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Abstract

Algebraic methods have been largely ignored within the field of hybrid logics. A main theme
of this thesis is to illustrate the usefulness of algebraic methods in this field.

It is a well-known fact that certain properties of a logic correspond to properties of par-
ticular classes of algebras, and that we therefore can use these classes of algebras to answer
questions about the logic. The first aim of this thesis is to identify a class of algebras corre-
sponding to hybrid logics. In particular, we introduce hybrid algebras as algebraic semantics
for the better known hybrid languages in the literature.

The second aim of this thesis is to use hybrid algebras to solve logical problems in the
field of hybrid logic. Specifically, we will focus on proving general completeness results for
some well-known hybrid logics with respect to hybrid algebras. Next, we study Sahlqvist
theory for hybrid logics. We introduce syntactically defined classes of hybrid formulas that
have first-order frame correspondents, which are preserved under taking Dedekind MacNeille
completions of atomic hybrid algebras, and which are preserved under canonical extensions
of permeated hybrid algebras. Finally, we investigate the finite model property (FMP) for
several hybrid logics. In particular, we give analogues of Bull’s theorem for the hybrid logics
under consideration in this thesis. We also show that if certain syntactically defined classes of
hybrid formulas are added to the normal modal logic S4 as axioms, we obtain hybrid logics
with the finite model property.
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Introduction

It is a well-known fact that most of the familiar logics have a (natural) algebraic semantics.
More precisely, the algebraic semantics of classical modal logic takes the form of Boolean
algebras with additional operators (BAO’s). But why bring BAO’s into the study of modal
logic? There are two main reasons. First, when a logic has an algebraic counterpart, the
powerful methods of modern algebra can be used in its investigation, and this can have a
profound influence on the development of the theory of logic. Second, in many cases, the
algebraic semantics of a modal logic turns out to be better-behaved than the frame-based
semantics: for instance, it is possible to prove algebraic completeness for any normal modal
logic, whereas no analogous results can be proved for frames (see [10]). Since hybrid logics
extend modal logics, the following questions naturally arise: (i) Do hybrid logics also have
an algebraic counterpart, and if so, what does the algebraic counterpart of hybrid logics look
like? (ii) Can these algebras be used to solve logical problems in the field of hybrid logic, and
if so, to what extent?

But why study hybrid logics to begin with? Although states form the foundation of the
semantics of modal logics, the syntax of modal logic does not provide us with the necessary
apparatus to refer to states directly — we evaluate modal formulas inside models at some
state, and use the modalities to scan accessible states, but the syntax does not allow us to
name these states or reason about state equality. For many reasons, this is a disadvantage.
Hybrid languages correct this by enriching modal languages with nominals. Nominals are a
second sort of atomic formula that range over singletons, thus acting as names for states in
models. Additional syntactic apparatus which exploits the naming power of the nominals, like
satisfaction operators or the global modality, are often added. This makes hybrid languages
significantly more expressive than their modal counterparts, but what price do we pay? It
turns out that because this apparatus is so straightforward, hybrid logics still remain well-
behaved from a computational and mathematical point of view. For instance, the satisfiability
problem for the minimal hybrid logic is known to be no more complex than the satisfiability
problem for the minimal modal logic — both are PSPACE-complete (see [65]).

Although hybrid logics have been actively researched since the mid nineties, algebraic
methods have been largely ignored within the field of hybrid logic. The only result we are
aware of to this end is Litak’s algebraization of a very expressive hybrid logic using algebras
closely related to cylindrical algebras [61]. Despite this, many of the more familiar hybrid
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Introduction 2

logics in the literature still lack algebraic semantics. Moreover, it is not known whether
these hybrid logics are algebraizable in an appropriate sense. If so, what does this mean for
us in terms of solving problems in the field of hybrid logic? What if these logics are not
algebraizable? Does this mean that the new algebraic semantics is useless to us, or can it still
be used to solve logical problems and therefore help us to better understand hybrid logics?
These are the questions we will focus on in the rest of this thesis.

Addressing these questions requires techniques from modal logic, first-order logic, universal
algebra and topology. So the first part of this thesis (see Chapter 1) consist of a thorough
survey of the relevant literature. This survey aims to determine precisely the current state of
knowledge on hybrid logics within certain parameters, and to gather some relevant techniques
and results for modal logics. The techniques studied in this survey facilitate the formulation
of strategies for addressing these shortcomings. The modal techniques and results do not
always transfer in a straightforward way, and indeed, it is the cases in which they fail to do
so that are of special interest to us.

We begin our contribution to the field of hybrid logic in Chapter 2 with the identification
of plausible classes of algebras in which some of the more familiar hybrid languages can be
interpreted. We provide two kinds of algebras. The first is Boolean algebras with additional
operators in which the nominals are interpreted as constants. This class of algebras is just
the standard algebraic semantics for modal logics with modal constants (nullary modalities),
however, these algebras are not appropriately dual to the intended relational semantics of
hybrid logics. We will refer to these algebras as orthodox interpretations. The second type
of algebras, called hybrid algebras, consists of a BAO together with a non-empty subset of
the atoms of the BAO called designated atoms. Of course this only takes us part of the
way. We would also have to know how to evaluate a hybrid formula in this type of algebra.
Hybrid formulas will be interpreted in hybrid algebras with nominals ranging over the set of
designated atoms. Hybrid algebras are dual to the intended relational semantics of hybrid
logics, and all main results in this thesis will be in terms of these algebraic structures. The
orthodox interpretations will only be used as intermediate semantics in some of the proofs of
our main results.

As in the case of modal logics, many of the properties of hybrid algebras correspond to
properties of frames. These correspondences can be made exact in the form of dualities,
which we investigate in Chapter 2. This may serve to prove new results, as well as reasserting
known results. In particular, we will prove completeness for six different families of hybrid
logics with respect to hybrid algebras, which reaffirms Ten Cate’s completeness results in [72]
through the dualities in Chapter 2.

The biggest and most interesting question now is: can our new hybrid algebras be used
to solve logical problems in the field of hybrid logic? Often metalogical properties also end
up having algebraic counterparts. For instance, as we mentioned before, in [10], we can
find algebraic completeness results for normal modal logics. Furthermore, a central tool in
proving completeness for modal logics is the notion of canonicity, which happens to have an
equally important and interesting algebraic expression. In [20], Bull showed that all normal
extensions of the modal logic S4.3 have the finite model property using algebraic techniques.
Since hybrid logics extend modal logics, one would expect that it is possible to obtain similar
results for hybrid logics in terms of our hybrid algebras. Indeed, the remainder of this thesis
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is devoted to illustrating the usefulness of our hybrid algebras developed in Chapter 2 in the
field of hybrid logic.

First, in Chapter 3, we turn our attention to proving algebraic completeness theorems for
the better known hybrid logics. There is a standard method to prove that a logic is complete
with respect to a class of algebras. This method can be said to have begun with Tarski’s 1935
paper [70] (an English translation appears in [71]). In this paper, Tarski gives the precise
relationship between Boolean algebras and propositional logic. The basic idea is to look at the
set of formulas as an algebra with operations induced by the logical connectives. Tarski then
observed that the logical equivalence relation is a congruence relation on the formula algebra,
and therefore a quotient algebra could be built — the so called Lindenbaum-Tarski algebra.
This method has come to be known as the Lindenbaum-Tarski method. Unfortunately, this
method cannot be applied straightforwardly to prove the completeness of hybrid logics, mainly
because of the two-sorted nature of the language and the restrictions on substitution in hybrid
logics. So in order to obtain our completeness results, we need a different method. A key
methodological tool in proving completeness is a construction simulating the process of taking
generated submodels algebraically.

Chapter 4 is dedicated to developing a hybrid Sahlqvist theory. Some initial results of this
kind can be found in [28] and [73]. We first extend the definition of inductive formulas in [55] to
the hybrid language with satisfaction operators, and in addition, define two subclasses, called
skeletal and nominally skeletal hybrid inductive formulas. Once we have this set up, we show
that every hybrid inductive formula has a first-order frame correspondent, and that formulas of
the subclasses are respectively preserved under canonical extensions and Dedekind-MacNeille
completions of certain hybrid algebras. The latter is enough to ensure that these formulas
axiomatize relationally complete logics. Our methods use a variation of the algorithm ALBA
(Ackermann Lemma Based Algorithm) developed in [35], which we formulate and call hybrid-
ALBA.

Finally, in Chapter 5, we investigate the finite model property (FMP) for hybrid logics.
In [7], it is shown that the finite model property is in general not transferred from a modal
logic to its hybrid companion obtained by adding nominals to the modal logic. Is this always
the case, or are there modal logics with the finite model property whose hybrid companion
obtained by adding nominals to the modal logic also have the finite model property? In this
thesis, we will show that the latter is true. In particular, we will prove an analogue of Robert
Bull’s famous result in [20] that all normal extensions of the modal logic S4.3 have the finite
model property for the hybrid logic obtained by adding nominals to this logic. As expected,
the techniques used by Bull do not transfer in a straightforward way.

The question that naturally now arises is: to what extent does Bull’s theorem hold when
we add satisfaction operators or the global modality in addition to nominals to the modal
logic S4.3? As we will see in Chapter 5, it is not clear if these hybrid companions of S4.3 also
have the finite model property. However, we show that the hybrid logic obtained by adding
nominals and the global modality has the finite model property if we add an additional axiom
enforcing well-connectedness, an algebraic property that plays a crucial role in Bull’s proof
in [20]. Unfortunately, if we add nominals and satisfaction operators, we have to settle for
proving the finite model property for a specific fragment of the hybrid logic obtained.

Still on the topic of the finite model property, in [18], Bull characterized a class of axiomatic
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extensions of the normal modal logic S4 with the finite model property. This result takes the
form of a syntactic characterization of a class of formulas that may be added as axioms to
S4, somewhat in the spirit of Sahlqvist’s famous theorem in modal correspondence theory.
In this thesis, we extend this result for hybrid languages: we expand the syntactic class given
by Bull in [18] with hybrid formulas, and then show that if the formulas in these syntactic
classes are added to the normal modal logic S4, then we obtain hybrid logics with the finite
model property.

In short, the results provided in this thesis provide an algebraic semantics for hybrid logics,
which we then apply in various settings, illustrating its usefulness.



Chapter 1
Preliminaries on modal and hybrid logics

In this chapter, we review some vital background knowledge. We focus our attention on the
modal and hybrid logics that will be in the spotlight in the later chapters, and also on their
relation to first-order logic. This chapter makes no original contribution, nor does it contain
anything unusual or surprising, it simply aims to collect some relevant facts, and to fix some
terminology and notation. The reader familiar with these logics might best skip over this
chapter, only referring back to it should (s)he ever, in later sections, find (her)himself in
doubt as to the meaning of some notation or term.

1.1 Modal logic

We obtain propositional modal languages by supplementing propositional logic with modal
operators — in the most basic case, with the dual pair of unary operators 3 and 2. These
operators can be interpreted in a number of diverse ways. First, 3ϕ can be read as ‘it is
possibly the case that ϕ’. Under this reading, 2ϕ means ‘necessarily ϕ’. Second, in epistemic
logic, modal languages are used to reason about knowledge. Instead of writing 2ϕ for ‘the
agent knows that ϕ’, it is usual to write Kϕ. The language of tense (or temporal) logic
enriches propositional logic with F and P , together with their duals G and H, and interprets
Fϕ as ‘sometime in the future ϕ’, Gϕ as ‘always in the future ϕ’, Pϕ as ‘sometime in the
past ϕ’, and Hϕ as ‘always in the past ϕ’. We can list many more examples.

For this thesis, however, the appropriate perspective is to follow [10] and view modal
languages as languages for talking about relational structures. In what follows, we fix some
basic notions of modal logic. The reader is referred to any one of the references [10], [23] or
[58] for very thorough and the most recent treatments of modal logic.

1.1.1 Syntax

For our purpose, we will only consider the basic modal language. So let PROP be a countably
infinite set of propositional variables. Then we inductively define the set of basic modal

5



Chapter 1. Preliminaries on modal and hybrid logics 6

formulas by the following rule:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | 3ϕ.

We will make use of the standard abbreviations for disjunction, implication, bi-implication
and the constant >. In particular, 2ϕ is shorthand for ¬3¬ϕ.

1.1.2 Semantics

The basic modal language can be interpreted over various structures. We will be concerned
with Kripke frames, models, general frames, and Boolean algebras with operators.

Kripke frames and models

A (Kripke) frame for the basic modal language is a pair F = (W,R) such that W is a non-
empty set (called the domain) of objects called states or points, and R is a binary accessibility
relation on W . A model is a pair M = (F, V ) such that F is a frame for the basic modal
language and V is a map from PROP to the power set of W assigning to each propositional
variable p in PROP a subset V (p) of W . V is called a valuation . Given a model M = (F, V ),
we say that M is based on the frame F, or that F is the frame underlying M.

Let M = (W,V ) be a model, and w a state in W . Then we inductively define the notion
of a modal formula being satisfied (or true) in M at w as follows:

M, w 
 ⊥ never

M, w 
 p iff w ∈ V (p)

M, w 
 ¬ϕ iff M, w 1 ϕ

M, w 
 ϕ ∧ ψ iff M, w 
 ϕ and M, w 
 ψ

M, w 
 3ϕ iff there exists v such that wRv and M, v 
 ϕ

A formula ϕ is globally true in a model M (denoted M 
 ϕ), if it is true at all states in M.
We say that ϕ is satisfiable in a model M, if it is true at some state in M. On the other hand,
ϕ is refutable in a model if its negation is satisfiable. A set of formulas Γ is globally true in a
model M, if every formula in Γ is globally true in M. A set of formulas Γ is satisfiable in a
model M, if every formula in Γ is satisfiable in M.

A modal formula ϕ is valid at a state w in a frame F (denoted F, w 
 ϕ), if it is true at
w in every model (F, V ) based on F. We say that ϕ is valid in a frame F (denoted F 
 ϕ), if
ϕ is valid at all states in F. A formula ϕ is valid on a class of frames K (denoted K 
 ϕ), if
it is valid on all frames in K. A formula ϕ is valid (denoted 
 ϕ), if ϕ is valid on the class of
all frames.

These concepts can be extended to sets of formulas in the obvious way. Specifically, a set
Γ of modal formulas is valid on a frame F (denoted F 
 Γ), if every formula in Γ is valid on
F. A set of modal formulas Γ is valid on a class K of frames (denoted K 
 Γ), if Γ is valid on
every member of K.
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General frames

A general frame is a structure g = (W,R,A), where (W,R) is a frame, A is a non-empty
collection of subsets of W (called admissible subsets) which is closed under finite intersection,
relative complement, and under the operation 〈R〉 on the power set of W defined by

〈R〉X := {w ∈W | ∃v ∈ X(wRv)}.

Clearly, A is also closed under the dual operator [R], defined as follows:

[R]X := {w ∈W | wRv implies v ∈ X}.

It is not difficult to see that the collection A is a Boolean algebra of subsets of W .
Furthermore, by convention, Kripke frames may be identified with general frames for which
the set of admissible subsets is the set of all subsets of its domain.

A valuation V on g is called admissible for g, if for each propositional letter p, V (p) ∈ A.
A modal based on a general frame is a pair (g, V ), where V is an admissible valuation for
g. The notions of truth and validity of formulas are accordingly relativized with respect to
general frames and models based on them.

Here are a few types of general frames that will be encountered further on. A general
frame g = (W,R,A) is said to be:

differentiated, if for every w, v ∈W such that w 6= v, there exists a ∈ A such that w ∈ a and
v /∈ a;

tight, if for all u, v ∈W , it is the case that uRv iff ∀a ∈ A(v ∈ a =⇒ u ∈ 〈R〉a);

compact, if
⋂
A0 6= ∅ for every subset A0 of A which has the finite intersection property1;

refined, if it is differentiated and tight;

descriptive, if it is refined and compact;

discrete, if every singleton subset of W is in A.

Boolean algebras with operators

Algebraically, we interpret modal languages in Boolean algebras with additional operators,
or BAOs.

Definition 1.1.1 (Boolean algebras with operators). A Boolean algebra with operators
for the basic modal language is an algebra

A = (A,∧,∨,¬,⊥,>, f)

such that (A,∧,∨,¬,⊥,>) is a Boolean algebra and f is an operator, i.e., a function from A
to A, satisfying the following:

1A family of sets has the finite intersection property, if every finite subfamily has non-empty intersection.
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(normality) f(⊥) = ⊥, and

(additivity) f(a ∨ b) = f(a) ∨ f(b).

Note that these equations correspond to the following modal formulas:

3⊥ ↔ ⊥
3(p ∨ q) ↔ 3p ∨3q.

Both these formulas are modal validities, so the algebraic operators are well-named.
An operator f on a Boolean algebra is monotonic, if a ≤ b implies f(a) ≤ f(b). All

operators are monotonic. To see this, assume a ≤ b. Then a ∨ b = b, so f(a) ∨ f(b) =
f(a ∨ b) = f(b), which means f(a) ≤ f(b). We say that operators have the property of
monotonicity.

Having defined BAOs, how would we go about evaluating a formula in a BAO. Of course
we would have to know how to evaluate the propositional variables in the formula first. This
is done by a function assigning to each propositional variable an element of the BAO. Once
we have this set up, we can extend such a map to terms and evaluate the formula’s meaning
under this assignment.

Definition 1.1.2. Let A = (A,∧,∨,¬,⊥,>, f) be a BAO for the basic modal language.
An assignment on A is a function v: PROP → A associating an element of A with each
propositional variable in PROP. Given such an assignment v, we calculate the meaning ṽ(t)
of a term t as follows:

ṽ(⊥) = ⊥
ṽ(p) = v(p),

ṽ(¬ψ) = ¬ṽ(ψ),

ṽ(ψ1 ∧ ψ2) = ṽ(ψ1) ∧ ṽ(ψ2), and

ṽ(3ψ) = f(ṽ(ψ)).

We say that an equation ϕ ≈ ψ is true in a BAO A (denoted A |= ϕ ≈ ψ), if for all
assignments θ, θ̃(ϕ) = θ̃(ψ). A set E of equations is true in a BAO A (denoted A |= E), if
each equation in E is true in A. An equation ϕ ≈ ψ is a semantic consequence of a set E of
equations (denoted E |= ϕ ≈ ψ), if for any BAO A such that A |= E, A |= ϕ ≈ ψ.

1.1.3 The standard translation

Here we link modal logic with the wider logical world using what is called the standard
translation. But first we define our correspondence language — the language we will translate
modal formulas into.

Define L0 to be the first-order language with =, a binary relation symbol R, and individual
variables VAR = {x0, x1, . . .}. Furthermore, let L1 be the extension of L0 with a set of unary
predicates {P0, P1, . . .} corresponding to the propositional variables p0, p1, . . . in PROP.
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Definition 1.1.3 (Standard translation). Let x be a first-order variable from VAR. The
standard translation STx taking modal formulas to first-order formulas in L1 is inductively
defined as follows:

STx(p) = P (x),

STx(⊥) = x 6= x,

STx(¬ϕ) = ¬STx(ϕ),

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ), and

STx(3ϕ) = ∃y(xRy ∧ STy(ϕ)),

where y is a variable that has not been used in the translation.

Models for the basic modal language can be viewed as models for the first-order language
L1. Indeed, we have the following:

Proposition 1.1.4. Let ϕ be a formula in the basic modal language. Then:

(i) For any model M and all states of M, M, w 
 ϕ iff M |= STx(ϕ)[x := w].

(ii) For all M, M 
 ϕ iff M |= ∀xSTx(ϕ).

1.1.4 Logics

Throughout this subsection we will work with a fixed countable infinite set of propositional
variables.

Definition 1.1.5 (Normal modal logics). A normal modal logic Λ (in the basic modal
language) is a set of modal formulas such that

(i) Λ contains all propositional tautologies,

(ii) Λ contains the axiom 2(p→ q)→ (2p→ 2q) (known as the K-axiom) and 2p↔ ¬3¬p
(Dual), and

(iii) Λ is closed under uniform substitution (if ϕ ∈ Λ, then all substitution instances of ϕ are
also in Λ), modus ponens (ϕ→ ψ,ϕ ∈ Λ implies ψ ∈ Λ), as well as necessitation (ϕ ∈ Λ
implies 2ϕ ∈ Λ).

Given a logic Λ and a formula ϕ, if ϕ ∈ Λ, we say that ϕ is a Λ-theorem of Λ, and write `Λ ϕ;
if not, we write 0Λ ϕ.

For any set of formulas Γ, there is a smallest normal modal logic containing it. We call this
the normal modal logic generated or axiomatized by Γ. The normal logic generated by the
empty set is called K, in honour of Kripke, and it is the smallest (or minimal) normal modal
logic. If Γ is a non-empty set of formula, we will denote the normal modal logic generated
by Γ by K ⊕ Γ. We will also often refer to the formulas in Γ as axioms of the logic, and
say that the logic was generated using the rules of proof substitution, modus ponens and
generalization.

Here are some of the better known axioms, together with their traditional names, that we
will encounter further on:
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(4) 33p→ 3p;

(T ) p→ 3p;

(B) p→ 23p;

(D) 2p→ 3p;

(.3) 3p ∧3q → 3(p ∧3q) ∨3(p ∧ q) ∧3(q ∧3p).

There is also a tradition for denoting logics generated by such axioms: instead of writing
K ⊕ {p → 3p},K ⊕ {p → 23p},K ⊕ {p → 3p,33p → 3p},K ⊕ {p → 3p,33p →
3p,3p∧3q → 3(p∧3q)∨3(p∧ q)∧3(q ∧3p)} and K⊕{p→ 3p,33p→ 3p, p→ 23p},
we write T, B, S4, S4.3 and S5.

Let Γ∪ {ϕ} be a set of formulas. Then we say that ϕ is deducible in Λ from Γ, if `Λ ϕ or
there are formulas ψ1, . . . , ψn ∈ Γ such that `Λ (ψ1∧· · ·∧ψn)→ ϕ. If this is the case, we write
Γ `Λ ϕ, if not, Γ 0Λ ϕ. A set of formulas Γ is Λ-consistent, if Γ 0Λ ⊥, and Λ-inconsistent
otherwise.

1.1.5 Completeness

Here we review two fundamental concepts linking the syntactic and semantic perspectives,
namely, soundness and completeness.

Frame-theoretical perspective

Before we can give the precise definition of soundness and completeness, we need the following
definition:

Definition 1.1.6 (Local semantic consequence). Let S be a class of frames, or models,
or general frames, and let Γ∪ {ϕ} be a set of formulas in the basic modal language. We then
say that ϕ is a local semantic consequence of Γ over S (denote Γ 
S ϕ), if for all structures
G in S and all states w in G, G, w 
 ϕ whenever G, w 
 Γ.

Definition 1.1.7 (Soundness and completeness). Let S be a class of frames, or models,
or general frames. A logic Λ is sound with respect to S, if for all formulas ψ and all structures
G in S, `Λ ψ implies G 
 ψ. A logic Λ is strongly complete with respect to S, if for any set
of formulas Γ ∪ {ψ}, Γ 
S ψ implies Γ `Λ ψ. A logic Λ is weakly complete with respect to S,
if for any formula ψ, S 
 ψ implies `Λ ψ.

Note that weak completeness is the special case of strong completeness in which Γ is empty,
so strong completeness with respect to some class of structures implies weak completeness
with respect to the same class of structures.

We often make use of the following result to prove completeness:

Proposition 1.1.8. Let S be a class of frames, or models, or general frames. A logic Λ is
strongly complete with respect to S iff every Λ-consistent set of formulas is satisfiable on some
structure in S. A logic Λ is weakly complete with respect to S iff every Λ-consistent formula
is satisfiable on some structure in S.
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We have the following general completeness results with respect to general frames:

Theorem 1.1.9. Every normal modal logic is sound and strongly complete with respect to its
class of general frames.

