures, the data of the above two (plasticized/extracted) pairs 

can be discusses using usual the following relationship: 

1

Tg
 = 

1 - wTA

Tgp
 + 

wTA

TgTA
                                   (5) 

where wTA is the plasticizer mass fraction, TgTA, TgP and Tg are the glass transition temperatures of the 

plasticizer, of the polymer, and of the mixture, respectively. The data in Table 1 can be used to 

calculate TgTA, which is the single unknown quantity. One obtains TgTA = 216 K for the (50/50) pair and 

212 K for the (25/75) pair. It can thus be considered that 214 ± 2 K is a reasonable value for the glass 

transition temperature of triacetin. 

4) The glass transition temperatures of unplasticized networks depend of their previous history: Tgp is 

a decreasing function of the plasticizer concentration 
∆��
∆��� = 4 K  for the (50/50) sample and 9.3 K 

for the (25/75) sample, suggesting these extracted networks contain some structural irregularities 

that increase the polymer mobility.  

5) As already addressed in the literature for similar systems [25], the comparison of the moduli for 

polyester-urethane P, P+TA 50/50extracted, and P+TA 25/75extracted suggests that the presence of a 

plasticizer during polymerization decreases the crosslink density. 

6) According to Table 1, plasticization induces an increase of the glassy modulus. This so-called 

“antiplasticization” phenomenon is a very general secondary effect observed for polymers having a 

relatively intense β transition that is well separated from the glass transition [26,27].  

7) The tan δ(T) curve displays a single peak, showing that triacetin is fully dissolved in the polymer. 

The peak amplitude is an increasing function of the plasticizer content, which is not systematic in the 
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literature for other polymer-plasticizer mixtures (see for instance [26,28,29]). The comparison of P, 

P+TA 50/50extracted and P+TA 25/75extracted suggests this effect is not linked to the architecture of the 

polymer but rather to the triacetin content.  

 

1.3. Possible initial architecture of networks  

Apart from Tg changes (see Table 1), it seems that the macromolecular mobility of the networks 

under study can be compared through their characteristic relaxation times measured from NMR or 

DMA experiments. Among an impressive number of papers on NMR studies of the mobility of 

elastomers, examples can be found of : 

- increases of relaxation times T1 and T2 when temperature (and mobility) increases [30],  

- increases of stretched exponential relaxation times for elastomers with various crosslinking degrees 

at a fixed temperature [31]. 

Hence, T1 and T2 decrease when the crosslink density of the system increases [32,33], whereas they 

are shown to increase with the chain flexibility and mobility [33]. 

 

T1 (longitudinal relaxation) was measured by the inversion-recovery method. The intensity of the T1-

relaxation curve can be fitted by a sum of increasing exponential functions: 

I=�Ai. �1 − 2exp�− t

T1,i
��                                            (6)

n

1

 

where n is the number of components required to fit the relaxation curve optimally, Ai is the 

proportion of the i-population in the sample, and T1,i is the longitudinal relaxation time of the i-

population. The values used for fitting the T1 decay are given in Table 2. 
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Table 2. NMR longitudinal (T1) and transversal (T2) relaxation times. 

 

Table 2 calls for the following comments: 

1) For the pure polyester-urethane network, the decay of z-component of the magnetization vector 

can be described by a single exponential term, suggesting an homogeneous behavior at the 

nanometric scale.  

2) A deviation is observed for plasticized triacetin poly(ester-urethanes) for which a second 

component is needed, showing a more complex behavior. 

3) The T1,1 and T1,2 values are found to increase with triacetin ratio, which is expected to highlight an 

increase of mobility with triacetin for both « rigid » and « soft » phases represented by T1,1 and T1,2, 

