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Abstract—This paper presents a Linear Fractional 

Representation of a Port Hamiltonian System for which 

uncertainties are concentrated on the Hamiltonian parameters. A 

basic block-diagram is provided and an illustration is shown on a 
hand-held cutting tool viewed as an effort multiplier. 
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I.  INTRODUCTION 

Modeling physical systems for control refers to many 
expert disciplines linked to each physical domain (e.g. 
mechanics, rheology, electrical engineering …). A global 
dynamical model of a multi-physic system is obtained by 
coupling differential equations issued from each physical field. 
A mathematical model such as state representation is widely 
used to define a control loop, but physical meaning could be 
lost thus no reuse of the model is possible. 

In order to keep the physical semantic, a modeling method 
commonly used is to adopt an energetic point of view. In case 
of lumped parameters, a widely used formalism to express the 
inner interactions in a graphical approach of a system is Bond 
Graph. Based on the tetrahedron of state (see e.g. [9]) 
decomposition of complex dynamical behavior of a 
component, this representation bonds each elementary behavior 
element in a power exchange structure. Bond Graph can be 
used to analyze some structural properties. Furthermore, inner 
interactions of a system are important to settle a control 
structure.  

In order to obtain an analytical representation of the multi-
physic behavior, Port-Hamiltonian system formalism has the 
advantage to content the (dynamical or statical) constitutive 
equations associated with each lumped parameter and the inner 
power exchange structure (see e.g. [4] and references therein). 
Thus, a Input-State-Output representation of Port-Hamiltonian 
system (ISO-PH) can be obtained from a Bond-Graph 
representation [1,2]. 

A wide class of problems addresses uncertainties on 
lumped parameters that cannot be neglected. These parametric 
uncertainties can be isolated in a specific representation called 
Linear Fractional Representation (see e.g. [7]). The way to find 
a LFR from a Bond Graph representation is tackled in [3].  

Uncertainties in port-Hamiltonian systems can be used in 
the passivity-based control framework (see e.g. [5]), or in the 
mu-analysis framework (see e.g. [8]).  

In order to develop robust tools in a Hamiltonian 
formalism, our goal is to propose a formulation of parametric 
uncertainties on energy storage parameters for Port-
Hamiltonian systems, and in particular by a linear fractional 
representation (LFR). The physical meaning of this 
formulation will also be presented. 

First, linear PH systems and LFR representation will be 
recalled, and then, some results are given for a class of 
uncertain PH systems. An application to a hand held cutting 
tool is given in the last section. 

II. LINEAR PORT-HAMILTONIAN SYSTEMS  

Most mechanical nonlinear and linear systems can be 
expressed in an energetic framework, using the Hamiltonian 
(see e.g. [4]): 

  
 

 

  

 
 
 

 

  

 
   

where:  

 : generalized coordinates, 

 : generalized momenta, 

 : generalized potential or Hamiltonian, sum of kinetic and 
potential energies. 

Hamilton Canonical equations yield: 
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Introducing the local coordinates   one can rewrite: 

  
 

 
         

 



 

with 

-            is the state vector related to inertial 
storage ( ) and potential storage (   elements; 

-    
 
   

  
  
 . 

The energy balance with a power injection (   ) at the 
ports of the system is as follows: 

  

  
     

 

where:   is the action variable and   is the reaction variable 
of the power exchange. 

Considering a network topology defined by a Dirac 
structure and a dissipation structure, then, introducing the 
interconnection structure matrix   , the dissipation matrix   and 
the modulation matrix  , leads to the standard ISO-PH 
formulation:  

         
  

  
      

     
  

  
  

 

where the multiplicative part of the constitutive equations is 
obtained from (3):  

  

  
          

III. PARAMETRIC UNCERTAINTY MODELING 

One can consider many representations of parametric 
uncertainties, such as additive uncertainties on the state space 
matrices. However, multiplicative and additive uncertainties 
(e.g.          do not enable to isolate the uncertain 
parameters which can be a drawback when addressing the 
robust control aspect. Another possibility consists in 
considering the so-called Linear Fractional Representation 
(LFR) which is the main topic of this paper. A standard 
interconnection model, based on linear fractional representation 
is given (Fig. 1): 

 

Figure 1.  Linear Fractional Representation  

   
             
               
               

  

        
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This latter representation combines the deterministic 
dynamical behavior   of the system, and the uncertain static 
equations represented in  . This specific formulation is used 
for robust µ-analysis. 

  may be used to represent unstructured, structured and 
parametric uncertainties. Still, parametric uncertainty on a 
parameter   can be expressed in an additive form, or in a 
multiplicative form : 

        

            

It has been shown that an additive expression of a 
parametric uncertainty leads to the Uncertain State 
Representation, which is however not the goal of this paper. 

Considering multiplicative uncertainties, a method has been  
proposed to determine the LFR  (i.e. equations   and equation 
  with uncertain parameters) associated with an uncertain 
Bond Graph (see e.g. [3]).  

In this case,   is diagonal and: 

         

 

IV. A SIMPLE LFR REPRESENTATION WITH DIAGONAL 

UNCERTAIN MATRICES 

A. Objectives 

The idea is not to provide such complicated expressions as 
in ([1] and [3]). The aim is to propose a LFR of an uncertain 
Port-Hamiltonian system from a Port-Hamiltonian expression 
for a very specific case,  however, frequently encountered with 
real systems, i.e. uncertainties on the lumped energy storage 
parameters. (  is diagonal).  