In fact, this even holds if we restrict our attention to the class of descriptive general frames.

Theorem 1.1.10 ([47]). Every normal modal logic is sound and strongly complete with respect
to its class of descriptive general frames.

Algebraic perspective

How do we prove completeness of modal logics algebraically? Obviously we have to show
that any non-theorem of the modal logic can be refuted on some BAO. So the most impor-
tant question is: how do we build a BAO refuting a non-theorem? It turns out that the
Lindenbaum-Tarski algebra of a logic gives us a counter-example for any non-theorem. This
algebra was first introduced by Tarski in [70] with an English translation appearing in [71].
The idea is to build an algebra on top of the formula algebra in such a way that the relation
of logical equivalence between two modal formulas is a congruence relation2. So let us recall
the definition of a formula algebra. As before, we only consider the basic modal language. In
this exposition, we will be following [72].

Definition 1.1.11 (Formula algebras). The formula algebra of the basic modal language
over PROP is the algebra

Form(PROP) = (Form(PROP), ·,+,−, 0, 1, f3),

where Form(PROP) is the set of basic modal formulas over PROP, ϕ · ψ := ϕ ∧ ψ,ϕ + ψ :=
ϕ ∨ ψ,−ϕ := ¬ϕ, and f3ϕ := 3ϕ.

Let Λ be a normal modal logic in the basic modal language. We define ≡Λ as a binary
relation between formulas by

ϕ ≡Λ ψ iff `Λ ϕ↔ ψ.

If ϕ ≡Λ ψ, we say that ϕ and ψ are equivalent modulo Λ.

Proposition 1.1.12. Let Λ be a normal modal logic in the basic modal language. Then ≡Λ

is a congruence relation on Form(PROP).

Given Proposition 1.1.12, we define the Lindenbaum-Tarski algebra of any normal modal
logic Λ as the quotient algebra3

2Let A be an algebra. An equivalence relation ∼ on A is a congruence, if for every basic operation f of A,
a1 ∼ b1& · · ·&an ∼ bn implies fA(a1, . . . , an) ∼ fA(b1, . . . , bn).

3Let A be an algebra, and ∼ is a congruence relation on A. The quotient algebra of A by ∼ is the algebra
A/ ∼ whose carrier is the set A/ ∼= {[a] | a ∈ a} of equivalence classes of A under ∼, and whose operations
are defined by

fA/∼([a1], . . . [an]) = [fA(a1, . . . , an)].

of the formula algebra over the congruence relation ≡Λ:
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Definition 1.1.13 (Lindenbaum-Tarski algebra). Let Λ be a normal modal logic in the
basic modal language. The Lindenbaum-Tarski algebra of Λ over PROP is the structure

LΛ(PROP) = (Form(PROP)/ ≡Λ, ·,+,−, 0, 1, f3),

where

[ϕ] · [ψ] := [ϕ ∧ ψ],

[ϕ] + [ψ] := [ϕ ∨ ψ],

−[ϕ] := [¬ϕ],

f3[ϕ] := [3ϕ],

0 := [⊥], and

1 := [>].

Note that Proposition 1.1.12 tells us that the operations in Definition 1.1.13 are correct.

Theorem 1.1.14. Let Λ be a modal logic in the basic modal language. Then

`Λ ϕ iff LΛ(PROP) |= ϕ ≈ >.

Proof. For the completeness direction, suppose 0Λ ϕ. We have to find an assignment v such
that LΛ(PROP), v 6|= ϕ ≈ >. Note that [¬ϕ] 6= [⊥], for otherwise `Λ ¬ϕ ↔ ⊥, which means
that `Λ > ↔ ϕ, and so `Λ ϕ, a contradiction. Now, let ι: PROP → Form(PROP)/ ≡Λ be
defined by ι(p) = [p]4. It can easily be verified by straightforward structural induction that
ι̃(ρ) = [ρ] for all formulas ρ that use variables from the set PROP. But then ι̃(ϕ) = [ϕ] 6=
[>] = ι̃(>), for otherwise [¬ϕ] = [⊥], which is a contradiction.

For the converse direction, let ψ be a theorem of Λ, and let ν be an arbitrary assignment
on Λ. So ν assigns an equivalence class to each propositional variable. For each variable p in
PROP choose a representing formula θ(p) in the equivalence class ν(p). Then ν(p) = [θ(p)].
We may therefore view θ as a function mapping propositional variables to formulas; in other
words, θ is a substitution. Let θ(ρ) denote the effect of performing this substitution on ρ.
Using structural induction on ρ, we can show that for any formula ρ, ν̃(ρ) = [θ(ρ)]. Now, we
know that Λ is closed under substitution, so θ(ψ) is a theorem, and so θ(ψ) ≡Λ >. Hence,
[θ(ψ)] = [>], which means that ν̃(ψ) = [>].

Let us now make sure that the Lindenbaum-Tarski algebra is an algebraic model of the
right kind. But to give a precise formulation, we need the following definition:

Definition 1.1.15. Let Σ be a set of formulas in the basic modal language. We define VΣ

to be the class of Boolean algebras with operators in which the set Σ≈ = {σ ≈ > | σ ∈ Σ} is
valid.

Theorem 1.1.16. Let Λ be a normal modal logic in the basic modal language. Then we have
LΛ(PROP) ∈ VΛ.

4Let A be an algebra and ∼ a congruence relation on A. A function ι taking an element a of A to its
equivalence class [a] is called the natural map associated with the congruence.
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Proof. Once we have shown that LΛ(PROP) is a BAO, the result follows immediately from
Theorem 1.1.14. First, that LΛ(PROP) is a Boolean algebra is clear. So all we have to
check is that f3 is normal and additive. Now, it is easy to check that `Λ 3⊥ ↔ ⊥. But
then we have [3⊥] = [⊥], so f3([⊥]) = [3⊥] = [⊥]. Likewise, it is not difficult to show
that `Λ 3(ϕ ∨ ψ) ↔ (3ϕ ∨ 3ψ), which means that [3(ϕ ∨ ψ)] = [3ϕ ∨ 3ψ]. Hence,
f3([ϕ] + [ψ]) = f3([ϕ∨ψ]) = [3(ϕ∨ψ)] = [3ϕ∨3ψ] = [3ϕ] + [3ψ] = f3([ϕ]) + f3([ψ]).

We are now ready to give the algebraic completeness theorem for modal logic.

Theorem 1.1.17. Every normal modal logic K ⊕ Σ is sound and complete with respect to
the class of all BAOs which validate Σ. That is `K⊕Σ ϕ iff VΣ |= ϕ ≈ >.

Proof. The soundness direction is straightforward. The completeness direction follows from
Theorems 1.1.14 and 1.1.16.

1.1.6 Frame definability

This part is mostly about using formulas to define classes of frames. In particular, we discuss
a number of results concerning the relationship between classes of frames definable by modal
formulas and frame classes definable by first-order formulas. But wait! What does it mean
for a formula to define a class of frames?

Definition 1.1.18 (Definability). Let ϕ be a modal formula, and K a class of frames. We
say that ϕ defines K, if for all frames F, F ∈ K if and only if F 
 ϕ. Similarly, if Γ is a set of
modal formulas, we say that Γ defines K, if for every F, F ∈ K if and only if F 
 Γ. A class
of frames is modally definable if there is some set of modal formulas that defines it.

We will often say that a formula defines a property, if it defines the class of frames satisfying
that property. For example, p → 3p defines the class of reflexive frames, or simply, p → 3p
defines reflexivity. Similarly, 33p→ 3p defines transitivity.

Since frames are just relational structures, we are free to define frame classes using non-
modal languages. For instance, the class of reflexive frames is simply the class of all frames
that make the first-order formula ∀x(xRx) true, while the class of transitive frames make
∀x∀y∀z(xRy ∧ yRz → xRz) true. We say that these classes of frames are elementary. More
precisely:

Definition 1.1.19 (Elementary frame class). A frame class is elementary, if it is defined
by a sentence of the first-order frame correspondence language L0.

We are interested in the relationship between modally definable frame classes and elemen-
tary frame classes. First, is it the case that all modally definable frame classes are elementary?
The answer is no — the frame class defined by the Löb formula 2(2p → p) → 2p is not
elementary. On the other hand, are all elementary frame classes modally definable? The
answer is again no, as we will soon see.

In what follows, we will review some model theoretic characterizations of the modally
definable elementary frame classes, as well as some attempts at syntactic characterizations.
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Model theoretic characterizations

One of the best-known results in modal logic is the Goldblatt-Thomason Theorem. This re-
sult allows us to characterize the elementary frame classes which are also modally definable
in terms of the frame constructions generated subframes, disjoint unions, bounded morphic
images, and ultrafilter extensions. So before we formally state the Goldblatt-Thomason The-
orem, let us first recall the definitions of these frame constructions.

Definition 1.1.20 (Generated subframes). A frame G = (W ′, S) is a generated subframe
of the frame F = (W,R) (written G � F) if W ′ ⊆ W , S = R ∩W ′ ×W ′, and the following
condition holds:

w ∈W ′, v ∈W and wRv implies v ∈W ′.

Let X be a non-empty subset of W . The subframe generated by X (written FX) is the smallest
generated subframe of F whose domain contains X. If X is a singleton {w}, we write Fw for
the subframe generated by w. If a frame F is generated by a singleton {w} we say it is rooted
or point-generated. The point w is called the root of the frame.

Definition 1.1.21 (Disjoint unions). Let {Fi | i ∈ I} be a collection of disjoint frames.
Then their disjoint union is the structure⊎

i∈I
Fi = (W,R),

where W is the union of the domains Wi and R is the union of the relations Ri.

Definition 1.1.22 (Bounded morphisms). A mapping f : F→ G is a bounded morphism
from a frame F = (W,R) to a frame G = (W ′, S) if f satisfies the following conditions:

(Forth) wRv implies f(w)Sf(v), and

(Back) f(w)Sv′ implies that wRv and f(v) = v′ for some v ∈W .

We say that G is a bounded morphic image of F, denoted F � G, if there is a surjective
bounded morphism from F onto G.

Definition 1.1.23 (Ultrafilter extensions). Let F = (W,R) be a frame for the basic
modal language. The ultrafilter extension ueF of F is defined as the frame (Uf (W ), Rue),
where Uf (W ) is the set of ultrafilters5 over W , and for u, v ∈ Uf (W ), uRuev iff for all
X ∈ v, 〈R〉X ∈ u.

It is a well-known fact that the first three constructions preserve modal validity, while the
fourth anti-preserves it (meaning that if a formula is valid on the ultrafilter extension of a
frame, then it is also valid on the original frame). But this means that these constructions can
be used to test for modal definability: if we can show that a class of frames is not closed under
one of these constructions, then we can show that it is not modally definable. This is exactly
what the Goldblatt-Thomason Theorem tells us. We will use the following terminology: a
class of frames K reflects ultrafilter extensions, if ueF ∈ K implies F ∈ K.

5We will define ultrafilters in Subsection 1.1.7.
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Theorem 1.1.24 (Goldblatt-Thomason Theorem [50]). An elementary frame class is
modally definable iff it is closed under generated subframes, disjoint unions, bounded morphic
images and reflects ultrafilter extensions.

This tells us which elementary frame classes are modally definable, but which modally
definable frame classes are elementary? This question was answered by Van Benthem in [76].

Theorem 1.1.25. Let K be any modally definable frame class. Then the following statements
are equivalent:

(i) K is elementary.

(ii) K is defined by a set of first-order sentences.

(iii) K is closed under elementary equivalence.

(iv) K is closed under ultrapowers6.

Syntactic characterizations

The results above do not tell us which modal formulas define an elementary frame class. The
bad news is that the problem whether a given modal formula defines an elementary frame
class is undecidable according to Chagrova in [22] and [24]. But if we are willing to be satisfied
with approximations, all is not lost. Various large and interesting syntactically defined classes
of formulas defining elementary frame classes are known. In what follows, we review the most
famous among these classes.

The Sahlqvist formulas undoubtedly form the best known syntactically specified class of
formulas defining elementary frame classes. They were first introduced by Sahlqvist in [64],
in a slightly more restricted form than the definition we use today.

Definition 1.1.26. An occurrence of a propositional variable in a formula ϕ is positive
(negative), if it is in the scope of an even (odd) number of negation signs. A formula ϕ
is positive (negative) in propositional variable p, if all occurrences of p in ϕ are positive
(negative). A formula is positive (negative), if it is positive (negative) in all propositional
variables.

We will refer to the positivity or negativity of a formula in a propositional variable as its
polarity in that propositional variable.

Definition 1.1.27. A boxed atom is a propositional variable, prefixed with finitely many
(possibly no) boxes.

Definition 1.1.28 (Sahlqvist antecedent). A Sahlqvist antecedent is a formula built up
from >,⊥, boxed atoms and negative formulas, using ∧, ∨ and diamonds.

In particular, note that any negative formula is a Sahlqvist antecedent.

6The reader unfamiliar with this construction is referred to any standard text on model theory, for example,
[25] or [56].
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Definition 1.1.29 (Sahlqvist implication). A Sahlqvist implication is a formula of the
form ϕ→ ψ, where ϕ is a Sahlqvist antecedent and ψ is a positive formula.

Definition 1.1.30 (Sahlqvist formula). A Sahlqvist formula is a formula that is obtained
from Sahlqvist implications by applying boxes, disjunctions and conjunctions.

Many well known formulas fall within the class of Sahlqvist formulas. Let us look at some
examples.

Example 1.1.31. The following formulas are Sahlqvist:

(i) the formula p→ 3p defining reflexivity,

(ii) the formulas 33p→ 3p or 2p→ 22p defining transitivity,

(iii) the formula p→ 23p defining symmetry,

(iv) the formula 2p→ 3p defining seriality, and

(v) the Geach-formula 32p→ 23p defining the Church-Rosser property.

It can be shown that the formula obtained by negating a Sahlqvist formula and importing
the negation over all connectives is a Sahlqvist antecedent (see [27]). We then have the
following proposition:

Proposition 1.1.32. Every Sahlqvist formula is semantically equivalent7 to a negated Sahlqvist
antecedent, and hence to a Sahlqvist implication.

Notice that Definition 1.1.30 differs from the usual definition of a Sahlqvist formula (see
for instance [10]) in that disjunctions are only allowed between formulas that share no propo-
sitional variables. This would exclude a formula like (33p → 3p) ∨ (32p → 23p), which
would be admitted by Definition 1.1.30. In the light of Proposition 1.1.32, it is clear that this
restriction on the occurrence of disjunctions is unnecessary as far as classes defining elemen-
tary frames are concerned. However, this requirement is indeed essential for the usual proof
of elementarity to work (see once again [10]).

In [77], a natural syntactic generalization of the class of Sahlqvist formulas is given.
Following [58], we will refer to this class as the class of Sahlqvist–van Benthem (SvB) formulas.
It is defined as follows:

Definition 1.1.33 (Sahlqvist–van Benthem formula). A Sahlqvist–van Benthem formula
is a formula in negation normal form8 such that for every propositional variable p, either

(i) there is no positive occurrence of p in a subformula ϕ ∧ ψ or 2ψ which is in the scope
of a 3, or

7Formulas ϕ and ψ are semantically equivalent, if they are true at exactly the same points in the same
models.

8A formula is in negation normal form if it contains no occurrences of → and ↔ and all negation signs
occur only directly in front of propositional variables.
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(ii) there is no negative occurrence of p in a subformula ϕ ∧ ψ or 2ψ which is in the scope
of a 3.

Note that all Sahlqvist formulas, after being rewritten in negation normal form, are
Sahlqvist–van Benthem. In particular, item (ii) of Definition 1.1.33 is satisfied with respect to
every propositional variable in a Sahlqvist formula. The converse does not hold: the formula
3(p∧23¬p)→ (32p∨22¬p) is a Sahlqvist–van Benthem formula, but it is not Sahlqvist.
However, it is not difficult to rewrite this formula as a Sahlqvist formula whilst maintaining
semantic equivalence, namely as the formula (3(p ∧23¬p) ∧23¬p ∧33p) → ⊥. Had the
polarity of p been reversed, this would not have worked — to obtain a Sahlqvist formula we
would have had to switch the polarity. We have the following proposition (its proof can be
found in [27]):

Proposition 1.1.34. Every Sahlqvist–van Benthem formula is locally equivalent9 to a Sahlqvist
implication.

1.1.7 Duality

In Subsection 1.1.2, we saw that the basic modal language can be interpreted in various
structures. One naturally wonders how these structures are related to each other, and if
it is possible to obtain one from the other. Here we review the relationship between these
structures, starting with the connection between Kripke frames and BAOs.

Connections between modal algebras and Kripke frames were first studied explicitly by
Lemmon in [60]. More precisely, he gave us a way to construct a BAO from a Kripke frame.

Definition 1.1.35 (Complex algebras). Let F = (W,R) be a frame. The complex algebra
of F is the structure

F+ = (P(W ),∩,∪,−,∅,W, 〈R〉),

where ∩ is the intersection of two sets, ∪ the union of two sets, − the complement of a set
relative to W , and 〈R〉 is defined as on page 7.

Proposition 1.1.36. Let F = (W,R) be a Kripke frame for the basic modal language. Then
F+ is a Boolean algebra with operators.

Before we go in the opposite direction, that is, from BAOs to Kripke frames, we recall the
following definition:

Definition 1.1.37 (Filters). A filter of a Boolean algebra A = (A,∧,∨,¬,⊥,>) is a subset
F ⊆ A satisfying the following:

(i) > ∈ F ,

(ii) F is closed under taking meets, i.e., if a, b ∈ F , then a ∧ b ∈ F , and

(iii) F is upward closed, i.e., if a ∈ F and a ≤ b, then b ∈ F .

9Formulas ϕ and ψ are locally equivalent, if they are valid at exactly the same points in the same general
frames.
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A filter is proper if it does not contain ⊥. An ultrafilter is a proper filter such that for every
a ∈ A, either a ∈ F or ¬a ∈ F . The collection of ultrafilters of A is denoted by Uf A. An
ultrafilter over a set S is an ultrafilter of the Boolean algebra of all subsets of S.

Example 1.1.38. Let A be a Boolean algebra, and let a ∈ A such that a 6= ⊥. Then the set
a ↑= {b ∈ A | a ≤ b} is an ultrafilter (called the principal ultrafilter generated by A).

Example 1.1.39. Let A = (A,∧,∨,¬,>,⊥) be a Boolean algebra, and let C ⊆ A. It is not
difficult to see that {a ∈ A | ∃c1 · · · ∃cn(c1 ∧ · · · ∧ cn ≤ a)} is a filter containing C. We will
denote this filter by FC . This is the smallest filter containing C, and is sometimes referred to
as the filter generated by C. If C has the finite meet property10, then this filter is proper. To
see this, assume that C has the finite meet property, and suppose ⊥ ∈ FC . Then there are
c1, . . . , cn ∈ C such that c1 ∧ · · · ∧ cn ≤ ⊥, contradicting the fact that C has the finite meet
property.

Let us gather some known properties of ultrafilters for future reference.

Proposition 1.1.40. Let A be a Boolean algebra.

(i) For any ultrafilter u of A and a, b ∈ A, a ∨ b ∈ u iff a ∈ u or b ∈ u.

(ii) Uf A coincides with the set of maximal proper filters of A.

Theorem 1.1.41 (Ultrafilter Theorem). Let A be a Boolean algebra, a ∈ A, and F a
filter of A that does not contain a. Then there is an ultrafilter extending F that does not
contain a.

A proof of this theorem can be found in [10].
Recall the following: given an operator f on a Boolean algebra (A,∧,∨,¬,⊥,>), we define

the binary relation Qf on the set of ultrafilters of the algebra by

uQfv iff f(a) ∈ u for all a ∈ v.

We also have the following alternative but equivalent definition of the relation Qf :

uQfv iff ¬f(¬a) ∈ u implies a ∈ v.

For the left-to-right direction, suppose uQfv, and let ¬f(¬a) ∈ u. Then f(¬a) /∈ u. But
as uQfv, ¬a /∈ v, which means a ∈ v. Conversely, suppose ¬f(¬b) ∈ u implies b ∈ v, and
assume f(a) /∈ u. Then ¬f(a) ∈ u, and so ¬f(¬¬a) ∈ u. Hence, ¬a ∈ v, which means a /∈ v.

Now, let A = (A,∩,∨,¬,⊥,>, f) be a BAO. The ultrafilter frame of A, denoted A+, is
the structure (Uf A, Qf ).

Let us now recall a number of operations that enable us to construct general frames out
of Kripke frames or out of BAOs, and conversely.

10Let (A,∧,∨,¬,⊥,>) be a Boolean algebra. A subset D of A has the finite meet property if there is no
finite subset {d0, . . . , dn} of D such that d0 ∧ · · · ∧ dn = ⊥.
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Definition 1.1.42. Let g = (W,R,A) be a general frame. The underlying (Kripke) frame
of g is the frame (W,R), denoted g]. In other words, the underlying frame is obtained by
forgetting about the algebra of admissible sets. The structure g∗ = (A,∩,∪,−,∅,W, 〈R〉) is
called the underlying Boolean algebra with operators of g.

Conversely, the full frame of a Kripke frame F = (W,R) is the general frame F] =
(W,R,P(W )). Finally, the general ultrafilter frame of a BAO A = (A,∧,∨,¬,⊥,>, f) is
defined as

A∗ = (A+, Â),

where â := {u ∈ Uf A | a ∈ u} and Â := {â | a ∈ A}.

Next, we devote our attention to the relationship between general frames and Boolean
algebras with operators. But we will need the following lemma:

Lemma 1.1.43. For any Boolean algebra A,

(i) ¬̂a = −â,

(ii) â ∨ b = â ∪ b̂,

(iii) â ∧ b = â ∩ b̂, and

(iv) 3̂a = 〈Q3〉â.

Proof. (i) For the left-to-right inclusion, let u ∈ ¬̂a. Then ¬a ∈ u, and so a /∈ u. Hence, by
definition, u /∈ â, which means u ∈ −â. Conversely, let u ∈ −â. Then we have u /∈ â, and so
a /∈ u, which means ¬a ∈ u. Hence, u ∈ ¬̂a.

(ii) Let u ∈ â ∨ b. Then a ∨ b ∈ u, and so, by Proposition 1.1.40, a ∈ u or b ∈ u. Hence,
u ∈ â or u ∈ b̂, and therefore u ∈ â ∪ b̂. Conversely, assume u ∈ â ∪ b̂. Then u ∈ â or
u ∈ b̂, which implies that a ∈ u or b ∈ u. Thus, by Proposition 1.1.40, a ∨ b ∈ u, and hence,

u ∈ â ∨ b.
(iii) Assume u ∈ â ∧ b. Then a ∧ b ∈ u, and so ¬(a ∧ b) /∈ u. But this means that

¬a ∨ ¬b /∈ u, so, by Proposition 1.1.40, ¬a /∈ u and ¬b /∈ u. Hence, a ∈ u and b ∈ u, which
implies u ∈ â and u ∈ b̂, and therefore, u ∈ â ∩ b̂. For the converse inclusion, let u ∈ â ∩ b̂.
Then u ∈ â and u ∈ b̂, and so a ∈ u and b ∈ u. But u is upward closed, which means a∧b ∈ u.