Material P P + TA 75/25 P + TA 50/50 P+TA 25/75
P + TA 

50/50extracted

P+TA 

25/75extracted

A1 (%) 97 90 73 49 100 100

T1,1 (ms) 40 47.5 70 111 42.4 45.7

A2 (%) - 10 27 51 - -

T1,2 (ms) - 188 208 351 - -

A1 (%) 100 80 56 - 94 88

T2,1 (ms) 0.8 0.85 1.4 - 1.1 1.5

b 1.2 1.3 1.2 - 1.3 1.3

A2 (%) - 20 44 - 6 12

T2,2 (ms) - 44 63 - 22 27

A1 (%) 80.5 46 22.5 8.1 54 51

T2,1 (ms) 0.6 0.5 0.7 1.28 0.7 1.2

b 1.2 1.5 1 1 1.5 1

A2 (%) 19.5 33 30 3 37 38

T2,2 (ms) 7 12 24 9 5.3 7.2

A3 (%) - 21 28 14 9 11

T2,3 (ms) - 60 107 48 17.1 40.3

A4 (%) - - 20 26 - -

T2,4 (ms) - - 282 142.5 - -

A5 (%) - - - 49 - -

T2,5 (ms) - - - 346 - -

Inversion 

recovery

Spin echo

CPMG
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respectively. Moreover, the ratio of “soft” fraction A2 increases from 10 to 51 % when the triacetin 

ratio increases from 25 to 75%. 

4) The relaxations of P+TA50/50extracted and P+TA25/75extracted can be described by the same single 

exponential term as the polyester-urethane polymer. They display a slight but systematic increase in 

T1,1 suggesting an increase in softness and mobility. 

  

T2 is a representative value of the spin-spin or transverse relaxation. The T2 relaxation curves 

measured by Solid and Hahn echoes have the classical pseudo-exponential decay shape [34]. The 

Hahn echo sequence with varying echo time (spin echo) was deconvoluted into a sum of Lorentzian 

Functions using Levenberg-Marquardt algorithm. A Weibull correction was applied to the term 

corresponding to the shorter relaxation:   

I =A1.exp�- � t

T2,1
�b�  + A2.exp�-

t

T2,2
�                (7) 

The parameters for describing the T2 decay by spin echo are gathered in Table 2. They show that: 

1) T2,1 and T2,2 increase with triacetin content by 65 and 43 %, respectively, whereas the rigid part 

decreases by 30%. T2,2 corresponds to long relaxation time processes. The corresponding component 

is not needed to describe the relaxation of pure polyester-urethane. It is however of increasing 

importance for plasticized polyester-urethane, which shows they contain segments with a higher 

mobility than pure polyester-urethane ones.  

2) The Weibull correction is needed for all materials. Its value (b about 1.2) is quite close to the b = 1 

exponent that applies to « mobile » materials (Lorentzian behavior), whereas b = 2 correspond to 

materials with strong dipolar coupling (Gaussian behavior).  
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3) The comparison of P+TA50/50 and P+TA50/50extraced suggests that the behaviors of the plasticized 

polyester-urethanes strongly depend on the triacetin content.  

 4)  The comparison of P+TA50/50extraced and P+TA25/75extraced with polyester-urethane P shows T2 

increases of 37.5 and 87.5% together with decreases in the content of rigid phase of 6 and 12%. 

Moreover, the comparison of P and P+TA50/50extraced suggests the existence of differences in the 

architectures of the networks. 

  

These results are confirmed by the T2 values obtained by CPMG with 50 µs between impulsions. The 

resulting decay curve can be fitted by the sum of Lorentzian functions:  

I = � Ai.exp �-
t

T2,i
�

n

1

                   (8) 

where n is the number of components required to fit the relaxation curve optimally, Ai is the 

proportion of the i-population in the sample and T2,i the transverse relaxation time of the i-

population. The Ai and T2,i values are gathered in Table 2 and they confirm the above observations. 

Triacetin seems responsible for the long relaxation modes (T2,3 and T2,4). Once triacetin is removed, 

the residual mobility of the polyester-urethane backbone seems larger when the material was 

synthetized in the presence of triacetin. 

 

The samples were also tested by DMA in the frequency range 0.1-10 Hz at several temperatures. 

After shifting to the same reference temperature (-28°C), the tangent delta versus frequency spectra 

were plotted for polyester-urethane P, P+TA 50/50extracted and P+TA 25/75extracted (Figure 6). It is 

noteworthy that: 

1) The higher the triacetin content for polymerization, the broader the tangent delta spectrum.  