B. Uncertainties in a multiplicative form  

Multiplicative uncertainties on energy storage parameters   
and   will appear in the   matrix of constitutive equations, 
when:  

-    
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 

 



From above, one has        
 

      
, then     
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Conversely, the same approach can be used for an 

uncertainty on the C-element. In the same way,     
  

    
. 

The constitutive matrix is now defined by: 

             

with    being the diagonal nominal parameter matrix and 
   the diagonal relative uncertainty matrix on   .  

Replacing Q defined as (11) in (5) and (6) yields: 

 
                       

                     
   

Introducing:         and        ,  
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Equations (13) describes the LFR of uncertainties as 
necessary in (7), where (noting     ) the equivalence 
between the two framework is : 

 
 
 
 
 

 
 
 
 

    
     
     
    
     
     

      

             

       

C. Physical interpretation :  

The ISO-PH formulation corresponds to a state space 
representation (to manage easily a simulation or control law 
synthesis).  As conditioned in such a way, it can be represented 
as a block diagram, where each matrix corresponds to a block 
transformation of a physical variable toward another physical 
variable. In this case, each power bond will be represented by 
two signals link of opposite orientation, one for the flow 
variable, the other for the effort variable. 

As causality is already assigned, the block diagram 
associated with the nominal ISO-PH system (5) can be 
represented in Fig 2, using following notation:  

- u: the action variable in external power exchange; 

- c: the action variable for an inner energy storage: 

                     ; 

- z: the reaction variable for an inner energy storage: 
      ; 

- y: the reaction variable in external power exchange: 
      . 

 

 

Figure 2.  Block diagram of the nominal PH system 

From (13) the PH system with a multiplicative uncertainty 

   is shown in Fig. 3. 

 

Figure 3.  Block diagram of the PH system with multiplicative uncertainties 

   appears as the uncertainty caused by    on variable  , 

i.e. the real value of   which can be rewritten : 

         (15) 

where     is the value obtained by the deterministic part of 
the model, and    is the model error on   due to uncertainty on 
 . Homogenous with z,    is summed with    to obtain along 
with   the real output of the constitutive equations of   . Then, 
this effect is injected in the inner structure through   ,  , and  . 

Finally, the LFR of both the deterministic and uncertain 
models is shown in Fig. 4, where    is the augmented   
matrix :  

    
  
  

    

 

Figure 4.  Block diagram of the PH system with multiplicative uncertainties 
in a LFR framework 
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V. ELECTRICAL-AIDED SCISSORS VIEWED AS A HUMAN  

EFFORT MULTIPLIER  

To illustrate the methodology, a multi-physic system 
interacting with several power sources has been chosen. The 
autonomous hand–held cutting tool presented Fig. 5 is an 
operator assistance device, where the worker’s muscular effort 
is multiplied by an internal electrical power source to act on a 
sample to be cut. The goal consists in cutting vineyard 
branches with a limited stress on muscles, thus avoiding further 
medical troubles. Some manipulators with interaction with the 
environment can be found e.g. in [6] where a Generalized 
Maxwell model is proposed for the material aspect. In this 
paper, only the global cutting force is considered.  

 

 

Figure 5.  Sketch of the hand-held cutting device 

The interaction with the user is realized thanks to a trigger 
in the hand-held device, and a position sensor, the finger 
motion reference     being transmitted to the mechanism 
through of a spring.  

Equations of the mechanism described in Fig. 6 are given with 
a port-Hamiltonian form in (17).  

 

a.  

b.  
Figure 6.  Design (a) and kinematics (b) of the hand-held device 

The Hamiltonian can be written: 

  
 

 

  

   
 
 

 
    

   

where the momentum         
 
and   ,  and     

 
are 

respectively the motorized nut speed, displacement and 

equivalent inertia,    is the displacement of the trigger by the 

worker’s finger,         the spring elongation,    is the 

spring stiffness, and    is the effort on the nut due to motor 

torque, and    is the cutting effort. One can writte: 
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 

 
Coupling the mechanism equations (18) through a reducer 

(  ) and a screw (  ) driving the nut with a PM motor, are 
introduced   the motor inductance,   its resistance,    the 
electro-mechanical conversion coefficient, and      the 
command voltage yields the ISO-PH form (19) where   is the 
state vector. 
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where : 
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Two models are introduced, one representing the real 

behavior of the system, another modeling by an LFR approach, 
where   is perfectly known, so that the numerical equation 
        is verified. 

  is chosen identically zero except for its first diagonal 
term, i.e. an uncertainty is introduce on    . A simulation is led. 

As shown beforehand, the two models are equivalent. This 
leads to an identical  vector   for the two models. 

The time evolution of the three components (       ) of 
vector   is given in Fig. 7, for both the realistic model, and    
and    for the LFR model. It can thus be verified that   
      for the first component. As no uncertainty has been 
introduced on the two other components, simulation shows 
      



 

Figure 7.  Simulations of the autonomous electrical scissors 

 

 

VI. CONCLUSION 

In this paper, it has been shown how uncertainties on 
energy storage elements can be modeled from a Port-
Hamiltonian model. Those can be isolated from the 
deterministic behavior through the Linear Fractional 
Representation framework. 

Furthermore, a physical interpretation of the 
interconnection between a nominal model and its uncertainties 
matrix has been proposed, showing that the action of   is a 
tuning on some physical variables whose effects can be 
followed through the inner power structure. 

Finally, the methodology was illustrated on a multi-physic 
multi-power-source system, illustrating the validity of the LFR 

method to model uncertainty on Hamiltonian lumped 
parameters. 

Next steps aim at introducing, without a complicated 
generalization, further uncertainties on the junction ( ) and 
dissipation (R) matrices, and using the resulting representation 
for control synthesis. 
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