Thus, u ∈ â ∧ b.
(iv) Let u ∈ 〈Q3〉â. Then there is an ultrafilter v ∈ â such that uQ3v. Hence, a ∈ v,

and so, by definition, 3a ∈ u. This means that u ∈ 3̂a. For the converse inclusion, take an
arbitrary ultrafilter u ∈ 3̂a. Then 3a ∈ u. We have to find an ultrafilter v such that uQ3v
and v ∈ â, or equivalently, a ∈ v. First, recall that we can reformulate the definition of Q3

as follows:
uQ3v iff ¬3¬b ∈ u implies b ∈ v.

We claim that the set B = {b ∈ A | ¬3¬b ∈ u} ∪ {a} has the finite meet property. For
suppose not, then there are c1, c2, . . . , cn ∈ B such that c1 ∧ c2 ∧ · · · cn ∧ a = ⊥, and so
a ≤ ¬c1 ∨ ¬c2 ∨ · · · ¬cn. This means we have 3a ≤ 3¬c1 ∨3¬c2 ∨ · · · ∨3¬cn. But 3a ∈ u
and u is upward closed, so then 3¬c1 ∨ 3¬c2 ∨ · · · ∨ 3¬cn ∈ u. Hence, 3¬ci ∈ u for some
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1 ≤ i ≤ n, which means that ci /∈ B for some 1 ≤ i ≤ n, a contradiction. Now, since B has the
finite meet property, we know from Example 1.1.39 that there is a proper filter v containing
B. We can now use the Ultrafilter Theorem to extend this proper filter to an ultrafilter v+.
We have thus found an ultrafilter satisfying the desired properties.

Theorem 1.1.44. Let A be a BAO, and g = (W,R,A) a general frame. Then

(i) A∗ is a descriptive two-sorted general frame,

(ii) (A∗)
∗ ∼= A, and

(iii) (g∗)∗ ∼= g iff g is descriptive.

Proof. We will only prove items (i) and (ii). The proof of item (iii) can be found in [10].
(i) We first show that A∗ is a general frame. First, recall that ⊥ /∈ u for all ultrafilters u

of A, and so, ⊥̂ = ∅. But ⊥ ∈ A, so ⊥̂ ∈ Â. We can thus conclude that ∅ ∈ Â.
To show that Â is closed under ∪, let â, b̂ ∈ Â. Then a, b ∈ A. But A is closed under ∨, so

a∨ b ∈ A. This means that â ∨ b ∈ Â, and so, since â∪ b̂ = â ∨ b by Lemma 1.1.43, â∪ b̂ ∈ Â.
Next, let â ∈ Â. Then a ∈ A, and so, since A is closed under ¬, ¬a ∈ A. Hence, ¬̂a ∈ Â.

But by Lemma 1.1.43, ¬̂a = −â, so −â ∈ Â.
To show that Â is closed under 〈Q3〉, let â ∈ Â. Then a ∈ A. But A is closed under 3,

so 3a ∈ A. Hence, 3̂a ∈ Â, and so, since 3̂a = 〈Q3〉â by Lemma 1.1.43, 〈Q3〉â ∈ Â.
To show that A∗ is descriptive, we have to prove that A∗ is differentiated, tight and

compact. We first show that it is differentiated. The left-to-right direction is obvious. For
the converse, assume u and v are different ultrafilters of A. Then we may assume without
loss of generality that there is an a in A such that a ∈ u but a ∈ v. Hence, â is admissible,
and, furthermore, u ∈ â but v /∈ â.

For the tightness, suppose uQ3v does not hold for some ultrafilters u and v. Then there is
some a ∈ A such that a ∈ v but 3a /∈ u. Hence, â is admissible, and v ∈ â but u /∈ 3̂a. Now,
since 〈Q3〉â = 3̂a, u /∈ 〈Q3〉â, as required. For the converse, assume there is an admissible
set â such that v ∈ â but u /∈ 〈Q3〉â = 3̂a. This means that there is an a ∈ A such that
a ∈ v but 3a /∈ u. Hence, uQ3v does not hold.

To show that A∗ is compact, let {ĉ | c ∈ C ⊆ A} be a non-empty collection of admissible
sets with the finite intersection property. Then ĉ1 ∩ ĉ2 ∩ · · · ∩ ĉn 6= ∅ for every finite sub-
collection {ĉ1, ĉ2, . . . , ĉn}. This means that there is an ultrafilter u that belongs to every ĉi,
1 ≤ i ≤ n. Hence, ci ∈ u for all ci, 1 ≤ i ≤ n. Thus, c1 ∧ c2 ∧ · · · ∧ cn ∈ u, which means
that c1 ∧ c2 ∧ · · · ∧ cn 6= ⊥. We can thus conclude that C has the finite meet property,
and thus, there is a proper filter v such that C ⊆ v. By the Ultrafilter Theorem, v can be
extended to an ultrafilter v+. Hence, C ⊆ v+, and so v+ ∈ ĉ for all c ∈ C. We thus have that
v+ ∈

⋂
{ĉ | c ∈ C ⊆ A}, which means that

⋂
{ĉ | c ∈ C ⊆ A} 6= ∅, as required.

(ii) Consider the map h: A → Â defined by h(a) = â. We have to show that h is an
isomorphism. First, h is clearly surjective from A onto Â. Proving that h preserves all
operations is also straightforward. To show that h is injective, suppose a and b are distinct
elements of A. Then a � b or b � a. Without loss of generality, we may assume the first. But
if a � b, then b does not belong to the filter a ↑, so, by the Ultrafilter Theorem, there is some
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ultrafilter u such that a ↑⊆ u and b /∈ u. Now, since a ∈ a ↑, a ∈ u. Hence, u ∈ â but u /∈ b̂,
which means that h(a) 6= h(b).

We now know how to construct algebras from frames and frames from algebras. Fur-
thermore, we also know how to construct new frames from old frames and algebras from
old algebras (for more on the operations on algebras, see [21]), but what is the relationship
between the operations on frames and the operations on algebras? Duality theory studies
these relationships. We will only review some of these relationships here, for an overview of
the duality theory between BAOs and relational structures, the reader is referred to [46] and
[49]. In our exposition, we will be following [10].

Theorem 1.1.45 below gives us a precise formulation of the links between Kripke frames
and Boolean algebras with operators. Figure 1.1 shows the structures in Theorem 1.1.45 and
the relationships between them.

F G

F+ G+

F G

F+ G+

A B

A+ B+

A

A+ B+

B

Figure 1.1: The structures in Theorem 1.1.45 and their relationships.

Theorem 1.1.45. Let F and G be two Kripke frames, and A and B two Boolean algebras
with operators.

(i) If F � G, then G+ � F+.

(ii) If F � G, then G+ � F+.

(iii) If A � B, then B+ � A+.

(iv) If A � B, then B+ � A+.
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The proof of this theorem is similar to that of Theorem 1.1.48.
We can prove results analogous to the results in Theorem 1.1.45 for general frames and

Boolean algebras with operators. But first, let us review the notions of disjoint unions and
bounded morphisms in the setting of general frames.

Definition 1.1.46. For each i ∈ I, let gi = (Wi, Ri, Ai) be a general frame. Then their
disjoint union is the structure ⊎

i∈I
gi = (W,R,A),

where W is the union of the domains Wi, R is the union of the relations Ri, and A consists
of those subsets a ⊆

⋃
i∈IWi such that a ∩Wi ∈ Ai for all i ∈ I.

Definition 1.1.47. Let g = (W,R,A) and h = (W ′, R′, A′) be two general frames. A map g:
W → W ′ is a bounded morphism between g and h, if g is a bounded morphism between the
frames (W,R) and (W ′, R′) such that g−1[a′] ∈ A for all a′ ∈ A′. Such a bounded morphism
g is called an embedding, if it is injective, and for all a ∈ A, there is an a′ ∈ A′ such that
g[a] = g[W ]∩ a′. We say that h is embeddable in g (denoted h � g), if there is an embedding
from W ′ to W . The two-sorted general frame h is called a bounded morphic image of g
(denoted g � h), if there is a surjective bounded morphism g from W to W ′. Finally, h and
g are isomorphic (denoted h ∼= g), if there is an bijective bounded morphism between W and
W ′.

Theorem 1.1.48. Let g and h be two general frames, and A and B two Boolean algebras
with operators.

(i) If g � h, then h∗ � g∗.

(ii) If g � h, then h∗ � g∗.

(iii) If A � B, then B∗ � A∗.

(iv) If A � B, then B∗ � A∗.

The proof of this theorem follows immediately from Propositions 1.1.51 and 1.1.52 below.
But in order to prove these propositions, we need the following terminology:

Definition 1.1.49. Let g = (W,R,A) and h = (W ′, R′, A′) be two general frames. Given a
map g: W →W ′, its dual g∗: A′ → P(W ) is defined by

g∗(a′) := g−1[a′] (= {w ∈W | g(w) ∈ a′}).

Definition 1.1.50. Let A and B be two BAOs, and let h be a map from A to B. Then its
dual h∗ is the map from Uf B to P(A) defined by

h∗(u
′) := h−1[u′] (= {a ∈ A | h(a) ∈ u′}).

The proposition below asserts that the duals of bounded morphisms between general
frames are nothing but homomorphisms between Boolean algebras with operators. The proof
can be found in [10].
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Proposition 1.1.51. Let g = (W,R,A) and h = (W ′, R′, A′) be two general frames, g∗ =
(A,∩,∪,−,∅,W, 〈R〉) and h∗ = (A′,∩,∪,−,∅,W ′, 〈R′〉) their underlying BAOs, and g a map
from W to W ′.

(i) If g is a bounded morphism, g∗ maps elements of A′ to elements of A.

(ii) If g is a bounded morphism, then g∗ is a homomorphism from h∗ to g∗.

(iii) If g is an embedding, then g∗ is a surjective homomorphism.

(iv) If g is surjective, then g∗ is injective.

Going in the opposite direction, we find that the duals of homomorphisms between Boolean
algebras with operators are bounded morphisms between general frames. We will only give
proofs of the items not readily available in the literature. The proofs of the other items can
be found in [10].

Proposition 1.1.52. Let A = (A,∧,∨,¬,⊥,>,3) and B = (B,∧,∨,¬,⊥,>,3) be two
BAOs, A∗ = (Uf A, Q3, Â) and B∗ = (Uf B, Q′3, B̂) their general ultrafilter frames, and h a
map from A to B.

(i) If h is a homomorphism, then h∗ maps ultrafilters to ultrafilters.

(ii) If h is a homomorphism, then h∗ is a bounded morphism from B∗ to A∗.

(iii) If h is a surjective homomorphism, then h∗ is an embedding.

(iv) If h is an embedding, then h∗ is a surjective.

Proof. (i) We have to show that if u′ ∈ Uf B, then h∗(u
′) is an ultrafilter of A. First, since h

is a homomorphism and u′ is an ultrafilter of B, h(>) = > ∈ u′. Hence, > ∈ h∗(u′).
To show that h∗(u

′) is closed under meets, assume a, b ∈ h∗(u′). Then h(a) and h(b) are
in u′. But u′ is closed under meets, so h(a) ∧ h(b) ∈ u′. Now, h(a) ∧ h(b) = h(a ∧ b), which
means that h(a ∧ b) ∈ u′. Hence, a ∧ b ∈ h∗(u′).

Next, let a ∈ h∗(u
′) such that a ≤ b. Then h(a) ∈ u′ and a ∧ b = a. From a ∧ b = a

we have that h(a ∧ b) = h(a). But then h(a) ∧ h(b) = h(a), which means that, h(a) ≤ h(b).
Hence, since u′ is upward closed, h(b) ∈ u′, and therefore, b ∈ h∗(u′).

To show that h∗(u
′) is proper, assume ⊥ ∈ h∗(u′). Then h(⊥) ∈ u′. But ⊥ = h(⊥), which

means that ⊥ ∈ u′, contradicting the fact that u′ is an ultrafilter.
Finally, we show that either a ∈ h∗(u

′) or ¬a ∈ h∗(u
′). Suppose a /∈ h∗(u

′). Then
h(a) /∈ u′, and so, since u′ is an ultrafilter, ¬h(a) ∈ u′. But h(¬a) = ¬h(a), so h(¬a) ∈ u′.
Hence, ¬a ∈ h∗(u′). Similarly, if ¬a /∈ h∗(u′), then a ∈ h∗(u′).

(ii) For the forth property, see [10]. For the back property, assume h∗(u
′)Q3v. We

have to find an ultrafilter v′ of B such that h∗(v
′) = v and u′Q′3v

′. So consider the sets
F1 = {a′ ∈ A′ | 2a′ ∈ u′} and F2 = {h(a) | a ∈ v}. It is not difficult to see that both F1 and
F2 are closed under meets. Now, let F = F1 ∪ F2. We will show that F has the finite meet
property. So suppose F does not have the finite meet property. Using the fact that F1 and
F2 are closed under meets, we then have the following cases:
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Case 1: there is an a′ ∈ F1 such that a′ = ⊥. But then 2a′ = 2⊥ ∈ u′, which means
2h(⊥) = h(2⊥) ∈ u′. Hence, 2⊥ ∈ h∗(u

′), and so, by the definition of Q3, ⊥ ∈ v, a
contradiction.

Case 2: there is an a ∈ v such that h(a) = ⊥. But since a ∈ v, 3a ∈ h∗(u′), which means
that h(3a) ∈ u′. Hence, 3h(a) = 3⊥ = ⊥ ∈ u′, a contradiction.

Case 3: there is an a ∈ v and an a′ ∈ F1 such that a′ ∧h(a) = ⊥. Then a′ ≤ ¬h(a), and so,
by the monotonicity of 2, 2a′ ≤ 2¬h(a) = h(2¬a). Now, a′ ∈ F1, so 2a′ ∈ u′. Hence, since
u′ is upward closed, h(2¬a) ∈ u′. This means that 2¬a ∈ h∗(u′), and so, by the definition of
Q3, ¬a ∈ v. Therefore, a /∈ v, which is a contradiction.

Now, by the Ultrafilter Theorem, there is an ultrafilter v′ extending F . We just have to check
that h∗(v

′) = v and u′Q′3v
′. First, we show that h∗(v

′) = v, so for the right-to-left inclusion,
assume a /∈ h∗(v′). Then h(a) /∈ v′, and so h(a) /∈ F . But F1 ⊆ F , so a /∈ F1, which means
a /∈ v. We thus have v ⊆ h∗(v′). Hence, by the maximality of v, h∗(v

′) = v. Finally, to show
that u′Q′3v

′, assume 2¬a′ ∈ u′. Then a′ ∈ F1, and so, since F1 ⊆ F ⊆ v′, a′ ∈ v′.
Finally, let â be an admissible set of A∗. Note that if we can show that h−1

∗ [â] = ĥ(a), we
are done since h(a) ∈ B. But this is indeed the case: u′ ∈ h−1

∗ [â] iff h∗(u
′) ∈ â iff a ∈ h∗(u′)

iff h(a) ∈ u′ iff u′ ∈ ĥ(a).
(iii) To show that h∗ is injective, let u′ and v′ be two distinct ultrafilters of B. Then we

may assume without loss of generality that there is some b ∈ B such that b ∈ u′ but b /∈ v′.
But we know that h is surjective, so there is some a ∈ A such that h(a) = b. This means
that h(a) ∈ u′ while h(a) /∈ v′, and so, by definition, a ∈ h∗(u

′) but a /∈ h∗(v
′). Hence,

h∗(u
′) 6= h∗(v

′).
Now, let b̂ ∈ B̂. Then b ∈ B, and so, since h is surjective, there is some a ∈ A such

that h(a) = b. We claim that h∗ [̂b] = h∗[Uf B] ∩ â. For the right-to-left inclusion, let
u ∈ h∗[Uf B]∩ â. Then there is some u′ ∈ Uf B such that u = h∗(u

′), and furthermore, a ∈ u.
Hence, a ∈ h∗(u′), so h(a) ∈ u′. But since h(a) = b, b ∈ u′. We thus have that u′ ∈ b̂, and
therefore, since u = h∗(u

′), u ∈ h∗ [̂b]. For the other inclusion, let u ∈ h∗ [̂b]. Then there is
some u′ ∈ b̂ such that u = h∗(u

′). Since u′ ∈ b̂, b ∈ u′, and so, h(a) ∈ u′. Hence, a ∈ h∗(u′),
which means that a ∈ u. We thus have that u ∈ â. Now, since b̂ ⊆ Uf B and u = h∗(u

′),
u ∈ h∗[Uf B], and thus, u ∈ h∗[Uf B] ∩ â.

(iv) For the proof of this, see [10].

1.1.8 Canonicity

There are two, closely related, notions of canonicity, namely, a frame-theoretical one and an
algebraic one. In what follows, we give short overviews of both notions of canonicity.

The frame-theoretical perspective

Before we discuss the frame-theoretical perspective of canonicity, we first review the canonical
model construction.
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Definition 1.1.53 (Λ-MCSs). Let Λ be a normal modal logic, and Γ a set of formulas. Γ is
a maximal Λ-consistent set (Λ-MCS), if it is Λ-consistent and every proper superset of Γ is
Λ-inconsistent.

A modal version of Lindenbaum’s lemma holds, saying that every Λ-consistent set of
formulas can be extended to a Λ-MCS.

Definition 1.1.54 (Canonical models). The canonical model MΛ of a modal logic Λ is
the triple (WΛ, RΛ, V Λ), where

(i) WΛ is the set of all Λ-MCS’s,

(ii) for all Λ-MCS’s u, v ∈WΛ, uRΛv iff ψ ∈ v implies 3ψ ∈ u for all formulas ψ, and

(iii) for every propositional variable p, V Λ(p) = {w ∈WΛ | p ∈ w}.

The pair FΛ = (WΛ, RΛ) is called the canonical frame for the logic Λ.

Suppose that we suspect that a normal modal logic is strongly complete with respect to
some class of frames, how should we go about proving this? Actually, there is no precise
strategy. Nonetheless, a very simple technique works in a large number of modal logics:
simply show that the canonical frame for the logic belongs to the class of frames. We call
such proofs completeness–via–canonicity proofs. The following completeness results can be
proved using completeness–via-canonicity proofs:

Theorem 1.1.55. The logic K4 is strongly complete with respect to the class of transitive
frames. T is strongly complete with respect to the class of reflexive frames. B is strongly
complete with respect to the class of symmetric frames. S4 is strongly complete with respect
to the class of reflexive, transitive frames. S5 is strongly complete with respect with respect
to the class of frames whose relation is an equivalence relation.

One naturally wonders what these logics have in common that makes them so nice. A
remarkable answer to this question was given in [64], namely that the axioms (4), (T ) and
(B) are all Sahlqvist. Since Sahlqvist formulas define elementary frame classes, these results
hint at a link between frame definability and the properties of canonical frames. Let us recall
some terminology to describe this important phenomenon.

Definition 1.1.56. A formula ϕ is canonical, if for any normal logic Λ, ϕ ∈ Λ implies that
ϕ is valid on the canonical frame for Λ. A normal modal logic Λ is canonical, if for all ϕ such
that `Λ ϕ, ϕ is valid on the canonical frame for Λ.

Clearly, (4), (T ) and (B) are all canonical formulas. Moreover, K4,T,B,S4 and S5 are
all canonical logics.

In general, we have the following:

Theorem 1.1.57. Every canonical normal modal logic is sound and complete with respect to
the class of frames they define.
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Theorem 1.1.57 tells us that proving completeness boils down to showing that the axioms of
the logic are canonical.

The converse of Theorem 1.1.57 does not hold. An example of a complete logic that is
not canonical is the logic obtained by adding the McKinsey axiom 23p→ 32p to K. That
this logic is complete was proved by Fine in [38]. Goldblatt showed that the McKinsey axiom
is not canonical in [48].

The algebraic perspective

Before we can give the algebraic version of the notion of canonicity, we need to review the
canonical extension of a Boolean algebra with operators.

There are two approaches. One involves a concrete construction, namely, as the complex
algebra of the ultrafilter frame of the original algebra:

Definition 1.1.58. Let A = (A,∧,∨,¬,⊥,>, f) be a BAO. The complex algebra ((A)+)+

of the ultrafilter frame A+ of A is called the canonical extension of A.

The second approach is abstract: the canonical extension is not constructed, but axiomat-
ically characterized as the unique completion of the original algebra in which the original
algebra is dense and compact. But first we review these notions one by one.

A complete Boolean algebra is a Boolean algebra in which every subset has a supremum
(least upper bound). A BAO B is a completion of a BAO A, if B is complete and A is a
subalgebra of B.

Before we define the concept of density, we review some preliminary notions. Let B be a
completion of a BAO A. An element in B is open (closed), if it is the join (meet) in B of
elements in A. We will denote the collection of open and closed elements by O(B) and K(B),
respectively. Elements that are both closed and open are called clopen.

Let B be a completion of a BAO A. We say that A is meet-dense in B if K(B) = B, join-
dense if O(B) = B, and dense if K(O(B)) = O(K(B)) = B. In other words, a completion of
a Boolean algebra is dense, if every element in the completion is both a meet of open elements
and a join of closed elements.

Next, we turn to the notion of compactness. Given a completion B of a BAO A, we
say that A is compact in B, if for all sets X ⊆ A and Y ⊆ A of closed and open elements,
respectively, whenever

∧
X ≤

∨
Y , then there exist finite subsets X0 ⊆ X and Y0 ⊆ Y such

that
∧
X0 ≤

∨
Y0.

We are now ready to give an abstract characterization of the canonical extension of a
BAO with operators.

Definition 1.1.59 (Canonical extension). A canonical extension B of a BAO A is a
completion of the BAO such that A is both dense and compact in B.

It can be shown that the canonical extension of a BAO is unique up to isomorphism (for
a proof, see for instance [43] and [78]). This justifies our speaking of ‘the’ canonical extension
of a BAO A, and from now on this algebra will be denoted by Aδ.

Now, recall that the normal modal logic T is strongly complete with respect to the class
of reflexive frames. How can we prove this result algebraically?
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It is a well-known fact that the canonical frame of a normal modal logic is actually
isomorphic to the ultrafilter frame of its Lindenbaum-Tarski algebra. So in order to show
that T is strongly complete with respect to the class of reflexive frames, we have to show
that the ultrafilter frame (LT(PROP))+ of LT(PROP) is reflexive, or algebraically, that the
complex algebra ((LT(PROP))+)+ belongs to the class VT of Boolean algebras that validates
p → 3p. Note that by Theorem 1.1.14, we already know that LT(PROP) belongs to VT ,
so this example suggests that proving completeness actually boils down to answering the
following question: which classes of BAOs are closed under taking canonical extensions? In
fact, this gives us an algebraic grip on the notion of canonicity and motivates the following
definitons:

Definition 1.1.60. Let C be a class of Boolean algebras with operators. We say that C is
canonical, if it is closed under taking canonical extensions.

Definition 1.1.61. Let A be a BAO. An equation ϕ ≈ ψ is canonical, if A |= ϕ ≈ ψ implies
Aδ |= ϕ ≈ ψ.

1.1.9 Persistence

Recall that every normal logic is strongly complete with respect to its class of descriptive
general frames. Of course, we are interested in Kripke frames and not in general frames.
However, Theorem 1.1.10 can be seen as an important first step towards proving Kripke
completeness. The second step commonly involves persistence, a notion we define next.

Definition 1.1.62 (Persistence). Let ϕ be a formula in the basic modal language, and let
G be a class of general frames. Then ϕ is persistent with respect to G, if for every general
frame g in G, g 
 ϕ implies g] 
 ϕ.

Persistence with respect to refined, descriptive and discrete general frames is called r-
persistence, d-persistence and di-persistence, respectively.

An important result in modal logic is the following:

Theorem 1.1.63 ([64]). Every Sahlqvist formula is d-persistent.