 

2) The networks polymerized in the presence of triacetin display a higher proportion of c

segments with low frequency relaxation. F

for P+TA 25/75extracted at 1 Hz, and 0.05 

 

tan delta value decreases when increasing the crosslinking density of network [

the segmental mobility). The most reasonable explanation of the difference between tan delta 

spectra for polyester-urethane P on one side, and P + TA 50/50extracted and P + TA 25/75extracted 

on the other side is the existence of a populati

at low frequency (corresponding to high relaxation time). As it will be seen later, it seems in full 

agreement with the possible existence of dangling chains and loops

50/50extracted and P+TA 25/75extracted

triacetin used during the polymerization of networks.

    

Figure 6. Tangent delta spectra
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etworks polymerized in the presence of triacetin display a higher proportion of c

with low frequency relaxation. For example, tangent delta is ca. 0.6 for material P 

, and 0.05 vs. 0.35 at 0.01 Hz. 

tan delta value decreases when increasing the crosslinking density of network [

the segmental mobility). The most reasonable explanation of the difference between tan delta 

urethane P on one side, and P + TA 50/50extracted and P + TA 25/75extracted 

on the other side is the existence of a population of mobiles segments with a characteristic relaxation 

at low frequency (corresponding to high relaxation time). As it will be seen later, it seems in full 

agreement with the possible existence of dangling chains and loops in polyester

extracted, the proportion of which increases with the concentration in 

triacetin used during the polymerization of networks. 

spectra for polyester-urethane P (�), P+TA 50/50extracted

25/75extracted (�) at -28°C. 

etworks polymerized in the presence of triacetin display a higher proportion of chain 

0.6 for material P vs. 0.8 

tan delta value decreases when increasing the crosslinking density of network [35] (i.e. decreasing 

the segmental mobility). The most reasonable explanation of the difference between tan delta 

urethane P on one side, and P + TA 50/50extracted and P + TA 25/75extracted 

on of mobiles segments with a characteristic relaxation 

at low frequency (corresponding to high relaxation time). As it will be seen later, it seems in full 

in polyester-urethane P+TA 

, the proportion of which increases with the concentration in 

 

extracted (�) and P+TA 
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Dangling chains can alternatively be characterized by their effects on relaxation properties. The 

relaxation modulus can be described by a relation proposed by Chasset and Thirion [36]:  

 

E = E∞.[ 1 – (t/τ0)
-m]   (9) 

The analysis of several EPDMs showed a strong increase of τ0 when the crosslinking level decreased 

and when the dangling chain content increased [37]. Comparable results were found for PDMS 

differing by the number and the length of dangling chains [38]. The exponent m is also shown to 

increase [36], despite being expected independent of the concentration of dangling chains [38]. 

According to McKenna [39], m is a material parameter which is independent of the crosslink density 

but which is temperature dependent. The P, P+TA 50/50extracted and P+TA 25/75extracted networks 

cannot be considered as “iso state” at a given temperature. Hence, we only focused on τ0: this 

parameter increases for polymers cured in the presence of triacetin, consistently with the longer 

relaxation process of dangling chains (Table 3). 

 

Table 3. Characteristic relaxation times of extracted polyester-urethanes. 

 

2. Ageing results 

Hydrolysis leads to the cleavage of ester groups. If the latter belong to elastically active chains, this 

induces a decrease of the elastic modulus and an increase of the swelling ratio. The changes of these 

two macroscopic properties were used for estimating the depletion in [EAC] (Figure 7). The hydrolysis 

rate was derived from Figure 7 by: 

d[EAC]/dt=-r  (10) 

P P + TA 50/50extracted P + TA 25/75extracted

τ0 (ms) 0.614-6.2 11.9-15.9 44-65.3



 

The evolutions of the hydrolysis rate

presence of triacetin are shown

percentage of triacetin, at least when the latter is added to 

process. 

Figure 7. Changes in the concentration of 

for polyester-urethane P (

 

 

Table 4. Rate of elastically active 

 

DISCUSSION 

The aim of this section is to establish a link between the two main results of this paper:

presence of triacetin during synth

75%HR*

75%HR**

29%HR**

20 

hydrolysis rates with the triacetin content for networks polymerized in 

shown in Table 4. The degradation rate is a decreasing function of the 

percentage of triacetin, at least when the latter is added to the polymer during its polymerization 

the concentration of elastically active chains after ageing at 60°C under 75%R

urethane P (×), P+TA 75/25 (�), P+TA 50/50 (�), P+TA 25/75 (

ctive chains loss (10-6 mol l-1 s-1) from swelling (*) or 

properties (**) at 60°C. 

The aim of this section is to establish a link between the two main results of this paper:

presence of triacetin during synthesis induces some defects in the network architecture, and (ii) 

pure 75/25 50/50 25/75

482 202 44 36.5

597 356 26 50.3

96.4 78.2 8

with the triacetin content for networks polymerized in the 

in Table 4. The degradation rate is a decreasing function of the 

polymer during its polymerization 

 

ageing at 60°C under 75%RH 

TA 25/75 (�).  

 

swelling (*) or from mechanical 

The aim of this section is to establish a link between the two main results of this paper: (i) the 

network architecture, and (ii) 

25/75
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networks polymerized in the presence of triacetin are less sensitive to hydrolytic degradation. Let us 

first recall that: 

1) For any kind of ester:  

d[E]/dt = -kH.[H2O][E]     (11) 

2) For esters hold by elastically active chains:  

d[E]EAC/dt = ds/dt = -kH.[H2O][E]EAC   (12) 

3) For ideal networks at low conversion degrees:  

d[EAC]/dt = - ψ.ds/dt     (13) 

where ψ = 3 in a trifunctional network, ψ = 1 in a network of higher functionality [40], ds/dt is the 

rate of ester hydrolysis, [E]EAC and [E] are the concentration in esters hold by the elastically active 

chains and the overall ester concentration, respectively. Therefore:  

   d[EAC]/dt = -ψ.kH.[E]EAC[H2O]    (14) 

 

The trends summarized in Table 4 will hence be discussed regarding the parameters ψ, kH, [H2O] and 

[E]EAC, which govern the rate of degradation. First, according to Figure 3, the difference in 

hydrophilicity (i.e., the [H2O] term in Eq. 14) does not seem to be a sufficient explanation and will not 

be discussed further in the following. The results in Table 4 can thus be discussed considering a 

change in the apparent rate constant for hydrolysis reaction kH and a change in the network 

architecture modifying [E]EAC or the ψ parameter. 

 

1. On the hydrolytic stability of triacetin 

Triacetin hydrolysis would generate acetic acid, which is a powerful catalyst of network hydrolysis 

[15] and would complexify the mathematical treatment of our results [8]. In order to analyze the 

hydrolytic stability of triacetin within the timescale investigated, it was exposed directly to 75%RH at 

60°C. The changes in the triacetin structure were monitored by FTIR, which gives the concentration 

of unreacted esters. The spectra of virgin and aged (up to 1992 h) triacetins are presented in Figure 



 

8. The pristine triacetin displays a maximal absorbance at 1735 cm

During exposure, the intensity of this band decreases and the band becomes broader because esters 

are converted into carboxylic acids absorbing at ca. 1710 cm

complicated because FTIR spectra of these two groups overlap partially. Moreover, since the triacetin 

molecule holds 3 esters, the overall ester depletion does not give the 

triacetin. HPLC complementary experiments were hence performed (see Appendix) and showed that 

triacetin can be considered as almost stable in a first approach.

 

Figure 8. FTIR spectra of triacetin after several durations of exp

  

2. On the effect of triacetin on the 

Some comparisons were done with materials differing by

1) the presence of triacetin, i.e.

extracted or not prior to ageing (

2)  the method for adding triacetin

hydrolysis kinetics is due to the presence of triacetin or to a difference in 

 

22 

The pristine triacetin displays a maximal absorbance at 1735 cm-1 ascribed to the ester group. 

During exposure, the intensity of this band decreases and the band becomes broader because esters 

ted into carboxylic acids absorbing at ca. 1710 cm-1. The quantitative analysis is 

complicated because FTIR spectra of these two groups overlap partially. Moreover, since the triacetin 

molecule holds 3 esters, the overall ester depletion does not give the concentration in unreacted 

triacetin. HPLC complementary experiments were hence performed (see Appendix) and showed that 

triacetin can be considered as almost stable in a first approach. 