If we put Theorems 1.1.10 and 1.1.63 together, we obtain the following Kripke complete-
ness result for Sahlqvist formulas:

Corollary 1.1.64 ([64]). Let Σ be a set of Sahlqvist formulas. Then K ⊕ Σ is strongly
complete with respect to the class of Kripke frames defined by Σ.

Persistence also has an algebraic dimension. Moreover, persistence and canonicity are
actually two sides of the same coin. This originates from the fact that the underlying Boolean
algebra with operators g∗ of the general frame g is a subalgebra of the complex algebra (g])

+

of the underlying Kripke frame g] of g. The notion of persistence then becomes: ϕ ≈ ψ is
persistent, if g∗ |= ϕ ≈ ψ implies (g])

+ |= ϕ ≈ ψ. But this is just canoniciy. More precisely,
from the duality between BAOs and descriptive general frames, d-persistence and canonicity
are really the same notions. The following important result thus follows from Theorem 1.1.63:

Theorem 1.1.65. Every Sahlqvist formula is canonical.
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1.2 Hybrid logic

Hybrid languages extend the basic modal language with nominals. Syntactically, nominals
act as a second sort of variables or atomic formulas, while, semantically, their interpretation
is restricted to singleton sets. In other words, nominals are used to name states in a model,
much like constants in first-order logic.

Hybrid logics have a long history, dating back to the fifties. It all began with Arthur
Norman Prior’s work in tense logics (see [63]). He devised a version of possible worlds se-
mantics, and interestingly, this part of his work is already closely related to hybrid logic.
Robert Bull, a student of Prior, pushed the idea of hybridization further in [19]. Since then,
hybrid languages have been reinvented at several occasions. About fifteen years later in Sofia,
Bulgaria, nominals were rediscovered by Solomon Passy, Tinko Tinchev and the late George
Gargov in their investigation on Boolean modal logic and propositional dynamic logic (see
[41]). The Sofia tradition in hybrid logics continued with the work of Valentin Goranko. In
[40], Gargov and Goranko investigated the basic modal language extended first with nominals
and the global modality, and then with the difference operator. Goranko was also the first to
investigate the binder ↓ in the context of hybrid logic. In [51], he extended the basic modal
language with the global modality and the binder ↓ with only a single state variable. In
the nineties, Blackburn and Seligman [12] investigated a number of very expressive hybrid
languages with various state binders, including ↓. The history of hybrid languages will not
be discussed further here, but the reader is referred to [9] and [15] for expositions.

1.2.1 Syntax and relational semantics

In this section, we give the syntax and relational semantics of three hybrid languages, namely,
H, H(@) and H(E). The first language extends the basic modal language with nominals,
which we will denote with boldface letters i, j,k, . . ., possibly indexed. As already mentioned,
nominals are variables evaluated to singleton subsets, thus serving as names for states. An
example of a modal formula containing nominals is 3i, which says that the current state has
a successor named by i.

Besides nominals, the second language extends the basic modal language with satisfaction
operators. Satisfaction operators enable us to express that a formula holds at a state named
by a nominal. In other words, they allow us to jump freely to a state named by a nominal,
bypassing the accessibility relation. An example of a formula containing a nominal and a
satisfaction operator is @i2p, saying that all the successors of the state named by i satisfy p.

The last addition that we will consider is the modality E. Following [72], we will refer to
this modality as the global modality. We say that Eϕ holds at a state, if there is at least one
state in the model satisfying ϕ. The dual of E, denoted by A, expresses global truth: Aϕ
holds at a state if ϕ is true at every state in the model. The global modality E and its dual
A therefore behave syntactically just like an ordinary diamond-box pair, but we specify that
the accessibility relation used to interpret them must always be the universal relation.

Note that satisfaction operators can be defined using the global modality, i.e @iϕ is the
same as E(i ∧ ϕ)or, equivalently, A(i→ ϕ).

Formally, let PROP and NOM be non-empty disjoint sets of propositional variables and
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nominals, respectively, then the syntax of the languages H, H(@) and H(E) is defined as
follows:

ϕ ::= ⊥ | p | j | ¬ϕ | ϕ ∧ ψ | 3ϕ
ϕ ::= ⊥ | p | j | ¬ϕ | ϕ ∧ ψ | 3ϕ | @jϕ

ϕ ::= ⊥ | p | j | ¬ϕ | ϕ ∧ ψ | 3ϕ | Eϕ

Here p ∈ PROP and j ∈ NOM.
Let us make a few conventions before we continue. Firs, we will make use of the abbrevi-

ation Aϕ for ¬E¬ϕ. Finally, from here on we will also assume that both PROP and NOM are
countably infinite.

A hybrid formula is said to be pure , if its only atomic subformulas are nominals and ⊥.
A pure formula is therefore not allowed to contain propositional variables.

The definitions of a frame and model are unchanged. But although these definitions are
the same as for modal logic, we want nominals to act as names, so we will insist that for all
j ∈ NOM, V (j) is a singleton subset of W .

Let M be a model. Then the truth definition is extended with the following clauses:

M, w 
 j iff V (j) = {w},

M, w 
 @jϕ iff M, v 
 ϕ where V (j) = {v}, and

M, w 
 Eϕ iff there exists v such that M, v 
 ϕ.

Validity with respect to a frame or a class of frames is defined as for modal formulas.
Like modal languages, hybrid languages can also be interpreted in general frames. How-

ever, in the setting of hybrid logic, it seems more natural to consider general frames with
two sorts of admissible sets, one for arbitrary formulas and one for nominals. We call these
general frames two-sorted general frames, and they were first introduced by Ten Cate in [72].

Definition 1.2.1 (Two-sorted general frames). A two-sorted general frame is a structure
g = (W,R,A,B), where (W,R,A) is a general frame, ∅ 6= B ⊆ W , and, for all w ∈ B,
{w} ∈ A.

Given a two-sorted general frame g = (W,R,A,B), a valuation V on g is called admissible
for g, if for each propositional variable p, V (p) ∈ A, and, for each nominal i, V (i) ∈ {{w} | w ∈
B}. A model based on a two sorted general frame is a pair (g, V ), where V is an admissible
valuation for g. Truth in such a model is defined in the obvious way, that is, as if we were
talking about the model (W,R, V ). Truth and validity of formulas are defined as before.

The non-emptiness condition on B implies that A contains at least one singleton. There
are general frames that do not contain any singleton admissible set. We might call such
general frames atomless. Atomless general frames trivialize the notion of validity for hybrid
logic, since they admit no hybrid valuations. In particular, the hybrid formula ⊥ is valid on
atomless frames, since, trivially, it holds under every hybrid valuation.

The following two-sorted general frames are of particular interest when it comes to the
study of completeness theory for hybrid logics:
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Definition 1.2.2. A two-sorted general frame g = (W,R,A,B) is descriptive, if (W,R,A) is
descriptive.

Definition 1.2.3. A two-sorted general frame g = (W,R,A,B) is strongly descriptive, if it
is descriptive and it satisfies the following conditions:

(i) for all a ∈ A, if a 6= ∅, then there is a w ∈ B such that w ∈ a, and

(ii) for all a ∈ A and u ∈ B, if {v ∈ a | uRv} 6= ∅, then there is a w ∈ B such that w ∈ a
and uRw.

Definition 1.2.4. A two-sorted general frame g = (W,R,A,B) is discrete, if B = W .

In other words, discrete two-sorted general frames are not really two-sorted since B = W .
The admissible valuations for the nominals are already implicit in the underlying general
frame. Hence, we may drop the “two sorted” and simply refer to these as discrete general
frames.

1.2.2 Standard translation

The correspondence language for our hybrid languages is the first-order language L′1 extending
L1 with a variable yi for each nominal i ∈ NOM. The standard translation function STx is
extended to H,H(@) and H(E) as follows:

Definition 1.2.5 (Standard translation). Let x be a first-order variable from VAR. The
standard translation STx taking formulas of H,H(@) and H(E) to first-order formulas in L′1
is inductively defined by the following clauses:

STx(p) = P (x),

STx(i) = yi = x

STx(⊥) = x 6= x,

STx(¬ϕ) = ¬STx(ϕ),

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ),

STx(3ϕ) = ∃y(xRy ∧ STy(ϕ)),

STx(@iϕ) = ∃y(y = yi ∧ STy(ϕ)), and

STx(Eϕ) = ∃ySTy(ϕ),

where y is a variable that has not been used in the translation.

Proposition 1.2.6. Let ϕ be any formula. Then:

(i) For any model M = (W,R, V ) and any state w in M, M, w 
 ϕ iff M |= STx(ϕ)[x :=
w, yi1 := V (i1), . . . , yin := V (in)], where yi1 , . . . , yin are the free variables corresponding
to the nominals i1, . . . , in, respectively.

(ii) For any model M = (W,R, V ), M 
 ϕ iff M |= ∀x∀yi1 · · · ∀yinSTx(ϕ), where yi1 , . . . , yin
are the variables corresponding to the nominals i1, . . . , in, respectively.

Another, perhaps more natural, option is to translate nominals using individual constants,
but for our purposes, we prefer to use variables.
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1.2.3 Expressivity and frame definability

Some frame properties are not modally definable. For example, the class of irreflexive frames
is not modally definable. To see this, consider the frames F = ({u, v}, {(u, v), (v, u)}) and
G = ({u′}, {(u′, u′)}) in Figure 1.2. It is not difficult to see that G is a bounded morphic
image of F. However, F is irreflexive, while G is not. The class of irreflexive frames is thus not
closed under taking bounded morphic images, and so we know from the Goldblatt-Thomason
Theorem that the class of irreflexive frames is not modally definable.

u

v

u′F G

Figure 1.2: A bounded morphism

One of the main reasons why hybrid languages have gained popularity in the last decades
is that many frame properties that are not definable in the basic modal language can be
defined using pure formulas. For example:

(i) 3j defines the class of frames in which the accessibility relation is the universal relation
(universality);

(ii) j→ ¬3j defines the class of frames in which the accessibility relation is irreflexive;

(iii) j→ ¬33j defines the class of frames in which the accessibility relation is asymmetric;

(iv) j→ 2(3j→ j) defines the class of frames in which the accessibility relation is antisym-
metric;

(v) 33j→ ¬3j defines the class of frames in which the accessibility relation is intransitive;

(vi) @i(¬j ∧ ¬k)→ @jk defines the class of frames with at most two states;

(vii) @j3i ∨ @ji ∨ @i3j defines the class of frames in which the accessibility relation is tri-
chotomous.

We thus see that hybrid languages extend the expressivity of modal languages, however,
the preservation of the validity of hybrid formulas under frame operations draws boundaries
to the expressivity of hybrid languages. In what follows, we will see that, unlike for modal
formulas, validity of hybrid formulas is not always preserved under the frame operations
discussed in Subsection 1.1.6.
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Operations on frames and formulas they preserve

We first consider generated subframes. Let us start with the good news: taking generated
subframes does preserve validity of H(@)-formulas (see [72] for a proof of this). However,
it is well known that the validity of modal formulas containing the global modality E is in
general not preserved under taking generated subframes. To see this, consider the generated
subframe Fu = ({u, v}, {(u, v), (v, u)}) of the frame F = ({u, v, w}, {(u, v), (v, u)}) in Figure
1.3. Clearly, F 
 E¬3> but Fv 1 E¬3>.

u v w
F Fu

Figure 1.3: A frame with a generated subframe

Unlike validity of modal formulas, validity of hybrid formulas is in general not preserved
under bounded morphisms. For example, consider the hybrid formula i→ ¬3i which defines
irreflexivity, and let F = ({u, v}, {(u, v), (v, u)}) and G = ({u′}, {(u′, u′)}) be the frames in
Figure 1.2. It is straightforward to show that G is a bounded morphic image of F. However,
clearly F 
 i→ ¬3i, while G 1 i→ ¬3i.

The validity of hybrid formulas is also not preserved under disjoint unions of Kripke
frames. For example, consider the formula i which defines the class of frames that contain
exactly one element. Consider the frames F1 = ({u}, {(u, u)}}) and F2 = ({v}, {(v, v)}}), and
let G = ({u, v}, {(u, u)(v, v)}) (see Figure 1.4). Then clearly

G = F1 ] F2.

However, both F1 and F2 contain exactly one element, while G contains two elements.

u v

u v
G

F1 F2

Figure 1.4: Frames and their disjoint union

Unlike the frame operations discussed above, ultrafilter extensions anti-preserve validity
of hybrid formulas in exactly the same way as modal formulas. In fact, something stronger
holds: validity of H(E)-formulas is preserved under taking ultrafilter morphic images (for the
proof of this, see [72] and [15]), and thus also of H and H(@).
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Recall the following definitions:

Definition 1.2.7. Let F = (W,R) and G = (W ′, S) be two frames. A non-empty binary
relation Z ⊆W ×W ′ is called a bisimulation between F and G if the following conditions are
satisfied:

(zig) If wZw′ and wRv, then there is a v′ ∈W ′ such that vZv′ and w′Sv′.

(zag) If wZw′ and w′Sv′, then there is a v ∈W such that vZv′ and wRv.

If F and G are linked by some bisumulation, we write F↔ G.

Denote the domain and range of Z by dom(Z) and rng(Z), respectively. Recall that a
bisimulation is total, if dom(Z) = W and rng(Z) = W ′.

Definition 1.2.8. Let Z be a bisimulation between frames F and G, and let X be a subset
of W ′. We say that Z respects X if the following two conditions hold for all v ∈ X:

(i) There exists exactly one u such that uZv.

(ii) For all u,w, if uZv and uZw, then w = v.

Definition 1.2.9. A bisimulation system from F to G is a function Z that assigns to each
finite subset X ⊆W ′ a total bisimulation Z(X) ⊆W ×W ′ respecting X.

It is a well-known fact that if a modal formula contains no propositional variables, then its
validity on a frame is preserved under total bisimulations. In general, validity of pure hybrid
formulas is not preserved under total bisimulations. However, Ten Cate showed in [72] that
the validity of pure H(E)-formulas is preserved under taking images of bisimulation systems,
and hence also of H and H(@).

Frame definability

Although validity of hybrid formulas is not always preserved under taking generated sub-
frames, bounded morphic images and disjoint unions, Goldblatt and Thomason’s characteri-
zation of the modally definable elementary frame classes has hybrid analogues. Ten Cate was
able to characterize the elementary frame classes definable in H,H(@) and H(E), as well as
the elementary frame classes definable by pure formulas of these languages. These character-
izations can be found in [72] and [15]. We give a short summary of these results, beginning
with the language H(@).

Theorem 1.2.10. An elementary frame class K is definable by a set of H(@)-formulas iff K
is closed under ultrafilter morphic images and generated subframes.

As a corollary, we have the following:

Corollary 1.2.11. An elementary frame class K is definable by a set of H(E)-formulas iff it
is closed under ultrafilter morphic images.
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Gargov and Goranko gave a similar characterization of the H(E)-definable elementary
frame classes. Their proof was algebraic, and it is not clear how to generalize the proof to
other hybrid languages. For more details, see [40].

Finally, we have the following result for the minimal hybrid language H:

Theorem 1.2.12. An elementary frame class K is definable by a set of H-formulas iff K is
closed under ultrafilter morphic images, K is closed under generated subframes, and, for any
frame F, if every point generated subframe of F is a proper generated subframe of a frame in
K, then F ∈ K.

Frame definability by pure formulas

The question for a characterization of the frame classes definable by pure hybrid formulas
was first asked in [40], and the following results have been obtained in [15]:

Theorem 1.2.13. A frame class K is definable by a pure H(@)-formula iff K is elementary,
closed under generated subframes, and closed under images of bisimulation systems.

Corollary 1.2.14. A frame class K is definable by a pure H(E)-formula iff it is elementary
and closed under bisimulation systems.

Theorem 1.2.15. A frame class K is definable by a pure H-formula iff K is elementary,
closed under images of bisimulation systems, closed under generated subframes, and for any
frame F, if every point generated subframe of F is a proper generated subframe of a frame in
K, then F ∈ K.

1.2.4 Logics

Here we give axiomatizations of minimal normal hybrid logics in the languages H,H(@) and
H(E), as well as compare some hybrid logics. We also give a short overview of some of the
completeness results in the literature. The definitions of theorems, deducibility, consistency,
inconsistency, soundness and completeness for modal logics remain unchanged for hybrid
logics.

The axiomatizations

Different approaches have been taken in the literature in axiomatizing the hybrid logic of a
frame class. The first complete axiomatization of a hybrid logic in the language H was given
in [41]. This axiomatization is based on the notion of necessity forms and possibility forms.
For a fixed symbol $ not belonging to H, necessity forms are inductively defined as follows:

(i) $ is a necessity form.

(ii) If ψ is a necessity form and ϕ is a H-formula, then ϕ→ ψ is a necessity form.

(iii) If ψ is a necessity form, then 2ψ is also a necessity form.
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Possibility forms are defined similarly, replacing implications by conjunctions and boxes by
diamonds. Given a possibility form M and a formula ϕ, M(ϕ) will denote the result of
replacing the unique occurrence of $ in M by ϕ. Similarly, given a necessity form L and
a formula ϕ, L(ϕ) will denote the result of replacing the unique occurrence of $ in L by
ϕ. Now, Gargov, Passy and Tinchev showed that any complete axiomatization of the basic
modal language extended with the axiom scheme M(i ∧ p)→ L(i→ p), for every possibility
form M($) and every necessity form L($), completely axiomatizes the hybrid logic in the
language H of the class of all frames. We will refer to this axiom as (Nom ′).

Similar axiomatizations of hybrid logics in the languages H(@) and H(E), respectively,
can be found in [40] and [10], respectively.

In [13], we can find axiomatizations of logics in the language H(@). These axiomatizations
use the following ‘non-orthodox’ Burgess-Gabbay-style inference rules:

(Name) If ` @jϕ, then ` ϕ for j not occurring in ϕ.

(BG) If ` @i3j→ @jϕ, then ` @i2ϕ for j 6= i and j not occurring in ϕ.

These rules are called ‘non-orthodox’ rules because of their syntactic side-conditions, and cover
only classes of frames definable by pure formulas. BG stands for Bounded Generalization.
Because j 6= i and it does not occur in ϕ, @i3j asserts the existence of a successor (arbitrarily
named by j) of the state named by i. Accordingly, the antecedent condition of the rule can be
read as follows: suppose we can prove that if the state named by i has an arbitrary successor
named by j, then ϕ holds at the state named by j. But then, since the state named by j was
an arbitrary successor of the state named by i, the consequent condition of the rule tells us
that ϕ must hold at all successors of the state named by i. The rule (Name) tells us that if
it is provable that ϕ holds at an arbitrary state named by i (the state is arbitrary because i
does not occur in ϕ), then we can prove ϕ. These rules play a crucial role in the completeness
proof regarding extensions with pure axioms, but more on this later.

In what follows, we give axiomatizations of two minimal normal hybrid logics in each of
the hybrid languages H, H(@) and H(E). The difference between these two axiomatizations
lies each time in the addition of extra inference rules. The systems given here are based on
those in [13], [10] and [72]. We begin with two minimal normal hybrid logics in the language
H. We will use the notation 3n with n ∈ N to denote a string of n consecutive 3’s. The
notation 2m is defined similarly.

Definition 1.2.16. The minimal normal hybrid logic H is the smallest set of H-formulas
containing all propositional tautologies, the axioms in Table 1.1, and which is closed under
the inference rules in Table 1.1, except for (Name) and (Paste). H+ is defined similarly,
closing in addition under (Name) and (Paste). If Σ is a set of H-formulas, then H ⊕ Σ and
H+ ⊕ Σ are the normal hybrid logics generated by Σ.

It should be clear to the reader that all basic axioms are sound, and that all inference
rules preserve validity with respect to any class of frames.

With sorted substitution, we mean replacing propositional variables by arbitrary formulas
and nominals by nominals. Substituting nominals by arbitrary formulas does not preserve
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Axioms:

(Taut) ` ϕ for all classical propositional tautologies ϕ.
(Dual) ` 3p↔ ¬2¬p
(K) ` 2(p→ q)→ (2p→ 2q)
(Nom) ` 3n(i ∧ p)→ 2m(i→ p) for all n,m ∈ N.

Rules of inference:

(Modus ponens) If ` ϕ→ ψ and ` ϕ, then ` ψ.
(Sorted substitution) ` ϕ′ whenever ` ϕ, where ϕ′ is obtained from ϕ by sorted

substitution.
(Nec) If ` ϕ, then ` 2ϕ.
(NameLite) If ` ¬i, then ` ⊥.
(Name) If ` i→ ϕ, then ` ϕ for i not occurring in ϕ.
(Paste) If ` 3n(i ∧3(j ∧ ϕ))→ ψ, the ` 3n(i ∧3ϕ)→ ψ for n ∈ N,

i 6= j, and j not occurring in ϕ and ψ.

Table 1.1: Axioms and inference rules of H and H+

validity in general. To see this, consider the formula

3(j ∧ p) ∧3(j ∧ q)→ 3(p ∧ q).

It is not difficult to see that this formula is valid. However, if we substitute the ordinary
propositional variable r for j, the resulting formula can be falsified. Consider the model
M = (W,R, V ), where W = {u, v, w}, R = {(u, v), (u,w)}, V (p) = {v}, V (q) = {w} and
V (r) = {v, w} (see Figure 1.5). Clearly, M, u 
 3(r ∧ p) ∧3(r ∧ q) but M, u 1 3(p ∧ q).

u

v

w

M

p

q

r

r

Figure 1.5: A model falsifying 3(r ∧ p) ∧3(r ∧ q)→ 3(p ∧ q).

The role of (NameLite) is to render logics that derive ¬j for some nominal j, inconsistent,
reflecting the fact that ¬j is not valid on any frame. As is not hard to see, without (NameLite),
the logic H⊕ {¬j} would be consistent.

But why the additional rules? In order to answer this question, we have to get ahead of
ourselves a bit. When pure formulas are added to the minimal hybrid logic H+ as axioms, then



Chapter 1. Preliminaries on modal and hybrid logics 37

this logic is automatically complete with respect to the class of frames it defines. This result
hinges on a rather simple observation. But first we recall the following: a model (W,R, V ) is
named, if for all states w ∈ W , there is some nominal j ∈ NOM such that V (j) = {w}. Now,
it is very easy to show that if (F, V ) is a named model and ϕ is a pure formula, then F 
 ϕ
whenever (F, V ) 
 ψ for all pure instances ψ of ϕ. In other words, for named models and
pure formulas the gap between truth in a model and validity in a frame is non-existent. So
if we had a way of building named models, any pure formula would give rise to a strongly
complete logic for the class of frames it defines. The idea is to build a named canonical model
from the logic’s MCSs and prove an Existence Lemma, once this is done, completeness will
be immediate.

Now, given a consistent set of H-formulas Σ, we can use the ordinary Lindenbaum’s
Lemma to extend it to a maximal consistent set of formulas Σ+, and then build a canonical
model out of the maximal consistent sets in the usual way. But we do not want to build just
any model, we want a named model. In other words, each of the maximal consistent sets in
our canonical model must contain a nominal. If this is the case, we will say that the maximal
consistent set is named. However, nothing guarantees that Σ+ will be named.

Suppose we overcame the first problem and succeeded in expanding a consistent set of
formulas to a named maximal consistent set. Now, as we mentioned above, to build a named
canonical model, only named maximal consistent sets should be used in the model construc-
tion. Unfortunately, nothing guarantees that there are enough maximal consistent sets to
support an Existence Lemma. This is where the additional rules come in. The rule (Name)
solves our first problem, while the rule (Paste) solves the second problem.

To get back to Gargov and Goranko’s approach in [41], (Nom) and (Paste) can be replaced
by the following:

(Nom ′) M(i ∧ p)→ L(i→ p), where M($) is a possibility form and L($) a necessity form.

(Cov) If ` L(¬i), then ` L(⊥), where L($) is a necessity form not containing the nominal i.

It is not hard to see that (Nom) and (Nom ′) are interderivable, as well as the rules (Paste)
and (Cov). Moreover, (NameLite) can be seen as the simplest possible instance of (Cov).

Let us now move on to the axiomatizations of the minimal normal hybrid logics in the
language H(@).

Definition 1.2.17. The minimal normal hybrid logic H(@) is the smallest set of H(@)-
formulas containing all propositional tautologies, the axioms in Table 1.2, and which is closed
under the inference rules in Table 1.2, except for (Name@) and (BG@). H+(@) is defined
similarly, closing in addition under (Name@) and (BG@). If Σ is a set of H(@)-formulas, then
H⊕ Σ and H+ ⊕ Σ are the normal hybrid logics generated by Σ.

The axioms of the minimal hybrid logic H(@) can be divided into three categories. The
axioms (K@), (Selfdual) and (Intro) fall into the first category and establish the basic logic
of the satisfaction operators. The inclusion of (K@) should come as no surprise since the
satisfaction operators are normal modal operators. The same for the axiom (Selfdual). The
axiom (Intro) tells us how to put information under the scope of satisfaction operators. Not
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Axioms:

(Taut) ` ϕ for all classical propositional tautologies ϕ.
(K) ` 2(p→ q)→ (2p→ 2q)
(Dual) ` 3p↔ ¬2¬p
(K@) ` @j(p→ q)→ (@jp→ @jq) for all j ∈ NOM.
(Selfdual) ` ¬@jp↔ @j¬p for all j ∈ NOM.
(Intro) ` j ∧ p→ @jp for all j ∈ NOM.
(Ref ) ` @jj for all j ∈ NOM.
(Agree) ` @i@jp→ @jp for all i, j ∈ NOM.
(Back) ` 3@jp→ @jp for all j ∈ NOM.

Rules of inference:

(Modus ponens) If ` ϕ→ ψ and ` ϕ, then ` ψ.
(Sorted substitution) ` ϕ′ whenever ` ϕ, where ϕ′ is obtained from ϕ by sorted

substitution.
(Nec) If ` ϕ, then ` 2ϕ.
(Nec@) If ` ϕ, then ` @jϕ.
(Name@) If ` @jϕ, then ` ϕ for j not occurring in ϕ.
(BG@) If ` @i3j ∧@jϕ→ ψ, then ` @i3ϕ→ ψ

for j 6= i and j not occurring in ϕ and ψ.

Table 1.2: Axioms and inference rules of H(@) and H+(@)

only that, it also tells us how to obtain such information. To see this, replace p by ¬p,
contrapose, and make use of (Selfdual), then we get

i ∧@ip→ p.

The second category includes the axioms (Ref ) and (Agree). This category provide us
with tools for naming states or reasoning about state equality. The third category includes
the axiom (Back). This axiom tells us how 3 and @ interact with each other.

Finally, the reason for the additional rules is the same as for the logic H+.
We conclude with axiomatizations of two minimal normal hybrid logics in the language

H(E):

Definition 1.2.18. The minimal normal hybrid logic H(E) is the smallest set of H(E)-
formulas containing all propositional tautologies, the axioms in Table 1.3, and which is closed
under the inference rules in Table 1.3, except for the (NameE), (BGE3) and (BGEE) rules.
H+(E) is defined in the same way, closing in addition under (NameE), (BGE3) and (BGEE).
If Σ is a set of H(E)-formulas, then H(E) ⊕ Σ and H+(E) ⊕ Σ are the normal hybrid logics
generated by Σ.
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Axioms:

(Taut) ` ϕ for all classical propositional tautologies.
(K) ` 2(p→ q)→ (2p→ 2q)
(Dual) ` 3p↔ ¬2¬p
(KA) ` A(p→ q)→ (Ap→ Aq)
(DualA) ` Ep↔ ¬A¬p
(Incl j) ` Ej
(NomE) ` E(i ∧ p)→ A(i→ p)
(TE) ` p→ Ep
(4E) ` EEp→ Ep
(BE) ` p→ AEp
(Incl3) ` 3p→ Ep

Rules of inference:

(Modus ponens) If ` ϕ→ ψ and ` ϕ, then ` ψ.
(Sorted substitution) ` ϕ′ whenever ` ϕ, where ϕ′ is obtained from ϕ by sorted

substitution.
(Nec) If ` ϕ, then ` 2ϕ.
(NecA) If ` ϕ, then ` Aϕ.
(NameE) If ` i→ ϕ, then ` ϕ for i not occurring in ϕ.
(BGE3) If ` E(i ∧3j) ∧ E(j ∧ ϕ)→ ψ, then ` E(i ∧3ϕ)→ ψ for

i 6= j and j not occurring in ϕ and ψ.
(BGEE) If ` E(i ∧ Ej) ∧ E(j ∧ ϕ)→ ψ, then ` E(i ∧ Eϕ)→ ψ for

i 6= j and j not occurring in ϕ and ψ.

Table 1.3: Axioms and inference rules of H(E) and H+(E)

First, note that the axioms (TE), (4E) and (BE) determine that E is an S5-modality.
Second, notice that in addition to the BG rule for 3, we also have a BG rule for E. This rule
plays the same role as the BG rule for 3.

Completeness

One of the most important results in modal logic is the Sahlqvist completeness theorem. This
result says that the axiomatization obtained by adding a set of modal Sahlqvist formulas to
the basic modal logic K is complete with respect to the class of frames definable by these
Sahlqvist axioms. While this result covers many interesting frame classes, there are frame
properties such as irreflexivity and asymmetry that cannot be defined by modal formulas.
However, as we stated earlier, many of these properties are definable by pure formulas. What
is more, as we mentioned earlier, when pure formulas are added to the basic hybrid logics
with additional rules, they yield complete logics for the classes of frames they define. A
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second important reason why hybrid logics have become popular is therefore that there is a
general completeness result for hybrid logics that applies to many frame classes not definable
by modal Sahlqvist formulas. The following analogues of the Sahlqvist completeness theorem
for modal logic can be obtained for hybrid logics:

Theorem 1.2.19. If Σ is a set of pure H-formulas, then H+ ⊕ Σ is strongly complete with
respect to the class of frames defined by Σ. If Σ is a set of pure H(@)-formulas, then H+(@)⊕Σ
is strongly complete with respect to the class of frames defined by Σ. Finally, if Σ is a set of
pure H(E)-formulas, then H+(E)⊕ Σ is strongly complete with respect to the class of frames
defined by Σ.

For the hybrid language H, the completeness of logics axiomatized by pure formulas was
already proved in the eighties by Gargov, Passy and Tinchev in [41]. The case for H(E) was
proved by Gargov and Goranko in [40], and adapted by Blackburn and Tzakova to H(@) in
[14].

However, there are frame properties that are definable by modal Sahlqvist formulas but
not by pure hybrid formulas. For example, no set of pure formulas defines the same class
of frames as the modal Sahlqvist formula 32p → 23p (the Geach axiom). This was first
proved by Gargov and Goranko in [40]. The following results are therefore interesting:

Theorem 1.2.20. If Σ is a set of modal Sahlqvist formulas, then H⊕Σ is strongly complete
with respect to the class of frames defined by Σ. If Σ is a set of modal Sahlqvist formulas,
then H(@)⊕Σ is strongly complete with respect to the class of frames defined by Σ. Finally,
if Σ is a set of modal Sahlqvist formulas, then H(E)⊕ Σ is strongly complete with respect to
the class of frames defined by Σ.

The cases for H and H(@) were proved in [73], while the case for H(E) was first observed
in [40].

To conclude, recall that every modal logic is sound and strongly complete with respect to
the class of descriptive general frames (see [10]). In [72], Ten Cate obtained similar results for
hybrid logics. In particular, Ten Cate proved that the axiomatizations without the additional
inference rules are complete with respect to descriptive two-sorted general frames, whereas
the axiomatizations with the additional inference rules are complete with respect to strongly
descriptive two-sorted general frames and discrete general frames.

Logics with and without extra rules compared

One naturally wonders if the logics with and without the additional inference rules have the
same theorems? Here we will answer this question.

Let us first consider the minimal hybrid logics H and H+. Since both H and H+ are
sound and strongly complete with respect to the class of all frames, they both have the same
theorems. This might lead one to believe that this is also the case when we extend these logics
with a set Σ of axioms. However, this is not true. To see this, consider Σ = {j → 2⊥} and
ϕ = 3>, and let g = (W,R,A,B), where W = {u, v}, R = {(u, u)}, A = P(W ) and B = {v}
(see Figure 1.6). Then g validates the members of Σ, and furthermore, 3> is satisfied at u.
This means that 3> is H⊕Σ-consistent, and so 2⊥ /∈ H⊕Σ. On the other hand, if we apply
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the (Name) rule to j→ 2⊥, we get that H+⊕Σ has 2⊥ as a theorem. Hence, ¬ϕ ∈ H+⊕Σ,
while ¬ϕ /∈ H⊕ Σ.

Similarly, if Σ is a set of H(@)-formulas, then the logics H(@)⊕Σ and H+(@)⊕Σ do not
have the same theorems. Consider Σ = {@j2⊥} and ϕ = 3>, and let g be the two-sorted
general frame in Figure 1.6. Clearly, g validates the members of Σ, and furthermore, ϕ is
satisfied at u. Hence, ϕ is H(@)⊕Σ-consistent, and so ¬ϕ /∈ H(@)⊕Σ. However, H+(@)⊕Σ
has ¬ϕ as a theorem (apply (Name@) to @j2⊥).

Finally, let Σ be a set of H(E)-formulas. Then the same holds for the logics H(E)⊕Σ and
H+(E)⊕Σ. To see this, let Σ = {j→ 2⊥} and ϕ = 3>, and consider the two-sorted general
frame in Figure 1.6.

u vg

Figure 1.6: A two-sorted general frame satisfying the formula 3>.

1.2.5 A survey of results for hybrid logics

Hybrid logics offer an important advantage over modal logics, namely, increased expressive
power. The natural question then is: How much do we gain by extending modal languages
with nominals and operators like @ and E, and what price do we pay? We saw that boundaries
are drawn when it comes to the preservation of validity of hybrid formulas under certain frame
operations. However, in spite of this, Ten Cate was still able to obtain hybrid analogues of
the Goldblatt-Thomason theorem. But how does the increased expressivity affect complexity,
decidability, interpolation and Beth definability? Here we will give a short overview of known
results in the literature to this end. We also give a short survey of some proof systems for
hybrid logics. To conclude, we will look at some of the uses of hybrid logics.

Complexity

In this subsection, we will give a short review on the complexity of the satisfiability problem
for some of the hybrid logics discussed so far.

For the basic modal logic K, adding nominals does not increase the complexity: the
complexity of the satisfiability problem for H is still in PSPACE, as was first shown by
Schaerf [65].

It is not always the case that the complexity of the satisfiability problem remains un-
changed when we add nominals. The satisfiability problem for the modal logic of the class of
all symmetric frames is PSPACE-complete [26], however, the addition of just a single nominal,
blows the complexity up to EXPTIME. For the proof of this, see [7].

The satisfiability problem of the logic H(@) on the class of all frames is PSPACE-complete.
A proof of this can be found in [1] and [2]. In other words, since the satisfiability problem of
the basic modal logic on the class of all frames is already PSPACE-complete, we can conclude
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that, for the class of all frames, the addition of nominals and the @ operator does not increase
the complexity of the satisfiability problem. However, adding both nominals and the global
modality E to the basic modal logic, raises the complexity to EXPTIME-complete (see for
instance [69]).

From [59], we know that the satisfiability problem of the basic modal logic on the class of
transitive frames is also PSPACE-complete. As for the class of all frames, adding nominals
and the @ operator does not increase the complexity of the satisfiability problem. A proof of
this can be found in [3]. From the results in [3], we can also conclude that the satisfiability
problem of H(@) on linear orders is also PSPACE-complete.

Decidability

Here we ask the question of whether decidability is preserved when nominals, satisfaction
operators or the global modality is added to the basic modal language. Gargov and Goranko
were the first to ask this question explicitly (see [40]).

First, from the complexity results above, we know that the logics H, H(@) and H(E) are
all decidable. We also know from [7] that HB is decidable. However, adding nominals can
also result in logics that are undecidable and lack the finite model property. For example,
in [7], Bezhanishvili and Ten Cate showed that the logic KB23 is decidable and has the
finite model property, while the hybrid logic HB23 is undecidable and lacks the finite model
property.

Interpolation

Here we turn our attention to the interpolation property for hybrid languages. Interpolation
for hybrid languages were first investigated by Areces, Blackburn and Marx in [2]. They
showed that H(@) does not have interpolation over propositional variables and nominals with
respect to the class of all frames. Furthemore, Conradie proved in [29] that H(@) also lacks
interpolation over propositional variables and nominals with respect to the class of S5 frames.
However, there is some good news: the languages H, H(@) and H(E) have interpolation over
propositional variables with respect to many frame classes, including the class of all frames
(see [72] and [73]). In particular, as for the basic modal language, it can be shown that the
languages H, H(@) and H(E) have interpolation over propositional variables relative to any
elementary class of frames closed under bisimulation products and generated subframes.

Next, we consider interpolation over nominals. The languages H, H(@) and H(E) all
lack interpolation over nominals relative to the class of all frames. Consider the implication
i∧3i→ (j→ 3j). An interpolant for this implication has to express that the current state is
related to itself without using any nominals. An easy bisimulation argument shows that this
is not possible. Sadly, the bad news does not stop there: H(E) also lacks interpolation over
nominals relative to any non-empty modally definable frame class. For the proof of this, see
[72].

Finally, we know that the modal logics K, GL, S5 and Grz have uniform interpolation
(see [44] and [79]). It turns out that the corresponding H-logics H, HS5, HGL and HGrz
(with HS5 we mean the H-logic of the frame class defined by S5, and similar for other logics)
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also have uniform interpolation over propositional variables, as well as the H(@)-logics H(@),
HS5(@), HGL(@) and HGrz(@). For more details, see [72].

Beth definability

The Beth definability property for any logic normally follows from the interpolation property
for propositional variables. In particular, using the results in Subsection 1.2.5, we can show
that the language H(@) has the Beth definability property relative to any frame class.

In [72], Ten Cate showed that H(E) has the Beth definability property relative to any
elementary frame class closed under generated subframes and bisimulation products.

Surprisingly, the hybrid language H does not have the Beth definability property relative
to the class of all frames. For more details on this, see [7].

Proof systems

Here we give a short survey of proof systems for hybrid logics. First, in [66], we can find a
sound and complete sequent calculus for hybrid logics developed from a sequent calculus for
first-order logics by a series of transformations. This calculus is cut free, and it can be proved
that the cut rule is admissible.

Seligman also proposed a natural deduction system in [67]. In this paper, he proved
soundness and completeness, but he does not discuss whether the calculus is normalizing.
In [17], Braüner introduced a natural deduction calculus for the hybrid language with the
operators @, ↓ and ∀ and its sublanguages, and establishes normalization.

In [11], a tableau calculus for the hybrid language with the operators @ and ↓ is given.
This calculus is @-based: to prove that a formula ϕ is unsatisfiable, we have to apply the
rules to the formula @iϕ for a nominal i not in ϕ. If we can find a closed tableau (a tableau
in which each branch contains a pair of formulas @jψ and @j¬ψ, then ϕ is unsatisfiable.

We can also find an approach to hybrid tableaux in [74] that uses nominals both as part
of the object language and as meta-logical labels.

Finally, resolution calculi for the hybrid language with @ and ↓ and its sublanguages were
introduced in [4] and [5]. More recently, the calculus for H(@) was refined to include ordering
and selection functions in [6].

Uses of hybrid logics

In [27], Conradie developed an algorithm called SQEMA, which computes first-order frame
equivalents for modal formulas, by first transforming them into pure formulas in a reversive
hybrid language. He showed that this algorithm subsumes the classes of Sahlqvist and induc-
tive formulas, and that all formulas on which it succeeds are canonical, and hence axiomatize
complete normal modal logics. Ian Hodkinson obtains modal axiomatizations of elementary
frame classes via hybrid logics in [57]. It turns out that the proof of this is analogous to the
proof of Sahlqvist’s theorem.





Chapter 2
Hybrid algebras

It is a well-known fact that most of the familiar logical systems have a (natural) algebraic
semantics. In this chapter, we develop algebraic semantics for the hybrid logics discussed
in Chapter 1. But in order to do that, we must first know which kinds of algebras are
relevant. A first step towards an answer comes from Ten Cate’s work in [72]. He studied
completeness theory for the axiomatizations of these languages. He proved, among other
things, a general completeness result for the logics without the additional rules with respect
to descriptive two sorted general frames, as well as completeness for the logics with the
additional rules with respect to strongly descriptive two sorted general frames. This suggests
using algebras corresponding to these two-sorted general frames. However, in the proof of his
completeness result with respect to descriptive two-sorted general frames, he treat nominals
as unary modalities. This suggests that there are two possible algebraic semantics for the
hybrid languages discussed in Chapter 1. One involves interpreting the nominals as constants
and then falling back on known results from algebraic logic. The second corresponds to two-
sorted general frames where the nominals are seen as special variables ranging over a subset
of the atoms of the algebra.

In this chapter, we will give formal definitions of both algebraic semantics for each of the
hybrid languages discussed in Chapter 1, as well as define homomorphisms, embeddings and
products for the second type of algebras and discuss the preservation of validity under these.
As we already mentioned, when we work with the first type of algebras, we can fall back on
known results from algebraic logic, so we will not look at these operations on the first type of
algebras, but the reader is referred to [21] and [23] for more details on these constructions and
the preservation of validity under these. Finally, we will also investigate the duality between
the second type of algebras and two-sorted general frames.

45
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2.1 Hybrid algebras for H and the operations on them

2.1.1 Hybrid algebras for H

The first type of algebraic semantics for H is called an orthodox interpretation. We use
the term “orthodox” since it is really the ‘standard’ algebraic semantics for modal logics with
constants, however, for us it is ‘non-standard’ since it is not appropriately dual to the intended
relational semantics of hybrid logic.

Definition 2.1.1 (Orthodox interpretations). An orthodox interpretation of H is a struc-
ture A = (A,∧,∨,¬,⊥,>,3, {si}i∈NOM), where (A,∧,∨,¬,⊥,>,3) is a BAO, and each si
is the interpretation of the nominal i as a constant (i.e., nullary operation). Moreover, A is
required to validate the inequality 3n(si ∧ a) ≤ 2m(¬si ∨ a) for all i ∈ NOM and n,m ∈ N.

Note that the rule (sorted substitution) is not generally sound on orthodox interpreta-
tions, in the sense that for an orthodox interpretation A and H-formula ψ, it may happen
that A |= ψ ≈ > but that A 6|= ψ′ ≈ > for some sorted substitution instance ψ′ of ψ. For
example, consider the orthodox interpretation A = (2,3, {sj}j∈NOM), where 2 is the two
element Boolean algebra, 30 = 0, 31 = 1, sj = 0, and si = 1 for i 6= j. Then A |= 3i ≈ >
but A 6|= 3j ≈ >. However, this will not be a concern to us, as in the ensuing we will always
require that an orthodox interpretation validates (all theorems of a) logic H⊕Σ, which is by
definition closed under sorted substitution already.

Let us now turn to the second type of algebras for H. We will consider these algebras to
be the standard algebras for the language H.

Definition 2.1.2 (Hybrid algebras). A hybrid algebra is a pair A = (A, XA), where A =
(A,∧,∨,¬,⊥,>,3) is a BAO containing at least one atom, and XA is a non-empty subset of
the set AtA of atoms of A.

We will often refer to XA as a set of designated atoms of the algebra. We also make the
following convention: 2a := ¬3¬a. Finally, we will denote the class of hybrid algebras by
HA.

A hybrid algebra A = (A,XA) is said to be complete if A is a complete BAO, and it is
atomic if A is atomic and XA = AtA.

We now give a few examples of hybrid algebras.

Example 2.1.3. The structure A = (2,3, {1}), where 2 is the two element Boolean algebra,
30 = 0, and 31 = 1, is clearly a hybrid algebra.

Example 2.1.4. Let A be the set of all binary strings of length 4, and let

A = (A, ·,+,−, 0000, 1111,3),

where ·,+ and − are defined bitwise by Boolean multiplication, addition and complementa-
tion1, respectively, and 3 maps an element to itself. Then the structure A = (A, XA), where
XA = {0001, 0010, 0100, 1000} is a hybrid algebra.

1Boolean addition is defined by 0+1 = 1, 1+1 = 1 and 0+0 = 0, Boolean multiplication by 0 ·1 = 0, 1 ·1 = 1
and 0 · 0 = 0, and Boolean complementation by −0 = 1 and −1 = 0.



Chapter 2. Hybrid algebras 47

Example 2.1.5. Let A be the collection of finite and co-finite subsets of the set of integers
Z, and let A = (A,∩,∪,−,∅,Z, f), where

f(a) =

{
{n− 1 | n ∈ a} if a is finite
Z if a is co-finite.

Then the structure A = (A, XA), where XA = {{2k} | k ∈ Z}, is a hybrid algebra. First,
since the set of even integers is not empty, XA 6= ∅. Second, the fact that (A,∩,∪,−,∅,Z) is
a Boolean algebra follows from basic Set Theory. So all we have to check is that f is a normal
modal operator. Clearly, f(∅) = ∅. To show that f is additive, we consider the following
cases:

Case 1: a and b are finite. In this case we also know that a ∪ b is finite. So

m ∈ f(a ∪ b) ⇐⇒ ∃n(m = n− 1 ∧ n ∈ a ∪ b)
⇐⇒ ∃n(m = n− 1 ∧ (n ∈ a ∨ n ∈ b))
⇐⇒ ∃y((m = n− 1 ∧ n ∈ a) ∨ (m = n− 1 ∧ n ∈ b))
⇐⇒ ∃n(m = n− 1 ∧ n ∈ a) ∨ ∃n(m = n− 1 ∧ n ∈ b)
⇐⇒ m ∈ f(a) ∨m ∈ f(b)

⇐⇒ m ∈ f(a) ∪ f(b).

Hence, f(a ∪ b) = f(a) ∪ f(b), as required.

Case 2: a is finite and b is co-finite, or vice versa. Here a∪b is co-finite, so f(a∪b) = Z.
But we also know that one of a and b is co-finite, which means that f(a) ∪ (b) = Z.

Case 3: a and b are co-finite. In this case, we also have that a ∪ b is co-finite, which
means that f(a ∪ b) = Z. But a and b are also co-finite, so f(a) ∪ f(b) = Z ∪ Z = Z.

Example 2.1.6. Let g = (W,R,A,B) be a two-sorted general frame. Then the structure
g∗ = (A,∩,∪,−,∅,W, 〈R〉, XB), where XB = {{w} | w ∈ B}, is a hybrid algebra. This
algebra is called the underlying hybrid algebra of g.