. FTIR spectra of triacetin after several durations of exposure to 75%RH 

the hydrolysis rate 

were done with materials differing by: 

the presence of triacetin, i.e., a comparison of polyester-urethanes in which 

ageing (see ‘EXPERIMENTAL’), 

the method for adding triacetin, i.e., during or after polymerization, to investigate

due to the presence of triacetin or to a difference in the polymer architecture

ascribed to the ester group. 

During exposure, the intensity of this band decreases and the band becomes broader because esters 

. The quantitative analysis is 

complicated because FTIR spectra of these two groups overlap partially. Moreover, since the triacetin 

concentration in unreacted 

triacetin. HPLC complementary experiments were hence performed (see Appendix) and showed that 

 

to 75%RH at 60°C. 

in which triacetin was 

to investigate if a slower 

polymer architecture. 



 

The hydrolysis kinetics of polyester

P+TA 25/75extracted) or not (P+TA 50/50, P+

appears that hydrolysis develops

25/75extracted than in plasticized ones P+TA 50/50 and P+

within the timescale investigated, the rate of hydrolysis in plasticized polyester

expressed as: 

rP+TA = kH

 

(a) 

Figure 9. Changes in elastically 

urethanes (a) P+TA 50/50 (

 

where [E]EAC is the concentration in esters hold by elastically active chains in the unplasticized 

polymer and φP is the polymer volume ratio 

 

rP+TA = kH

 

where wTA is the volume fraction of triacetin. If r
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of polyester-urethanes in which triacetin was removed

(P+TA 50/50, P+TA 25/75) prior to ageing is presented in Figure 

develops faster in purified polyester-urethanes P+TA 50/50

than in plasticized ones P+TA 50/50 and P+TA 25/75. If triacetin is hydrolytically stable 

within the timescale investigated, the rate of hydrolysis in plasticized polyester-urethane r

H[H2O][E]EAC.φP      

 (b) 

lastically active chains concentration at 60°C and 75% RH 

TA 50/50 (�) and P+TA 50/50extracted (�), (b) P+TA 25/75 (

25/75extracted (�). 

is the concentration in esters hold by elastically active chains in the unplasticized 

volume ratio (almost equal to its weight fraction).

H[H2O][E]EAC.(1-wTA)     

is the volume fraction of triacetin. If rP is the rate of hydrolysis in pure polyester

was removed (P+TA 50/50extracted, 

prior to ageing is presented in Figure 9. It 

50/50extracted and P+TA 

If triacetin is hydrolytically stable 

urethane rP+TA can be 

 (15) 

 

at 60°C and 75% RH for polyester-

TA 25/75 (�) and P+TA 

is the concentration in esters hold by elastically active chains in the unplasticized 

(almost equal to its weight fraction). Therefore: 

 (16) 

is the rate of hydrolysis in pure polyester-urethane: 
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rP+TA = rP.(1-wTA)       (17) 

 

Another reasoning taking into account the triacetin reactivity can also be proposed (see APPENDIX 

B), and the two hypotheses lead to the same conclusion that the hydrolysis rate of elastically active 

chains should decrease when the triacetin weight ratio increases.  

 

This triacetin effect was studied by comparing the degradation rates of polyester-urethanes in which 

triacetin was added either directly during polymerization (P+TA 75/25 and P+TA 50/50) or after 

polymerization (P+TA 75/25impregnated and P+TA 50/50impregnated). If triacetin would have only a diluting 

effect on the reactive ester groups, the rate of hydrolysis in P+TA 75/25 (respectively P+TA 50/50) 

would be the same as in P+TA 75/25impregnated (respectively P+TA 50/50impregnated). This assessment is 

rather well verified for the polyester-urethane P+TA 75/25 but, according to Figure 10, a significant 

change is observed for the P+TA 50/50 network, indicating that the impregnated network undergoes 

a faster hydrolysis. Given their similar triacetin contents and hydrophilicities (Figure 3), the difference 

between P+TA 50/50 and P+TA 50/50impregnated is their initial architecture (proportions of elastically 

active chains, dangling chains, loops, etc.), so that an intrinsic difference in their sensitivities to 

hydrolysis expressed by either ψ or [E]EAC in Eq. 4 and 5 must apply. 