Example 2.1.7. Consider the set A = {X1 ∪ X2 ∪ X3 | Xi ∈ Xi, i = 1, 2, 3}, where X1

contains all finite (possibly empty) subsets of natural numbers, X2 contains ∅ and all sets of
the form {x | n ≤ x ≤ ω} for all n ∈ ω, and X3 = {∅, {ω + 1}}. Then

A = (A,∩,∪,−,∅, ω + 1 ∪ {ω + 1}, f,XA),

where

f(A) =

{
{x ∈ ω + 1 ∪ {ω + 1} | min(A) < x} if A 6= ∅
∅ otherwise

and XA = {{x} | x ∈ N} ∪ {{ω + 1}}, is a hybrid algebra. First, it is not difficult to see that
A is closed under these operations. Using basic set theory we can show that the structure
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(A,∩,∪,−,∅, ω + 1 ∪ {ω + 1}) is a Boolean algebra. So we just have to check that f is a
normal modal operator. Clearly, f(∅) = ∅, and finally, f is additive:

x ∈ f(A ∪B) ⇐⇒ x > min(A ∪B)

⇐⇒ x > min(min(A),min(B))

⇐⇒ x > min(A) or x > min(B)

⇐⇒ x ∈ f(A) or x ∈ f(B)

⇐⇒ x ∈ f(A) ∪ f(B)

Note that the BAO (A,∩,∪,−,∅, ω+ 1∪{ω+ 1}, f) is actually the underlying algebra of the
strongly descriptive general frame in Example 3.3 of [28].

Having defined hybrid algebras, the question now is how do we interpret H-terms in a
hybrid algebra. H-terms are interpreted in hybrid algebras A = (A, XA) in the usual way
but subject to the constraint that nominals range over XA, while the propositional variables
range over all elements of the algebra, as usual. Let us now give a more precise definition:

Definition 2.1.8. An assignment on A = (A, XA) is a function v: PROP ∪ NOM → A
associating an element of A with each propositional variable in PROP and an atom of XA

with each nominal in NOM. Given such an assignment v, we calculate the meaning ṽ(t) of a
term t as follows:

ṽ(⊥) = ⊥
ṽ(p) = v(p),

ṽ(j) = v(j),

ṽ(¬ψ) = ¬ṽ(ψ),

ṽ(ψ1 ∧ ψ2) = ṽ(ψ1) ∧ ṽ(ψ2), and

ṽ(3ψ) = 3ṽ(ψ).

An equation ϕ ≈ ψ is true in a hybrid algebra A (denoted A |= ϕ ≈ ψ), if for all
assignments θ, θ̃(ϕ) = θ̃(ψ). A set E of equations is true in a hybrid algebra A (denoted
A |= E), if each equation in E is true in A. An equation ϕ ≈ ψ is a semantic consequence
of a set E of equations (denoted E |= ϕ ≈ ψ), if for any hybrid algebra A such that A |= E,
A |= ϕ ≈ ψ.

2.1.2 Operations on hybrid algebras

There are several important methods of constructing new algebras from old ones. Three of
the most fundamental are the formation of subalgebras, homomorphic images and products.
In the next few sections, we define these constructions for hybrid algebras, and discuss to
what extent these operations preserve validity of H-formulas.
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Homomorphisms between hybrid algebras

Definition 2.1.9 (Homomorphisms). Let A = (A, XA) and B = (B, XB) be two hybrid
algebras. A map h: A→ B is a homomorphism between A and B , if h is a homomorphism
from A to B and h maps elements of XA to elements of XB. We say that h is a surjective
homomorphism, if it is surjective from A onto B, and furthermore, h is surjective fromXA onto
XB. B is a homomorphic image of A (denoted A � B), if there is a surjective homomorphism
h from A to B. We say that A is embeddable in B (denoted A � B), if there is an injective
homomorphism h from A to B. If a homomorphism is both surjective and injective, then it is
called an isomorphism. Finally, A and B are isomorhic, if there is an isomorphism h between
A and B.

We will usually just talk about a homomorphism instead of a homomorphism between
hybrid algebras A and B, as it will normally be clear from the context what type of homo-
morphism we are working with.

Example 2.1.10. Consider the set C = {1, 2, 3, 4}, and let B = (P(C),∩,∪,−∅, C, f), where
f(X) = X. It is not difficult to see that B = (B, XB), where XB = {{1}, {2}, {3}, {4}},
is a hybrid algebra. Now, consider the algebra A in Example 2.1.4, and define the map
h: A→ B by

h(a1a2a3a4) = {i ∈ {1, 2, 3, 4} | ai = 1}.

We leave it to the reader to check that h is a surjective homomorphism from A onto B,
h(XA) ⊆ XB, and furthermore, that h is surjective from XA onto XB.

The validity of hybrid formulas is preserved under homomorphic images.

Proposition 2.1.11. Let A = (A, XA) and B = (B, XB) be two hybrid algebras. If A � B,
then B |= ϕ ≈ ψ whenever A |= ϕ ≈ ψ.

Proof. Assume A � B, and suppose A |= ϕ ≈ ψ. First, A � B means there is some surjective
homomorphism h from A onto B, and, furthermore, h is surjective from XA onto XB. A |=
ϕ ≈ ψ implies that ϕA(a1, a2, . . . , an, x1, x2, . . . , xm) = ψA(a1, a2, . . . , an, x1, x2, . . . , xm) for
all a1, . . . , an ∈ A and x1, . . . xm ∈ XA. Now, let b1, . . . , bn ∈ B and y1, . . . , ym ∈ XB. We
know that h is surjective from A onto B and from XA onto XB, so there are a′1, . . . , a

′
n ∈ A

and x′1, . . . , x
′
m ∈ XA such that

ϕB(b1, b2, . . . , bn, y1, y2, . . . , ym) = ϕB(h(a′1), h(a′2), . . . , h(a′n), h(x′1), h(x′2), . . . , h(x′m))

But h is a homomorphism, so

ϕB(h(a′1), h(a′2), . . . , h(a′n), h(x′1), h(x′2), . . . , h(x′m)) = h(ϕA(a′1, a
′
2, . . . , a

′
n, x
′
1, x
′
2, . . . , x

′
m)).

Hence, since ϕA(a1, a2, . . . , an, x1, x2, . . . , xm) = ψA(a1, a2, . . . , an, x1, x2, . . . , xm) for all ele-
ments a1, . . . , an ∈ A and atoms x1, . . . xm ∈ XA,

h(ϕA(a′1, a
′
2, . . . , a

′
n, x
′
1, x
′
2, . . . , x

′
m)) = h(ψA(a′1, a

′
2, . . . , a

′
n, x
′
1, x
′
2, . . . , x

′
m)),
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and so, since h is a homomorphism,

h(ψA(a′1, a
′
2, . . . , a

′
n, x
′
1, x
′
2, . . . , x

′
m)) = ψB(h(a′1), h(a′2), . . . , h(a′n), h(x′1), h(x′2), . . . , h(x′m)).

Therefore,

ψB(h(a′1), h(a′2), . . . , h(a′n), h(x′1), h(x′2), . . . , h(x′m)) = ψB(b1, b2, . . . , bn, y1, y2, . . . , ym),

which means that

ϕB(b1, b2, . . . , bn, y1, y2, . . . , ym) = ψB(b1, b2, . . . , bn, y1, y2, . . . , ym).

We have thus shown that B |= ϕ ≈ ψ.

As expected, the validity of H-formulas is transferred from superalgebras to subalgebras.

Proposition 2.1.12. Let A = (A, XA) and B = (B, XB) be two hybrid algebras. If A � B,
then A |= ϕ ≈ ψ whenever B |= ϕ ≈ ψ.

Proof. Assume A � B. Then there is an injective homomorphism h from A to B. Now,
suppose A 6|= ϕ ≈ ψ. We then have

ϕA(a1, a2, . . . , an, x1, x2, . . . , xm) 6= ψA(a1, a2, . . . , an, x1, x2, . . . , xm)

for some a1, a2, . . . , an ∈ A and x1, x2, . . . , xm ∈ X. But h is injective, so

h(ϕA(a1, a2, . . . , an, x1, x2, . . . , xm)) 6= h(ψA(a1, a2, . . . , an, x1, x2, . . . , xm)),

and hence, since h is a homomorphism,

ϕA(h(a1), . . . , h(an), h(x1), . . . , h(xm)) 6= ψA(h(a1), . . . , h(an), h(x1), . . . , h(xm)).

Therefore, since h maps elements of XA to elements of XB, we have B 6|= ϕ ≈ ψ.

Products of hybrid algebras

Taking the product of hybrid algebras gives us a means of combining several hybrid algebras
into one.

Definition 2.1.13 (Products of hybrid algebras). Let A = (A, XA) and B = (B, XB)
be two hybrid algebras. The product A ×B of A and B is given by (A ×B, XA×B), where
A×B is defined in the usual way and XA×B = {(x,⊥B) | x ∈ XA} ∪ {(⊥A, y) | y ∈ XB}.

Validity is not generally preserved under products of hybrid algebras. Consider the hybrid
algebra A = (2,3, {1}) in Example 2.1.3. Then A |= 3i ≈ > but A2 6|= 3i ≈ >. We can
easily fix this by simply adding ⊥ to the sets of designated atoms.

Definition 2.1.14 (Grounded hybrid algebras). A grounded hybrid algebra (GHA) is
just like a hybrid algebra A = (A, XA), except that the bottom element of the algebra is also
included in the set XA.



Chapter 2. Hybrid algebras 51

H-terms and equations are interpreted in grounded hybrid algebras as they are in hybrid
algebras with nominals ranging over the elements in the designated set of atoms and ⊥.
Given a hybrid algebra B = (B, XB), the associated grounded hybrid algebra is the structure
B0 = (B, XB ∪ {⊥}).

Although validity is not preserved under taking products of hybrid algebras, we can show
that if each of the associated grounded hybrid algebras of two hybrid algebras validates a H-
formula, then the product of the original algebras does too. But first, we need the following
definition:

Definition 2.1.15. Let A1 = (A1, XA1) and A2 = (A2, XA2) be two hybrid algebras. The
projection map on the ith coordinate of A1 × A2 is the map πi: A1 × A2 → Ai defined by
πi(a1, a2) = ai.

Proposition 2.1.16. If A and B are hybrid algebras such that A0 |= ϕ ≈ ψ and B0 |= ϕ ≈ ψ,
then A×B |= ϕ ≈ ψ.

Proof. We prove the contrapositive, so assume A×B 6|= ϕ ≈ ψ. Then there is an assignment
ν: PROP ∪ NOM → A × B such that ν(ϕ) 6= ν(ψ). But then π1(ν(ϕ)) 6= π1(ν(ψ)) or
π2(ν(ϕ)) 6= π2(ν(ψ)). If π1(ν(ϕ)) 6= π1(ν(ψ)), consider the assignment ι: PROP∪NOM→ A0

defined by ι(p) = π1(ν(p)) and ι(j) = π1(ν(j)). We work with A0 rather than A since some of
the atoms in XA×B are of the form (⊥, y), y ∈ XB, which means that ι(j) might be the bottom
element. Using structural induction, we can show that ι(γ) = π1(ν(γ)) for all H-formulas γ.
Hence,

ι(ϕ) = π1(ν(π)) 6= π1(ν(ψ)) = ι(ψ),

and so A0 6|= ϕ ≈ ψ. The case where π2(ν(ϕ)) 6= π2(ν(ψ)) is similar.

We also have the following result for any hybrid algebra and its associated grounded hybrid
algebra.

Proposition 2.1.17. Let A = (A, XA) be a hybrid algebra. If A0 |= ϕ ≈ ψ, then A |= ϕ ≈ ψ.

Proof. To see this, we simply note that any assignment in A is also an assignment in A0.

The converse of the claim in Proposition 2.1.17 does not hold. To see this, consider
the hybrid algebra A = (2,3, {1}) in Example 2.1.3 again. Clearly, A |= 3i ≈ >, while
A0 6|= 3i ≈ > under any assignment mapping i to 0.

Sometimes we would like to take the product of two algebras A = (A, XA) and B =
(B, XB), where either XA or XB is empty. But since this contradicts our definition of a
hybrid algebra, we will refer to these algebras as degenerate hybrid algebras.

Definition 2.1.18 (Degenerate hybrid algebras). A degenerate hybrid algebra is a pair
A = (A, XA), where A is a BAO and XA = ∅. Given a degenerate hybrid algebra A =
(A, XA), the associated grounded degenerate hybrid algebra is the structure A0 = (A, {⊥}).

We then have the following useful preservation result:

Proposition 2.1.19. Let A be a degenerate hybrid algebra, and B a hybrid algebra. If
A0 |= ϕ ≈ ψ and B |= ϕ ≈ ψ, then A×B |= ϕ ≈ ψ.
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Proof. Assume A ×B 6|= ϕ ≈ ψ. Then there is an assignment ν: PROP ∪ NOM → A ×B
such that ν(ϕ) 6= ν(ψ). But then π1(ν(ϕ)) 6= π1(ν(ψ)) or π2(ν(ϕ)) 6= π2(ν(ψ)). If π1(ν(ϕ)) 6=
π1(ν(ψ)), consider the assignment ι: PROP ∪ NOM → A0 defined by ι(p) = π1(ν(p)) and
ι(j) = π1(ν(j)). As before, it is not difficult to show using structural induction on γ that
ι(γ) = π1(ν(γ)). Hence,

ι(ϕ) = π1(ν(π)) 6= π1(ν(ψ)) = ι(ψ),

and so A0 6|= ϕ ≈ ψ. The case where π2(ν(ϕ)) 6= π2(ν(ψ)) is similar, however, note that since
all atoms in XA×B are of the form (⊥, b), b ∈ XB, we do not need to work with B0.

2.1.3 Permeated hybrid algebras

As stated before, in [72] Ten Cate showed that H+Σ is sound and complete with respect
to strongly descriptive two-sorted general frames. As we will soon show, algebraically, these
correspond to permeated hybrid algebras.

Definition 2.1.20 (Permeated hybrid algebras). A permeated hybrid algebra is a hybrid
algebra A = (A, XA) satisfying the following additional conditions:

(i) for each ⊥ 6= a ∈ A, there is an atom x ∈ XA such that x ≤ a, and

(ii) for all x ∈ XA and a ∈ A, if x ≤ 3a, then there exists a y ∈ XA such that y ≤ a and
x ≤ 3y.

Note, in particular, that the first condition implies that A must be atomic. However, the
first condition does not necessarily hold when A is atomic. To see why, note that XA can
be a proper subset of the atoms of A. Finally, we will denote the class of permeated hybrid
algebras by PHA.

We now give some examples of permeated hybrid algebras.

Example 2.1.21. It is not difficult to see that the hybrid algebra in Example 2.1.3 is per-
meated.

Example 2.1.22. The hybrid algebra in Example 2.1.5 is not permeated. To see this, note
that the first condition of Definition 2.1.20 is violated since XA 6= AtA.

Example 2.1.23. The hybrid algebra in Example 2.1.7 is permeated. The first condition
clearly holds since any non-empty set in A contains a natural number or ω + 1, and all the
singletons of natural numbers and {ω + 1} are designated atoms. For the second condition,
let {m} ∈ XA and A ∈ A, and assume {m} ⊆ f(A). Then m ∈ f(A), and so m > min(A).
But we know that {min(A)} ⊆ A. Furthermore,

f({min(A)}) = {x ∈ ω + 1 ∪ {ω + 1} | min(A) < x}.

So m ∈ f({min(A)}), which means that {m} ⊆ f({min(A)}).

Later we will need the fact that the product of two permeated hybrid algebras is also
permeated. We now show that this is indeed the case.
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Proposition 2.1.24. Let A = (A, XA) and B = (B, XB) be two permeated hybrid algebras.
Then A×B is also permeated.

Proof. For the first condition, let (a, b) ∈ A × B such that (a, b) 6= (⊥,⊥). Then a 6= ⊥ or
b 6= ⊥. Assume a 6= ⊥. Now, since A is permeated, there is some x ∈ XA such that x ≤ a.
So we know that (x,⊥) ≤ (a, b). Furthermore, x ∈ XA, hence (x,⊥) ∈ XA×B by definition.
Similarly for b 6= ⊥. For the second condition, we have two cases:

Case 1: (⊥, y) ∈ XA×B such that (⊥, y) ≤ 3(a, b). Then (⊥, y) ≤ (3a,3b), and so, y ≤ 3b.
But we know that B is permeated, so there is a y′ ∈ XB such that y′ ≤ b and y ≤ 3y′. Hence,
(⊥, y′) ≤ (a, b) and (⊥, y) ≤ (⊥,3y′) = (3⊥,3y′) = 3(⊥, y′). Furthermore, since y′ ∈ XB,
(⊥, y′) ∈ XA×B.

Case 2: (x,⊥) ∈ XA×B such that (x,⊥) ≤ 3(a, b). Similar to Case 1.

2.1.4 Duality between two-sorted general frames and hybrid algebras

Recall that the fundamental operations on frames, namely, taking generated subframes,
bounded morphic images and disjoint unions, correspond very naturally to those on alge-
bras, namely, taking homomorphic images, subalgebras and products. In this section, we
wish to show that this is also the case for two-sorted general frames and hybrid algebras.

Theorems 2.1.35 and 2.1.36 at the end of this section give a concise formulation of the basic
connections between hybrid algebras and two-sorted general frames. The proof of Theorem
2.1.35 follows immediately from Propositions 2.1.30 and 2.1.34 below. First, however, we
adapt familiar notions from the setting of general frames to the setting of two-sorted general
frames.

Definition 2.1.25. For each i ∈ I, let gi = (Wi, Ri, Ai, Bi) be a two-sorted general frame.
Then their disjoint union is the structure⊎

i∈I
gi = (W,R,A,B),

where W is the union of the domains Wi, R is the union of the relations Ri, A consists of
those subsets a ⊆

⋃
i∈IWi such that a ∩Wi ∈ Ai for all i ∈ I, and B is the union of the sets

Bi.

Definition 2.1.26. Let g = (W,R,A,B) and h = (W ′, R′, A′, B′) be two-sorted general
frames. We say that a map g: W → W ′ is a bounded morphism between g and h, if g
is a bounded morphism between the general frames (W,R,A) and (W ′, R′, A′) such that
g−1[{w′}] ∈ {{v} | v ∈ B} for all {w′} ∈ {{v′} | v′ ∈ B′}. A map g is an embedding, if it
is an embedding between the general frames (W,R,A) and (W ′, R′, A′), and for all w ∈ B,
there is a w′ ∈ B′ such that g[{w}] = g[W ]∩{w′}. We say that h is embeddable in g (denoted
h � g), if there is an embedding from W ′ to W . The two-sorted general frame h is called
a bounded morphic image of g (denoted g � h), if there is a surjective bounded morphism
g from W to W ′. Finally, h and g are isomorphic (denoted h ∼= g), if there is an bijective
bounded morphism between W and W ′.
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Although validity on Kripke frames is not preserved under bounded morphic images, we
do have some good news: validity is preserved under bounded morphic images between two-
sorted general frames. To prove this, we need to show (as usual) that model satisfaction
is invariant under bounded morphisms. A map g is a bounded morphism between models
M = (g, V ) and M′ = (h, V ′), if g is a bounded morphism between the two-sorted general
frames g and h, and w and g(w) satisfy the same propositional variables and nominals.

Proposition 2.1.27. Let M and M′ be two models such that g is a bounded morphism between
M and M′. Then for each formula ψ and each state w in M, M, w 
 ψ iff M′, g(w) 
 ψ.

Proof. The proof is by structural induction on ψ.

Proposition 2.1.28. Let g = (W,R,A,B) and h = (W ′, R′, A′, B′) be two-sorted general
frames such that g � h, and let ψ be a hybrid formula. Then h 
 ψ if g 
 ψ.

Proof. Let g: W → W ′ be a surjective bounded morphism between g and h. We will prove
the contrapositive, so assume h 1 ψ. Then there is some state w′ ∈ W ′ and an admissible
valuation V ′ on h such that (h, V ′), w′ 1 ψ. Now, define the valuation V on g such that
for each p ∈ PROP and each i ∈ NOM, V (p) = {w ∈ W | g(w) ∈ V ′(p)} and V (i) =
{w ∈ W | g(w) ∈ V ′(i)}. We have to make sure that V is admissible. To prove this, we
first show that g−1[V ′(i)] = V (i): v ∈ g−1[V ′(i)] iff g(v) ∈ V ′(i) iff v ∈ V (i). Now, since
V ′(i) ∈ {{v′} | v′ ∈ B′}, by Definition 2.1.26, g−1[V ′(i)] ∈ {{v} | v ∈ B}. This means V
evaluates nominals to elements in B. Similarly, g−1[V ′(p)] = V (p), and so, since V ′(p) ∈ A′,
V (p) ∈ A. We also want to show that g is a bounded morphism between the models (g, V )
and (h, V ′). But g is a surjective bounded morphism between the frames g and h, so we
just have to check that for each v, v and g(v) satisfy the same variables. So let v ∈ W and
i ∈ NOM. Then

(g, V ), v 
 i iff v ∈ V (i)

iff g(v) ∈ V ′(i)
iff (h, V ′), g(v) 
 i.

Similarly for the propositional variables. Now, we know that g is surjective, there is a w ∈W
such that g(w) = w′, and hence, since g is a bounded morphism between the models (g, V )
and (h, V ′), by Proposition 2.1.27, (g, V ), w 1 ψ.

The dual of a map between two-sorted general frames is defined in the same way as that
of a map between general frames.

Definition 2.1.29. Let g = (W,R,A,B) and h = (W ′, R′, A′, B′) be two two-sorted general
frames. Given a map g: W →W ′, its dual g∗: A′ → P(W ) is defined by

g∗(a′) := g−1[a′] (= {w ∈W | g(w) ∈ a′}).

As for general frames and Boolean algebras with operators, the duals of bounded mor-
phisms between two-sorted general frames are simply homomorphisms between hybrid alge-
bras.
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Proposition 2.1.30. Let g = (W,R,A,B) and h = (W ′, R′, A′, B′) be two-sorted general
frames, g∗ = (A,∩,∪,−,∅,W, 〈R〉, XB) and h∗ = (A′,∩,∪,−,∅,W ′, 〈R′〉, XB′) their under-
lying hybrid algebras, and g a map from W to W ′.

(i) If g is a bounded morphism, g∗ maps elements of A′ to elements of A.

(ii) If g is a bounded morphism, then g∗ is a homomorphism from h∗ to g∗.

(iii) If g is an embedding, then g∗ is a surjective homomorphism.

(iv) If g is surjective, then g∗ is injective.

Proof. The proofs of items (i) and (iv) are the same as that of items (i) and (iv) in Proposition
1.1.51. So we only have to check items (ii) and (iii).

(ii) The fact that g∗ respects the operations is proved in the same way as in the proof of
Proposition 1.1.51, so we will only show that g∗ maps elements of XB′ to elements of XB.
Let {w′} ∈ XB′ . Then g−1[{w′}] ∈ XB by Definition 2.1.26. But g−1[{w′}] = g∗({w′}), so
g∗({w′}) ∈ XB.

(iii) Assume g is an embedding. The fact that g∗ is a homomorphism follows from (ii).
The proof that g∗ is surjective is the same as in the proof of Proposition 1.1.51. We only show
that g∗ is surjective from XB′ onto XB, so let {w} ∈ XB. Then w ∈ B, and so, by Definition
2.1.26, there is w′ ∈ B′ such that g[{w}] = g[W ] ∩ {w′}. We claim that this {w′} has the
desired properties. First, we have g∗(g[{w}]) = g∗(g[W ]∩{w′}), and so, since g∗ is a Boolean
homomorphism, g∗(g[{w}]) = g∗(g[W ]) ∩ g∗({w′}). Note that since g∗({w′}) ⊆ W , if we can
show that g∗(g[{w}]) = {w} and g∗(g[{w}]) = W , we would be done. So we will now show
that g∗(g[b]) = b for all subsets b of W . Let u ∈ b. Then g(u) ∈ g[b], and so u ∈ g∗(g[b]).
Hence, b ⊆ g∗(g[b]). For the converse inclusion, assume u ∈ g∗(g[b]). Then g(u) ∈ g[b], which
means that there is some v ∈ b such that g(u) = g(v). But since g is injective, u = v. Hence,
u ∈ b, and therefore, g∗(g[b]) ⊆ b.

Before we go in the opposite direction, that is, from hybrid algebras to two-sorted general
frames, we have to extend the notion of a general ultrafilter frame of a BAO to a two-sorted
general ultrafilter frame of a hybrid algebra. But first we show that if a is an atom, then â
contains only the principal ultrafilter generated by a.

Lemma 2.1.31. For any Boolean algebra A, if a is an atom of A, then â = {a ↑}.

Proof. First, we know from Example 1.1.38 that â is an ultrafilter, and furthermore, a ∈ a ↑,
so ↑ a ∈ â. To show that â = {a ↑}, assume â contains at least two ultrafilters, say w and
w′, such that w 6= w′. This means that there is an element b 6= ⊥ that belongs to one, say w,
but not w′. Hence, a ∈ w′, but b /∈ w′, and so, by the definition of an ultrafilter, a � b. This
means that a ≤ ¬b. But a ∈ w, so ¬b ∈ w, which is a contradiction.

We are now ready to extend the definition of general ultrafilter frames of a BAO to two-
sorted general ultrafilter frames of hybrid algebras.



Chapter 2. Hybrid algebras 56

Definition 2.1.32. Let A = (A, XA) be a hybrid algebra. Then the two-sorted general
ultrafilter frame is defined as

A∗ = (Uf A, Q3, Â,XA ↑),

where Â := {â | a ∈ A} and XA ↑= {x ↑| x ∈ XA}.

We will also make use of the notation X̂A to denote the set {x̂ | x ∈ XA}.
We are almost ready to go in the opposite direction, we just need one more definition:

Definition 2.1.33. Let A = (A, XA) and B = (B, XB) be two hybrid algebras, and let h be
a map from A to B. Then its dual h∗ is the map from Uf B to P(A) defined by

h∗(u
′) := h−1[u′] (= {a ∈ A | h(a) ∈ u′}).

As expected the duals of homomorphisms between hybrid algebras are bounded morphisms
between two-sorted general frames.

Proposition 2.1.34. Let A = (A, XA) and B = (B, XB) be two hybrid algebras, A∗ =
(Uf A, Q3, Â,XA ↑) and B∗ = (Uf B, Q′3, B̂,XB ↑) their general ultrafilter frames, and h a
map from A to B.

(i) If h is a homomorphism, then h∗ maps ultrafilters to ultrafilters.

(ii) If h is a homomorphism, then h∗ is a bounded morphism from B∗ to A∗.

(iii) If h is a surjective homomorphism, then h∗ is an embedding.

(iv) If h is an embedding, then h∗ is a surjective.

Proof. The proofs of items (i) and (iv) are exactly the same as that of items (i) and (iv) in
Proposition 1.1.52. The proofs of items (ii) and (iii) need a bit more work.

(ii) The proofs of the forth and back properties are the same as in the proof of Proposition
1.1.52. We can also show that h−1

∗ [â] is an admissible set of B∗ in the same way as in the proof

of Proposition 1.1.52. So all we have to check is that h−1
∗ [x̂] ∈ X̂B for all x̂ ∈ X̂A. Let x̂ ∈ X̂A.

Now, h maps elements of XA to elements of XB, so if we can show that h−1
∗ [x̂] = ĥ(x), we

are done. But this is indeed the case: u′ ∈ h−1
∗ [x̂] iff h∗(u

′) ∈ x̂ iff x ∈ h∗(u′) iff h(x) ∈ u′ iff

u′ ∈ ĥ(x).
(iii) Assume that h is a surjective homomorphism. For the proof that h∗ is injective, see

the proof of Proposition 1.1.52. In a similar way as in the proof of Proposition 1.1.52, we
can show that for all b̂ ∈ B̂, there is a â ∈ Â such that h∗ [̂b] = h∗[Uf B] ∩ â. Finally, let

ŷ ∈ X̂B. Then y ∈ XB. But h is surjective from XA onto XB, so there is some x ∈ XA

such that h(x) = y. Since x ∈ XA, x̂ ∈ X̂A. We also claim that h∗[ŷ] = h∗[Uf B] ∩ x̂. For
the left-to-right inclusion, let v ∈ h∗[ŷ]. Then h∗(y ↑) = v, so v ∈ h∗[Uf B]. Now, since
h(x) = y and y ∈ y ↑, x ∈ h∗(y ↑), and therefore, x ∈ v, which means that v ∈ x̂. Thus,
v ∈ h∗[Uf B] ∩ x̂. Conversely, let v ∈ h∗[Uf B] ∩ x̂. Then there is some u′ ∈ Uf B such that
v = h∗(u

′), and furthermore v = x ↑. Hence, x ∈ h∗(u′), and so h(x) ∈ u′. But then y ∈ u′,
which gives u′ ∈ ŷ = {y ↑}. This implies that u′ = y ↑, and therefore, v ∈ h∗[ŷ].
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Theorem 2.1.35. Let g and h be two two-sorted general frames, and A and B two hybrid
algebras.

(i) If g � h, then h∗ � g∗.

(ii) If g � h, then h∗ � g∗.

(iii) If A � B, then B∗ � A∗.

(iv) If A � B, then B∗ � A∗.

The next theorem states a connection between disjoint unions of two-sorted general frames
and products of hybrid algebras.

Theorem 2.1.36. For each i ∈ I, let gi = (Wi, Ri, Ai, Bi) be a two-sorted general frame.
Then (⊎

i∈I
gi

)∗
∼=
∏
i∈I

g∗i .

Proof. Let (W,R,A,B) =
⊎
i∈I gi, and consider the map h from A to

∏
i∈I Ai defined by

h(a)(i) = a ∩Wi.

We have to show that h is an isomorphism. We first show that h is surjective from A onto∏
i∈I Ai, so let a ∈

∏
i∈I Ai, where a(i) = ai for each i ∈ I. We have to find an a ∈ A such

that h(a)(j) = aj for each j ∈ I. We claim that
⋃
i∈I ai satisfies the required conditions.

First, to see that
⋃
i∈I ai ∈ A, let j be any index in I. Then⋃

i∈I
ai ∩Wj =

⋃
i∈I

(ai ∩Wj) = aj .

But aj ∈ Aj , so, by the definition of the disjoint union of two-sorted general frames,
⋃
i∈I ai ∈

A. Furthermore, for each j ∈ I,

h

(⋃
i∈I

ai

)
(j) =

⋃
i∈I

ai ∩Wj = aj .

To show that h is surjective from XB onto X∏
i∈I Bi

, let x be an element of X∏
i∈I Bi

, where
x(i) = xi for each i ∈ I. Then xj ∈ XBj for some j ∈ I and xi = ∅ for i 6= j. We have to find
an x ∈ XB such that h(x)(j) = xj and h(x)(i) = ∅ for i 6= j. We claim that xj satisfies these
conditions. First, since xj ∈ XBj and B is the union of the Bi’s, xj ∈ XB. Furthermore,
h(xj)(j) = xj ∩Wj = xj and h(xj)(i) = xj ∩Wi = ∅ for i 6= j.

We also have to show that h maps designated atoms to designated atoms, so let x ∈ XB.
Then x ∈ XBj for some j ∈ I, while x /∈ XBi for i 6= j. Hence, h(x)(j) = x ∩Wj = x, while
h(x)(i) = x ∩Wi = ∅ for i 6= j. This means that h(x) ∈ X∏

i∈I Bi
.

Now, to show that h is injective, let a, b ∈ A such that a 6= b. We may then assume
without loss of generality that there is some w ∈ W such that w ∈ a but w /∈ b. But w ∈ W
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implies that w ∈ Wj for some j ∈ I. Now, since w ∈ a, w ∈ a ∩Wj = h(a)(j). On the
other hand, since w /∈ b, w /∈ b ∩Wj = h(b)(j). Hence, h(a)(j) 6= h(b)(j), which means that
h(a) 6= h(b).

The fact that h is a Boolean homomorphism follows from basic set theory. Finally, we
show that h respects 〈R〉. Assume w ∈ h(〈R〉a)(i). Then w ∈ 〈R〉a ∩Wi, and so w ∈ 〈R〉a
and w ∈Wi. But w ∈ 〈R〉a implies that there is some v ∈ a such that wRv, and hence, since
w ∈ Wi, v ∈ Wi and wRiv. Therefore, v ∈ a ∩Wi, i.e., v ∈ h(a)(i). We can thus conclude
that w ∈ 〈Ri〉h(a)(i). Conversely, let w ∈ 〈Ri〉h(a)(i). Then there is some v ∈ h(a)(i) such
that wRiv. But then v ∈ a ∩Wi and wRv, so w ∈ 〈R〉. Now, since w ∈ Wi, w ∈ 〈R〉a ∩Wi,
which means w ∈ h(〈R〉a)(i).

u v

u v
h

g1 g2

Figure 2.1: Two-sorted general frames and their disjoint union

It is not difficult to see that the validity of hybrid formulas is also not preserved under tak-
ing disjoint unions of two-sorted general frames. Again, consider the formula i which defines
the class of frames that contain exactly one element. Let g1 = ({u}, {(u, u)}}, {∅, {u}}, {u}),
g2 = ({v}, {(v, v)}, {∅, {v}}, {v}), and h = ({u, v}, {(u, u), (v, v)}, {∅, {u}, {v}, {u, v}}, {u, v})
(see Figure 2.1). Then

h = g1 ] g2.

However, both g1 and g2 contain exactly one element, while h contains two elements. This
corresponds to the fact that the validity of hybrid formulas is not generally preserved under
taking products of hybrid algebras. Now, recall that even though the validity of hybrid
formulas is not preserved under taking products of hybrid algebras, it is the case that if each
of the associated grounded hybrid algebras of these hybrid algebras validates an H-formula,
then the product of the original algebras does too. We can prove a similar result for two-sorted
general frames. But first we make the following definition:

Definition 2.1.37. A liberal valuation for a (Kripke) frame F = (W,R) is a map
V : PROP ∪ NOM → P(W ) that assigns to each propositional variable a subset of W and
to each nominal a singleton or the empty set. A liberal model based on a frame F is a pair
M = (F, V ), where V a liberal valuation.

A formula ϕ is groundedly valid at a state w in a frame F (denoted F, w 
0 ϕ), if it is
true at w in every liberal model (F, V ) based on F. We say that ϕ is groundedly valid in a
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frame F (denoted F 
0 ϕ) if ϕ is groundedly valid at all states in every liberal model (F, V )
based on F. A formula ϕ is groundedly valid on a class of frames K (denoted K 
0 ϕ) if it
is groundedly valid on all frames in K. Finally, ϕ is groundedly valid (denoted 
0 ϕ) if ϕ is
groundedly valid on the class of all frames.

Given a two-sorted general frame g = (W,R,A,B), we define a liberal valuation for g in
the same way as for a Kripke frame. A liberal valuation is called admissible for g, if for each
propositional variable p, V (p) ∈ A, and, for each nominal i, V (i) ∈ {{w} | w ∈ B} ∪ {∅}.
A liberal model based on a two sorted general frame is a pair (g, V ), where V is a liberal
admissible valuation for g. Truth and validity of formulas are defined as before.

The following proposition shows that model satisfaction on liberal models is invariant
under disjoint unions.

Proposition 2.1.38. For each i ∈ I, let Mi be a liberal model. If each nominal is evaluated
to ∅ in all but one Mi, then, for each hybrid formula ψ, each i ∈ I, and each state w in Mi,
Mi, w 
 ψ iff

⊎
j∈I Mj , w 
 ψ.

Proof. The proof is by structural induction on ψ.

Now, as for the product of hybrid algebras, we can show that if each two-sorted general
frame of a family of two-sorted general frames groundedly validates an H-formula, then the
disjoint union of these frames validates this formula.

Theorem 2.1.39. For each i ∈ I, let gi = (Wi, Ri, Ai, Bi) be a two-sorted general frame.
Then

⊎
i∈I gi 
 ϕ whenever gi 
0 ϕ for each i ∈ I.

Proof. We prove the contrapositive, so assume
⊎
gi 1 ϕ. Then there is an admissible valuation

V and a state w ∈
⊎
i∈IWi such that (

⊎
gi, V ), w 1 ϕ. Now, for each i ∈ I, each p ∈ PROP,

and each j ∈ NOM, define Vi(p) = V (p) ∩Wi and Vi(j) = V (j) ∩Wi. Then Vj(j) = V (j) for
some j ∈ I, while Vi(j) = ∅ for i 6= j. We have to make sure Vi(p) an Vi(j) are admissible.
But we know that V (p) and V (i) are admissible, so, by the definition of a disjoint union of
two-sorted general frames, V (p)∩Wi ∈ Ai and V (j)∩Wi ∈ Ai for all i ∈ I. Hence, for all i ∈ I,
Vi(p) ∈ Ai and Vi(j) ∈ Ai. To use Proposition 2.1.38, have to show that

⊎
i∈I Vi(p) = V (p)

and
⊎
i∈I Vi(j) = V (j). First, ⊎

i∈I
Vi(j) =

⊎
i∈I

(V (j) ∩Wi)

= V (j) ∩
⊎
i∈I

Wi

= V (j) ∩W
= V (j).

Similarly,
⊎
i∈I Vi(p) = V (p). Now, since w ∈

⊎
Wi, w ∈ Wk for some k ∈ I, and so, by

Proposition 2.1.38, (gk, Vk), w 1 ψ. But since Vk is liberal, gk 10 ψ.

Recall that Boolean algebras with operators and descriptive general frames are duals.
The theorem that follows asserts that this is also the case for hybrid algebras and descriptive
two-sorted general frames.
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Theorem 2.1.40. Let A = (A, XA) be a hybrid algebra, and g = (W,R,A,B) a two-sorted
general frame. Then

(i) A∗ is a descriptive two-sorted general frame,

(ii) (A∗)
∗ ∼= A, and

(iii) (g∗)∗ ∼= g iff g is descriptive.

Proof. (i) The proof of this item is the same as that of item (i) in Theorem 1.1.44, all we
have to check is that A∗ is two-sorted. Well, by definition XA 6= ∅, so XA ↑6= ∅. Now, let
x ↑∈ XA ↑. Then x ∈ XA. But XA ⊆ A, so x ∈ A. Hence, x̂ ∈ Â.

(ii) Here we just have to make sure that the map map h: A→ Â defined by h(a) = â maps

elements of XA to elements of X̂A and that it is surjective from XA onto X̂A. But this is
clearly true. (iii) The left-to-right direction follows from (i). The proof of the other direction
is the same as in Theorem 1.1.44. We just have to make sure that g−1[x̂] ∈ {{w} | w ∈ B}
for all x̂ ∈ X̂B, and that for all s ∈ B, there is some y ↑ such that g[{s}] = g[W ] ∩ {y ↑}.
For the first condition, let x̂ ∈ X̂B. Then x ∈ XB. We now claim that x̂ = g[x], and so, by
the injectivity of g, g−1[x̂] = x, which means that g−1[x̂] ∈ {{w} | w ∈ B} since x = {s} for
some s ∈ B. To see this, let u ∈ x̂ Then x ∈ u. But we know that u = Ut for some t ∈W , so
x ∈ Ut. Hence, t ∈ x, so g(t) ∈ g[x]. Therefore, Ut ∈ g[x], which gives u ∈ g[x]. Conversely,
let u ∈ g[x]. Then there is some t ∈ W such that u = g(t) and t ∈ x. Hence, u = t, and so,
since t ∈ x, x ∈ u, which means u ∈ x̂.

For the second condition, let x = {s}. We claim that x̂ satisfies this condition. For the
left-to-right inclusion, let u ∈ g[x]. Then u = g(s), which means x ∈ Us = g(s) = u, so
u ∈ g[W ] and u ∈ x̂. Hence, u ∈ g[W ] ∩ x̂. Conversely, let u ∈ g[W ] ∩ x̂. We then have
u ∈ g[W ] and u ∈ x̂. But u ∈ g[W ] implies there is some t ∈ W such that g(t) = u, and
so, since x ∈ u, x ∈ g(t) = Ut, which gives t ∈ x. Therefore, u ∈ g[x]. But we know that
x̂ = {x ↑}, so we are done.

Recall that the BAO of the hybrid algebra in Example 2.1.7 is the underlying algebra of
the general frame in Example 3.3 of [28]. This general frame is strongly descriptive, and in
Example 2.1.23 we showed that the hybrid algebra in Example 2.1.7 is permeated. In general,
permeated hybrid algebras correspond to strongly descriptive two-sorted general frames.

Theorem 2.1.41. Let A = (A, XA) be a permeated hybrid algebra, and g = (W,R,A,B) a
two-sorted general frame. Then

(i) A∗ is a strongly descriptive two-sorted general frame,

(ii) (A∗)
∗ ∼= A, and

(iii) (g∗)∗ ∼= g iff g is strongly descriptive.

Proof. The proof of this theorem is the same as that of Theorem 2.1.40, all we have to check
is that A∗ is strongly descriptive. Now, to prove the first condition of strongly descriptiveness,
let â be a non-empty admissible set of A∗. Since â is non-empty, there is an ultrafilter u such
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that a ∈ u. But ⊥ /∈ u, so a 6= ⊥. Hence, since A is permeated, there is a designated atom
x ∈ XA such that x ≤ a. By Lemma 2.1.31, x̂ = {x ↑}. We just now have to check that
x ↑∈ â. We know that x ∈ x ↑. But x ≤ a, and so, since x ↑ is upward closed, a ∈ x ↑. Hence,
x ↑∈ â, as required.

For the second condition, let â be an admissible set of A∗, and let x ↑∈ XA ↑. Assume
{u ∈ â | x ↑ Q3u} 6= ∅. Now, we know that x̂ = {x ↑}. Since {u ∈ â | x ↑ Q3u} 6= ∅,
there is an ultrafilter w ∈ {u ∈ â | x ↑ Q3u}. Hence, w ∈ â and x ↑ Q3w. From w ∈ â it
follows that a ∈ w. This means that 3a ∈ x ↑. We now claim that x ≤ 3a. For the sake of
a contradiction, assume this is not the case. Since x is an atom, x ≤ ¬3a. But x ∈ x ↑ and
x ↑ is upward closed, so ¬3a ∈ v, which is a contradiction. Now, since A is permeated, there
is an atom y ∈ XA such that y ≤ a and x ≤ 3y. By Lemma 2.1.31, ŷ = {y ↑}. But y ∈ y ↑
and y ≤ a, so, since y ↑ is upward closed, a ∈ y ↑. Hence, y ↑∈ â. To show that x ↑ Q3y ↑,
let b ∈ y ↑. Then y ≤ b. We thus now have that x ≤ 3y ≤ 3b, and so, since x ∈ x ↑ and x ↑
is upward closed, 3b ∈ x ↑. Hence, by definition, x ↑ Q3y ↑.

To conclude this subsection, we will give an algebraic construction that we will often use
in the later chapters, and then briefly discuss what it is that we are doing frame-theoretically
to illustrate how we use the duality between hybrid algebras and two-sorted general frames.
This construction makes crucial use of the adjoint of 2, so let us first recall some relevant
preliminaries on adjoints and residuals. These will also play a crucial role in Chapter 4. In
what follows, A and B are two complete BAOs. For the proofs of the propositions that follow,
see [36].

Definition 2.1.42 (Adjoint pair). The monotone maps f : A→ B and g: B→ A form an
adjoint pair (denoted f a g), if for all a in A and b in B,

f(a) ≤ b iff a ≤ g(b).

If f a g, f is called the left adjoint of g, while g is called the right adjoint of f .

An important property of adjoint pairs is that if a map is completely join-preserving
(meet-preserving), then we can compute its right (left) adjoint pointwise from the map itself
and the order relation on the BAO.

Proposition 2.1.43. For monotone maps f : A→ B and g: B → A such that f a g,

(i) f(a) =
∧
{b ∈ B | a ≤ g(b)}, and

(ii) g(b) =
∨
{a ∈ A | f(a) ≤ b}.

Proposition 2.1.44. For any map f : A→ B,

(i) f is completely join-preserving iff it has a right adjoint, and

(ii) f is completely meet preserving iff it has a left adjoint.
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Definition 2.1.45 (Residual pair). Let f : An → A and g: An → A be n-ary maps.
We say that f and g form a residual pair in the ith coordinate (denoted f ai g), if for all
a1, . . . , an, b ∈ A,

f(a1, . . . , ai, . . . , an) ≤ b iff ai ≤ g(a1, . . . , b, . . . , an).

If f ai g, then f is called the left residual of g in the ith coordinate, and g the right residual
of f in the ith coordinate.

Proposition 2.1.46. For f : An → A and g: An → A such that f ai g,

(i) f(a1, . . . , ai, . . . , an) =
∧
{b ∈ A | ai ≤ g(a1, . . . , b, . . . , an)};

(ii) g(a1, . . . , ai, . . . , an) =
∨
{b ∈ A | f(a1, . . . , b, . . . , an) ≤ ai}.

Proposition 2.1.47. For any n-ary map f : An → A,

(i) f is completely join-preserving in the i-th coordinate iff it has a right residual in that
same coordinate, and

(ii) f is completely meet-preserving in the i-th coordinate iff it has a left residual in that
same coordinate.

Example 2.1.48. Let A be a BAO. We know that in Aδ, the operations 3 and 2 are
completely join- and meet-preserving, respectively, and therefore have right and left adjoints,
respectively. We will denote the right adjoint of 3 by 2−1, and the left adjoint of 2 by 3−1.

Finally, before we give the construction, we need to extend the definition of the canonical
extension of a BAO to the setting of hybrid algebras.

Definition 2.1.49. Let A = (A, XA) be a hybrid algebra. The canonical extension of A is
the hybrid algebra Aδ = (Aδ, XAδ), where Aδ is the canonical extension of A and XAδ is the
set of all atoms of Aδ.

Note that the existence and uniqueness of the canonical extension of a hybrid algebra follows
from the existence and uniqueness of the canonical extension of a BAO.

Now, given a hybrid algebra A = (A, XA), consider its canonical extension Aδ. Then
choose some element d in Aδ, and denote it by d0. Suppose dn is already defined, then define
dn+1 := 3−1dn. Let

D :=
∨
n∈N

dn,

and let
AD = (AD,∧D,∨D,¬D,⊥D,>D,3D),

where AD = {a ∧D | a ∈ A}, ∧D and ∨D are the restriction of ∧ and ∨ to AD, and

¬Da = ¬a ∧D 3Da = 3a ∧D
⊥D = ⊥ >D = D.
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Finally, let AD = (AD, XD), where XD = {x ∈ X | x ≤ D}. It can then be shown that AD
is closed under these operations (see for instance 3.1.3 ), and hence that AD is an algebra.

Let us now take a step back and look at what it is that we have done from a frame
theoretical point of view. We will use the following terminology: a full frame of a frame
F = (W,R) is the two-sorted general frame F] = (F,P(W ),W ). Since the canonical extension
of A is isomorphic to the complex algebra of the ultrafilter frame of A, it is not difficult to
see that the canonical extension of A is also isomorphic to the underlying hybrid algebra of
the full frame of the ultrafilter frame of A. So taking the canonical extension enables us to
work on a two-sorted general frame. We can therefore think of d as a subset of ultrafilters of
A. We then closed under 3−1, so in a sense we are imitating the process of taking generated
subframes on algebras. The element D can thus be thought of as the domain of the generated
subframe. Next we defined the carrier of the algebra AD as the set of the meets of the
elements in A with D. But we know that A is a subalgebra of its canonical extension, so
A is isomorphic to a subalgebra of the complex algebra of the ultrafilter frame of A. This
means that we actually just intersected admissible subsets of the full frame of the ultrafilter
frame of A with the domain of our generated subframe. Furthermore, we can think of XD as
a set of singletons all contained in the domain of the new subframe. We therefore get a new
two-sorted general frame whose underlying frame is our new generated subframe, its set of
admissible subsets consists of the intersections of the sets in the algebra isomorphic to A with
the domain of our new generated subframe, and its second sort of admissible sets consists of
the ultrafilters u such that {u} belong to the algebra isomorphic to A and is contained in the
domain of our new frame.