 

 

 

 



 

(a) 

Figure 10. Changes in elastically a

urethanes (a) P+TA 50/50(

 

This analysis could not be applied to

ratio by impregnating a polyester

limit solubility of triacetin in polyester

confirms that the architecture of “pure” polyester

in the presence of 75% of triacetin are significantly different (see Table 1).
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     (b) 

. Changes in elastically active chains concentration at 60°C and 75% RH  for polyester

TA 50/50(�) and P+TA 50/50impregnated (�), (b) P+TA 75/25 (

75/25impregnated (�). 

could not be applied to 25/75 mixtures because it was not possible

a polyester-urethane with triacetin (Figure 2). Under the assumption that the 

solubility of triacetin in polyester-urethane depends mainly on the crosslinking density, 

confirms that the architecture of “pure” polyester-urethane and of polyester-urethane polymerized 

presence of 75% of triacetin are significantly different (see Table 1). 

 

at 60°C and 75% RH  for polyester-

TA 75/25 (�) and P+TA 

mixtures because it was not possible to reach such a high 

the assumption that the 

on the crosslinking density, this 

urethane polymerized 



 

Figure 11. Rate of network degradation as a function of elastically act

 

The overall results can be discussed by plotting the rate at which EACs are actually degraded r/(1 

wTA) vs. the actual elastically active chain

Figure 11 confirms that triacetin plays a diluting role 

dependency of [EAC]0 on the triacetin concentration in the polymerization medium.

    

3. On the presence on loops in networks

The most reasonable explanation 

Jacobson and Stockmayer [41] and later illustrated by Stepto [

[44], about the effect of the dilution of the reactive medium du

network architecture. According to t

polyester-urethane at the polymerization step

degradation of which has a negligible effect on 

 

Let us consider four distinct and very simple gel structures

between crosslinks (and tentatively
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. Rate of network degradation as a function of elastically active chains

TAimpregnated, �: P + TAextracted). 

The overall results can be discussed by plotting the rate at which EACs are actually degraded r/(1 

) vs. the actual elastically active chains concentration in plasticized polymer [EAC]

confirms that triacetin plays a diluting role first, but there remains to explain the 

triacetin concentration in the polymerization medium.

3. On the presence on loops in networks 

he most reasonable explanation of the above dependency comes from theories 

] and later illustrated by Stepto [42], Dušek et al. [

dilution of the reactive medium during polymerization on the final 

According to these theories, the higher the ratio of triacetin added to 

the polymerization step, the higher the probability to get loops, 

a negligible effect on the polymer elastic properties.  

and very simple gel structures (Figure 12) differing by their molar mass 

(and tentatively representing the networks P, P+TA 50/50

 

ive chains (�: P + TA, �: P + 

The overall results can be discussed by plotting the rate at which EACs are actually degraded r/(1 – 

concentration in plasticized polymer [EAC]0×(1 – wTA). 

emains to explain the 

triacetin concentration in the polymerization medium.  

from theories first proposed by 

], Dušek et al. [43] and Elliot et al. 

ring polymerization on the final 

the ratio of triacetin added to 

, the higher the probability to get loops, the hydrolytic 

) differing by their molar mass 

TA 50/50extracted and P+TA 



 

25/75extracted characterized in Table 1).

real structures are no doubt much more complex

1) Case 1 corresponds to polyester

instead of an experimental value of 3.6)

2) Case 2 corresponds to polyester

MPa instead of an experimental value of 0.9).

a mixture of network 1 + network 2 with 1:2 mass ratios.

3) Cases 3 and 4 correspond to polyester

= 0.6 MPa instead of an experimental value of 0.5) n

Figure 12. Simple representations of networks with various molar mass

 

Under the assumption that ester hydrolysis is a random process and can occur on 

chains, dangling chains, or terminal loops, it can be concluded that

1) Scission of an EAC of “a” type leads to the disappearance of 3 EAC

2) Scission of a “b1“ chain does not change the EAC number

soluble material (NB: 1.5 means that
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characterized in Table 1). These representations are considered here as heuristics since 

structures are no doubt much more complex. Schematically: 

Case 1 corresponds to polyester-urethane P (Mc ~ 2 kg mol-1 corresponding to a E’

experimental value of 3.6). 

Case 2 corresponds to polyester-urethane with Mc ~ 8 kg mol-1 (corresponding to a E’

experimental value of 0.9). It is here assumed that P+TA 50/50

a mixture of network 1 + network 2 with 1:2 mass ratios. 

Cases 3 and 4 correspond to polyester-urethanes with Mc ~ 14 kg mol-1 (corresponding to a E’

experimental value of 0.5) not too far from the P+TA 25/75

. Simple representations of networks with various molar masses between crosslinks.

the assumption that ester hydrolysis is a random process and can occur on 

or terminal loops, it can be concluded that for low conversion degrees

type leads to the disappearance of 3 EACs but no increase of the sol.

does not change the EAC number, meanwhile 1.5 chain is c

(NB: 1.5 means that “b1“ chains are more or less cut in their middle

dered here as heuristics since 

corresponding to a E’rubbery = 4.4 MPa 

(corresponding to a E’rubbery = 1.1 

TA 50/50extracted behaves like 

(corresponding to a E’rubbery 

TA 25/75extracted value. 

 

between crosslinks. 

the assumption that ester hydrolysis is a random process and can occur on elastically active 

for low conversion degrees: 

but no increase of the sol. 

meanwhile 1.5 chain is converted into 

middle, on average). 
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3) Scission of a “b2“ chain does not change the EAC number, meanwhile 4.5 chains are converted into 

soluble material. 

4) Scission of a “c” chain does not change either EAC or soluble fraction. 

 

It seems clear that the yield of soluble fraction per EAC consumption increases for materials with a 

larger proportion of dangling chains and loops (Table 5), which is expected for samples polymerized 

in the presence of triacetin. Because the “model” networks are very crude approximations (Figure 

12) and because of the data scattering (Figure 13), the above reasoning is more a rough justification 

of the observed trend than a quantitative prediction of the experimental values. However, it seems 

in accordance with the data in Figure 13, which shows the soluble fraction change per hydrolysis 

event expressed by the elastically active chains relative decrease ([EAC]0 – [EAC])/[EAC]0 (instead of 

∆[EAC] in Table 5, which is a “number of elastically active chains lost”).  

 

 

Table 5. Impacts of chain scissions on the elastically active chains concentration ([EAC]) and on the 

soluble fraction (SF) for the networks schematized in Figure 12. 

 

 

Case Chain probability ∆[EAC] ∆FS ∆FS/∆[EAC]

1 a 1 3 0 0

a 1/2 3 0

b1 1/4 0 1.5

c 1/4 0 0

a 3/7 3 0

b1 2/7 0 1.5

c 2/7 0 0

a 2/7 3 0

b1 2/7 0 1.5

b2 1/7 0 4.5

c 2/7 0 0

2

3

4

1/4

1/3

5/4



 

Figure 13. Soluble fraction vs.

polyester-urethane P (

 

CONCLUSIONS 

This paper compared the hydrolytic stability of 

presence of triacetin. It was shown that the presence of triacetin does not change the polymer 

affinity with water. Hydrolytic degradation rate (judged from the crosslink density decrease) at early 

stages was shown to decrease when the

directly in the polymerization medium. Comparisons of the hydrolysis of networks 

was introduced either during or after polymerization 

presence of triacetin is less sensitive to hydrolytic degradation because of the existence of inelastic 

chains whose hydrolysis does no

This hypothesis was confirmed by measurement
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vs. relative decrease of elastically active chains concentration for 

urethane P (�), P+TA 50/50extracted (�) and P+TA 25/75extracted

the hydrolytic stability of fully cured polyester-urethanes polymerized in 

presence of triacetin. It was shown that the presence of triacetin does not change the polymer 

affinity with water. Hydrolytic degradation rate (judged from the crosslink density decrease) at early 

when the triacetin content increased, at least when th

directly in the polymerization medium. Comparisons of the hydrolysis of networks 

during or after polymerization pointed out that the polymer synthetized in 

less sensitive to hydrolytic degradation because of the existence of inelastic 

hydrolysis does not induce a change of elastic modulus or equilibrium swelling ratio. 

by measurements of NMR and DMA relaxation times. 

Direction Générale de l’Armement is acknowledged for the funding of this work.

 

concentration for 

extracted (�). 

urethanes polymerized in the 

presence of triacetin. It was shown that the presence of triacetin does not change the polymer 

affinity with water. Hydrolytic degradation rate (judged from the crosslink density decrease) at early 

, at least when the latter is added 

directly in the polymerization medium. Comparisons of the hydrolysis of networks in which triacetin 

polymer synthetized in the 

less sensitive to hydrolytic degradation because of the existence of inelastic 

elastic modulus or equilibrium swelling ratio. 

of NMR and DMA relaxation times.  

for the funding of this work. 



 

APPENDIX A: STABILITY OF TRIACETIN STUDIED BY HPLC

The hydrolytic stability of triacetin was checked 

717+ apparatus with C18 Column as stationary phase and acetonitrile (0.3 ml min

Mobile phase was detected using UV detection at 210 nm at which triacetin displays a maximal 

absorbance. Column and UV detector temperatures were maintained respectively at 40 and 35°C.  

The calibration made on several samples with concentrations ranging from 0 to 110 g l

following relationship:  

  Abs(TA 210nm) = 1.463.10

 

Figure 14 displays the changes of unreacted triacetin content during 60°C 75%RH exposure and 

confirms FTIR observations according to which TA is stable within the investigated timescale.

 

Figure 14. Residual triacetin content estimated from HPLC 
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A: STABILITY OF TRIACETIN STUDIED BY HPLC 

The hydrolytic stability of triacetin was checked by HPLC analysis of aged triacetin using a Waters 

717+ apparatus with C18 Column as stationary phase and acetonitrile (0.3 ml min

Mobile phase was detected using UV detection at 210 nm at which triacetin displays a maximal 

olumn and UV detector temperatures were maintained respectively at 40 and 35°C.  

The calibration made on several samples with concentrations ranging from 0 to 110 g l

Abs(TA 210nm) = 1.463.10-4.[TA] (R2 = 0.996)  (18) 

displays the changes of unreacted triacetin content during 60°C 75%RH exposure and 

confirms FTIR observations according to which TA is stable within the investigated timescale.

. Residual triacetin content estimated from HPLC measurements after exposure at 60°C 

under 75% RH. 

by HPLC analysis of aged triacetin using a Waters 

717+ apparatus with C18 Column as stationary phase and acetonitrile (0.3 ml min-1) as mobile phase. 

Mobile phase was detected using UV detection at 210 nm at which triacetin displays a maximal 

olumn and UV detector temperatures were maintained respectively at 40 and 35°C.  

The calibration made on several samples with concentrations ranging from 0 to 110 g l-1 lead to the 

displays the changes of unreacted triacetin content during 60°C 75%RH exposure and 

confirms FTIR observations according to which TA is stable within the investigated timescale. 

 

measurements after exposure at 60°C 
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APPENDIX B: ON THE DILUTING EFFECT OF TRIACETIN ON HYDROLYSIS RATE 

If triacetin is hydrolysable, the rate of hydrolysis of ester in polyester-urethane rP and in triacetin rTA 

can be expressed as: 

rP = kP[H2O][EP]       (19) 

rTA = kTA[H2O][ETA]      (20) 

 

where EP and ETA are the concentrations of esters hold by polyester-urethane and by triacetin, 

respectively. Since esterified adipic acid (AA) and triacetin hold 2 and 3 esters per monomer unit/ 

molecule, respectively: 

rP = 2kP[H2O][AA]      (21) 

 rTA =3kTA[H2O][TA]      (22) 

where [AA] is the concentration of adipate monomer units. The ratio of EAC decrease in polyester-

urethane + triacetin compared to the purified polyester-urethane is thus given at low conversion 

degrees by: 

 

rP

rP+rTA
 = 2kP[AA]

2kP[AA] + 3kTA[TA]
                                    (23)   

 

Which can be simplified by supposing in a first approach that triacetin esters are less reactive than 

polyester-urethane (kTA << kP) to give: 

rP

rP+rTA
 = 

1

1 + 
3kTAwTAMAA

2kAAwAAMTA

 ~ 1 - 3kTAwTAMAA

2kAA(1-wTA)MTA
                     (24) 

Eq 24 illustrates the “diluting” effect of triacetin leading to a decrease of hydrolysis rate. 
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