Now, in Chapter 5, we will prove that the algebra AD is a homomorphic image of A, so,
by Theorem 2.1.35, we know that the new two-sorted general frame can be embedded into
the two-sorted general frame whose underlying frame is the ultrafilter frame of A, its set of
admissible sets is the algebra isomorphic to A, and its second sort of admissible sets consists
of the ultrafilters the singletons of which belong to the designated set of atoms of the algebra
isomorphic to A.

2.2 Hybrid algebras for H(@) and the operations on them

2.2.1 Hybrid algebras for H(@)

As for the language H, there are two possible algebraic semantics for H(@). Again the first
involves interpreting nominals as constants, and as for H, we will refer to these algebras as
orthodox interpretations.

Definition 2.2.1 (Orthodox interpretations). An orthodox interpretation of H(@) is an
algebra A = (A,∧,∨,¬,⊥,>,3,@, {si}i∈NOM), where (A,∧,∨,¬,⊥,>,3) is a BAO, @ is a
binary operator, each si is the interpretation of the nominal i as a constant (i.e., a nullary
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operation), and A is required to validate the following for all i, j ∈ NOM:

@si(¬a ∨ b) ≤ ¬@sia ∨@sib ¬@sia = @si¬a
@si@sja ≤ @sja @sisi = >
si ∧ a ≤ @sia 3@sia ≤ @sia

So exactly how does the @ operator behave in an orthodox interpretation ofH(@)? Propo-
sition 2.2.3 gives us an answer. But first we need to show that @ preserves finite meets and
joins in its second coordinate, as well as that it is monotone in its second coordinate in
orthodox interpretations.

Lemma 2.2.2. Let A be an orthodox interpretation of H(@), and let a, b ∈ A and si the
constant interpretation of i. Then

(i) @si> = >,

(ii) @si(a ∨ b) = @sia ∨@sib,

(iii) @si(a ∧ b) = @sia ∧@sib, and

(iv) if a ≤ b, then @sia ≤ @sib.

Proof. (i) First, we have ¬a∨ a = >, so @si(¬a∨ a) = @si>. But then ¬@sia∨@sia = @si>.
Hence, @si> = >.

(ii) First, note that @si(a∨ b) = @si(¬¬a∨ b). But @si(¬¬a∨ b) ≤ ¬@si¬a∨@sib, and so,
since ¬@si¬a = @si¬¬a = @sia, @si(a∨b) ≤ @sia∨@sib. Conversely, first note that a ≤ a∨b,
so ¬a ∨ (a ∨ b) = >. Hence, @si(¬a ∨ (a ∨ b)) = @si>, which means ¬@sia ∨@si(a ∨ b) = >,
and therefore @sia ≤ @si(a∨ b). Similarly, we can show that @sib ≤ @si(a∨ b). We thus have
@sia ∨@sib ≤ @si(a ∨ b).

(iii) From (ii) we have @si(¬a ∨ ¬b) = @si¬a ∨ @si¬b, which means ¬@si(¬a ∨ ¬b) =
¬(@si¬a ∨@si¬b). Hence, @si(a ∧ b) = ¬@si¬a ∧ ¬@si¬b = @sia ∧@sib.

(iv) Assume a ≤ b. Then a∨ b = b, and so @si(a∨ b) = @sib. Hence, by (ii), @sia∨@sib =
@sib, which means that @sia ≤ @sib.

Proposition 2.2.3. Let A be an orthodox interpretation of H(@), and let a be an element of
A and si the constant interpretation of i. Then @sia = > iff si ≤ a and @sia = ⊥ iff si ≤ ¬a.

Proof. First, assume @sia = >. Then ¬@sia = ⊥, and so @si¬a = ⊥. But si ∧ ¬a ≤ @si¬a,
so si ∧ ¬a ≤ ⊥. Hence, si ∧ ¬a = ⊥, which means that si ≤ a.

For the converse, assume si ≤ a. Then si ∨ a = a, and so @si(si ∨ a) = @sia. Hence, by
Lemma 2.2.2, @sisi ∨@sia = @sia. Now, since @sisi = >, it follows that @sia = >.

Next, assume @sia = ⊥. Then we have si ∧ a ≤ ⊥, which gives si ∧ a = ⊥. But then
si ≤ ¬a, as required.

Conversely, suppose si ≤ ¬a. By the monotonicity of @, @sisi ≤ @si¬a, and so, since
@sisi = >, @si¬a = >. Hence, ¬@sia = >, and so @sia = ⊥.
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As for the language H, the second type of algebraic semantics for H(@) dually corresponds
to two-sorted general frames where the nominals are seen as special variables ranging over a
subset of the atoms of the algebra.

Definition 2.2.4 (Hybrid @-algebras). A hybrid @-algebra is a pair A = (A, XA), where
A = (A,∧,∨,¬,⊥,>,3,@) such that (A,∧,∨,¬,⊥,>,3) is a BAO containing at least one
atom, XA is non-empty subset of atoms of A, @ is a binary operator whose first coordinate
ranges over XA and the second coordinate over all elements of the algebra, and for all a, b ∈ A
and all x, y ∈ XA the following holds:

(K @) @x(¬a ∨ b) ≤ ¬@xa ∨@xb,

(self -dual) ¬@xa = @x¬a,

(agree) @x@ya ≤ @ya,

(ref ) @xx = >,

(introduction) x ∧ a ≤ @xa, and

(back) 3@xa ≤ @xa.

We will denote the class of hybrid @-algebras by H@A.
Proposition 2.2.5 below tells us that the @ operator behaves correctly in hybrid @-algebras.

More precisely, it characterizes hybrid @-algebras.

Proposition 2.2.5. Let A = (A, XA), where A = (A,∧,∨,¬,⊥,>,3,@), (A,∧,∨,¬,⊥,>,3)
is a BAO, XA is non-empty subset of atoms of A, and @ is a binary operator whose first
coordinate ranges over XA and the second coordinate over all elements of the algebra. Then
A is a hybrid @-algebra iff for all x ∈ XA and a ∈ A, @xa = > iff x ≤ a and @xa = ⊥ iff
x � a.

Proof. The proof of the left-to-right direction is similar to that of Proposition 2.2.3. For
the converse direction, we have to show that @ satisfies (K@), (self -dual), (agree), (ref ),
(introduction), and (back).

(K@) Let x ∈ XA and a, b ∈ A, and assume x ≤ ¬a ∨ b. Then @x(¬a ∨ b) = >. But
since x is an atom, x ≤ ¬a or x ≤ b. Hence, x � a or x ≤ b, and so @xa = ⊥ or @xb = >.
We then have ¬@xa = > or @xb = >, which means that ¬@xa ∨ @xb = >. Therefore,
@x(¬a ∨ b) ≤ ¬@xa ∨ @xb, as required. On the other hand, if x � ¬a ∨ b, @x(¬a ∨ b) = ⊥,
which gives @x(¬a ∨ b) ≤ ¬@xa ∨@xb.

(self -dual) Let x ∈ XA and b ∈ A, and assume x ≤ b. Then @xb = >, and so ¬@xb = ⊥.
But x ≤ b implies x � ¬b, which means that @x¬b = ⊥. Hence, ¬@xb = @x¬b. On the other
hand, if x � b, then @xb = ⊥, which gives ¬@xb = >. But we know from x � b that x ≤ ¬b,
so @x¬b = >.

(agree) Let x, y ∈ XA and b ∈ A, and assume y ≤ b. Then @yb = >, and so @x@yb ≤ @yb.
On the other hand, if y � b, @yb = ⊥, which means that @x@yb = @x⊥ = ⊥. Hence,
@x@yb ≤ @yb.
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(ref ) We have x ≤ x for all x ∈ XA, so @xx = >.
(introduction) Let x ∈ X and b ∈ A, and assume x ≤ b. Then @xb = >, and so x∧b ≤ @xb.

If x � b, x ∧ b = ⊥ and @xb = ⊥, which gives x ∧ b ≤ @xb.
(back) Let x ∈ XA and b ∈ A. If x ≤ b, then @xb = >, which means that 3@xb ≤ @xb.

On the other hand, assume x � b. Then we have @xb = ⊥, and so we get 3@xb = 3⊥ = ⊥.
Therefore, 3@xb ≤ @xb.

Note that if A is an orthodox interpretation for H(@), then it is not necessarily the
case that @sia = ⊥ iff si � a. To see this, consider the orthodox interpretation A =
(2,3,@, {sj}j∈NOM), where 2 is the two element Boolean algebra, 30 = 0, 31 = 1, sj = 0,
and si = 0 for i 6= j. Then @sj¬sj = ¬@sjsj = ¬1 = 0 but sj = 0 ≤ 1 = ¬sj. This further
motivates our choice to work with hybrid algebras instead of orthodox interpretations.

Let us now give a few examples of hybrid @-algebras.

Example 2.2.6. The structure A = (2,3,@, {1}), where 2 and 3 are defined as in Example
2.1.3, @10 = 0, and @11 = 1, is clearly a hybrid @-algebra.

Example 2.2.7. The structure A = (A,∩,∪,−,∅,Z, f,@, XA), where (A,∩,∪,−,∅,Z, f)
and XA are defined as in Example 2.1.5, and

@{x}X =

{
Z if x ∈ XA

∅ otherwise

is a hybrid @-algebra. This is immediate from Proposition 2.2.5.

Example 2.2.8. The structure A = (A,∩,∪,−,∅, ω+ 1∪{ω+ 1}, f,@, XA), where A, f and
XA are defined as in Example 2.1.7, and for all {x} ∈ XA and A ∈ A,

@{x}A =

{
ω + 1 ∪ {ω + 1} if {x} ⊆ A
∅ otherwise,

is a hybrid @-algebra.

Example 2.2.9. Let g = (W,R,A,B) be a two-sorted general frame. Then the structure

g∗ = (A,∩,∪,−,∅,W, 〈R〉,@, XB),

where XB = {{w} | w ∈ B}, and for {w} ∈ XB,

@{w}a =

{
W if {w} ⊆ a
∅ otherwise,

is a hybrid @-algebra. This algebra is called the underlying hybrid @-algebra of g.

In general, Proposition 2.2.5 tells us that any hybrid algebra can be turned into a hybrid
@-algebra by adding an operation @ defined as in the above examples to the hybrid algebra.
H(@)-terms are interpreted in hybrid @-algebras A = (A, XA) in the usual way, but

subject to the constraint that nominals range over XA, while the propositional variables
range over all elements of the algebra. Formally:
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Definition 2.2.10. Let A = (A, XA) be a hybrid @-algebra. An assignment on A is a map
v: PROP ∪NOM→ A associating an element of A with each propositional variable in PROP
and an atom of XA with each nominal in NOM. Given such an assignment v, we calculate
the meaning ṽ(t) of a term t as follows:

ṽ(⊥) = ⊥
ṽ(p) = v(p),

ṽ(j) = v(j),

ṽ(¬ψ) = ¬ṽ(ψ),

ṽ(ψ1 ∧ ψ2) = ṽ(ψ1) ∧ ṽ(ψ2),

ṽ(3ψ) = 3ṽ(ψ), and

ṽ(@jψ) = @ṽ(j)ṽ(ψ).

An equation ϕ ≈ ψ is true in a hybrid @-algebra A (denoted A |= ϕ ≈ ψ), if for all
assignments θ, θ̃(ϕ) = θ̃(ψ). A set E of equations is true in a hybrid @-algebra A (denoted
A |= E), if each equation in E is true in A. An equation ϕ ≈ ψ is a semantic consequence of
a set E of equations (denoted E |= ϕ ≈ ψ), if for any hybrid @-algebra A such that A |= E,
A |= ϕ ≈ ψ.

2.2.2 Operations on hybrid @-algebras

Homomorphisms between hybrid @-algebras

Definition 2.2.11 (Homomorphisms). Let A = (A, XA) and B = (B, XB) be two hybrid
@-algebras. A map h: A → B is called a homomorphism between A and B if h is a homo-
morphism between (A,∧,∨,¬,⊥,>,3) and (B,∧,∨,¬,⊥,>,3), h maps elements of XA to
elements of XB, and for all x ∈ XA and a ∈ A,

h(@xa) = @h(x)h(a).

We say that h is a surjective homomorphism, if h is surjective from A onto B, and furthermore,
h is surjective from XA onto XB. B is a homomorphic image of A (denoted A � B), if there
is a surjective homomorphism h from A onto B. We say that A is embeddable in B (denoted
A � B), if there is an injective homomorphism h from A to B. If a homomorphism is both
surjective and injective, then it is called an isomorphism. Finally, A and B are isomorhic, if
there is an isomorphism h between A and B.

The validity of H(@)-formulas is also preserved under homomorphic images of hybrid
@-algebras.

Proposition 2.2.12. Let A = (A, XA) and B = (B, XB) be two hybrid @-algebras. If
A � B, then B |= ϕ ≈ ψ whenever A |= ϕ ≈ ψ.

The proof of this is similar to that of Proposition 2.1.11.
In a similar way as in Proposition 2.1.12, we can show that the validity of H(@)-formulas

is transferred from superalgebras to subalgebras.
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Proposition 2.2.13. Let A = (A, XA) and B = (B, XB) be two hybrid @-algebras. If
A � B, then A |= ϕ ≈ ψ whenever B |= ϕ ≈ ψ.

Products of hybrid @-algebras

Unlike for hybrid algebras, we cannot form the product of hybrid @-algebras. To see why,
consider the hybrid @-algebras A = (A, XA) and B = (B, XB), and let

A×B = (A×B, XA×B),

where A × B is defined as usual and XA×B is defined as in Definition 2.1.13. But then
@(⊥,x)(a, b) = (@⊥a,@xb), which is undefined since @⊥a is not defined in A. Note that if ⊥
was in XA, we would not have had this problem. So can we form the product of grounded
hybrid @-algebras (a grounded hybrid @-algebra is just like a hybrid @-algebra A = (A, XA),
except that ⊥ is also included in the set XA)? The answer is no. The reason for this is that
grounded hybrid @-algebras are actually not defined. To see this, note that @⊥⊥ = > by
(ref ). But we also have

@⊥⊥ = @⊥(a ∧ ¬a) = @⊥a ∧@⊥¬a = @⊥a ∧ ¬@⊥a = > ∧⊥ = ⊥,

which is a contradiction.

2.2.3 Permeated hybrid @-algebras

Algebraically, H+(@)Σ is characterized by classes of permeated hybrid @-algebras (see Sub-
section 3.5). A permeated hybrid @-algebra (PH(@)A) is a hybrid @-algebra satisfying the
same conditions as in Definition 2.1.20. The hybrid @-algebras in Examples 2.2.6 and 2.2.8
are both permeated.

2.2.4 Duality between two-sorted general frames and hybrid @-algebras

Theorem 2.2.14 below give a concise formulation of the basic relationships between hybrid
@-algebras and two-sorted general frames. The proof of Theorem 2.2.14 follows immediately
from Propositions 2.2.15 and 2.2.16. The definition of a two-sorted general ultrafilter frame
of a hybrid @-algebra is unchanged.

Theorem 2.2.14. Let g and h be two two-sorted general frames, and A and B two hybrid
@-algebras.

(i) If g � h, then h∗ � g∗.

(ii) If g � h, then h∗ � g∗.

(iii) If A � B, then B∗ � A∗.

(iv) If A � B, then B∗ � A∗.
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Recall that if g = (W,R,A,B) and h = (W ′, R′, A′, B′) are two two-sorted general frames,
and g is a map between W and W ′, then its dual g∗: A′ → P(W ) is defined as

g∗(a′) := g−1[a′] (= {w ∈W | g(w) ∈ a′}).

Proposition 2.2.15. Let g = (W,R,A,B) and h = (W ′, R′, A′, B′) be two-sorted general
frames, g∗ = (A,∩,∪,−,∅,W, 〈R〉,@, XB) and h∗ = (A′,∩,∪,−,∅,W ′, 〈R′〉,@, XB′) their
underlying hybrid @-algebras, and g a map from W to W ′.

(i) If g is a bounded morphism between g and g′, g∗ maps elements of A′ to elements of A.

(ii) If g is a bounded morphism, then g∗ is a homomorphism between h∗ to g∗.

(iii) If g is an embedding, then g∗ is a surjective homomorphism.

(iv) If g is surjective, then g∗ is injective.

Proof. The proof of this is the same as that of Proposition 2.1.30, all we have to check is that
g∗ respects @ to complete the proof of item (ii). So let {w′} ∈ XB′ and a′ ∈ A′, and consider
the following two cases:

Case 1: {w′} ⊆ a′. Then g∗(@{w′}a
′) = g∗(W ′) = W . We now claim that g∗({w′}) ⊆

g∗(a′). To see this, let w ∈ g∗({w′}). Then we have g(w) = w′, and so, since {w′} ⊆ a′,
g(w) ∈ a′. Hence, w ∈ g∗(a′), which means g∗({w′}) ⊆ g∗(a′). But then @g∗({w′})g

∗(a′) = W
by Proposition 2.2.5, and therefore g∗(@{w′}a

′) = @g∗({w′})g
∗(a′).

Case 2: {w′} * a′. Here g∗(@{w′}a
′) = g∗(∅) = ∅. We now claim that g∗({w′}) * g∗(a′).

Let w ∈ g∗({w′}). Then g(w) = w′, and so, since {w′} ⊆ −a′, g(w) ∈ −a′. Hence, w ∈
g∗(−a′). But g∗ is a Boolean homomorphism, so w ∈ −g∗(a′), which means g∗({w′}) * g∗(a′).
We thus have that @g∗({w′})g

∗(a′) = ∅ by Proposition 2.2.5, and therefore g∗(@{w′}a
′) =

@g∗({w′})g
∗(a′).

If A = (A, XA) and B = (B, XB) are two hybrid @-algebras, and h is a map from A to
B, then its dual h∗ is the map from Uf B to P(A) defined as

h∗(u
′) := h−1[u′] (= {a ∈ A | h(a) ∈ u′}).

Proposition 2.2.16. Let A = (A, XA) and B = (B, XB) be two hybrid @-algebras, A∗ =
(Uf A, Q3, Â,XA ↑) and B∗ = (Uf B, Q′3, B̂,XB ↑) their two-sorted general ultrafilter frames,
and h a map from A to B.

(i) If h is a homomorphism, then h∗ maps ultrafilters to ultrafilters.

(ii) If h is a homomorphism, then h∗ is a bounded morphism from B∗ to A∗.

(iii) If h is a surjective homomorphism, then h∗ is an embedding.

(iv) If h is an embedding, then h∗ is a surjective.
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Proof. The proof of this proposition is the same as that of Proposition 2.1.34.

As expected, descriptive two-sorted general frames and hybrid @-algebras are also duals.

Theorem 2.2.17. Let A = (A, XA) be a hybrid @-algebra, and g = (W,R,A,B) a two-sorted
general frame. Then

(i) A∗ is a descriptive two-sorted general frame,

(ii) (A∗)
∗ ∼= A, and

(iii) (g∗)∗ ∼= g iff g is descriptive.

Proof. The proof of this is the same as that of Proposition 2.1.40. The only item that needs
a bit more work is item (ii), so recall the map h: A → Â defined by h(a) = â. We have to
make sure that h also respects @. So let x ∈ XA and a ∈ A, and consider the following two
cases:

Case 1: x ≤ a. In this case, by Proposition 2.2.5, h(@xa) = h(>) = Uf A. To show that
@h(x)h(a) = Uf A, we prove that x̂ ⊆ â. So let u ∈ x̂. Then x ∈ u, and so, since x ≤ a and
u is upward closed, a ∈ u. Hence, u ∈ â. We therefore have @h(x)h(a) = @x̂â = Uf A, which
gives h(@xa) = @h(x)h(a).

Case 2: x � a. Here we have h(@xa) = h(⊥) = ∅. We claim that x̂ * â. To see this,
let u ∈ x̂. Then x ∈ u. But x is an atom and x � a, so x ≤ ¬a. Since u is upward
closed, ¬a ∈ u. Hence, a /∈ u, and so, u /∈ â. Now, @h(x)h(a) = @x̂â = ∅, and therefore,
h(@xa) = @h(x)h(a).

Likewise, permeated hybrid @-algebras and strongly descriptive two-sorted general frames
are each others duals.

Theorem 2.2.18. Let A = (A, XA) be a permeated hybrid @-algebra, and g = (W,R,A,B)
a two-sorted general frame. Then

(i) A∗ is a strongly descriptive two-sorted general frame,

(ii) (A∗)
∗ ∼= A, and

(iii) (g∗)∗ ∼= g iff g is strongly descriptive.

2.3 Hybrid algebras for H(E) and the operations on them

2.3.1 Hybrid algebras for H(E)

As in the previous sections, we begin with the definition of an orthodox interpretation of
H(E). But first, we define the dual operator A of E: Aa := ¬E¬a.
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Definition 2.3.1 (Orthodox interpretations). An orthodox interpretation of H(E) is an
algebra A = (A,∧,∨,¬,⊥,>,3,E, {si}i∈NOM), where (A,∧,∨,¬,⊥,>,3) is a BAO, E is a
unary operation, each si is the interpretation of the nominal i as a constant (i.e., a nullary
operation), and A is required to validate the following for all i ∈ NOM:

(KE) A(¬a ∨ b) ≤ ¬Aa ∨ Ab,

(reflE) a ≤ Ea,

(transE) EEa ≤ Ea,

(symE) a ≤ AEa,

(incl) Esi = >,

(nomE) E(si ∧ a) ≤ A(¬si ∨ a), and

(incl3) 3a ≤ Ea.

Definition 2.3.2 (Hybrid E-algebras). A hybrid E-algebra is a pair A = (A, XA), where
A = (A,∨,∧,¬,⊥,>,3,E) such that (A,∨,∧,¬,⊥,>,3) is a BAO containing at least one
atom, XA is a non-empty subset of the set of atoms of A, and for all a ∈ A,

Ea =

{
> if a > ⊥
⊥ otherwise.

Note that the algebra A = (A,∨,∧,¬,⊥,>,3,E) is defined in the same way as Goranko and
Passy’s definition of a model algebra with the additional operator E in [52]. Finally, we will
denote the class of hybrid E-algebras by HEA.

Proposition 2.3.3. Let A = (A, XA) be a hybrid E-algebra. For all a ∈ A,

Aa =

{
> if a = >
⊥ otherwise.

Proof. Let a ∈ A such that a = >. Then we have ¬a = ⊥, which means that E¬a = ⊥.
Hence, ¬E¬a = >, and so, since Aa = ¬E¬a, Aa = >. On the other hand, if a 6= >, then
¬a 6= ⊥, which means E¬a = >. Therefore, ¬E¬a = ⊥, and so Aa = ⊥.

Proposition 2.3.4. Let A = (A, XA) be a hybrid E-algebra. For all a, b ∈ A and x ∈ X, the
following holds:

(KE) A(¬a ∨ b) ≤ ¬Aa ∨ Ab,

(reflE) a ≤ Ea,

(transE) EEa ≤ Ea,

(symE) a ≤ AEa,



Chapter 2. Hybrid algebras 72

(incl) Ex = >,

(nomE) E(x ∧ a) ≤ A(¬x ∨ a), and

(incl3) 3a ≤ Ea.

Proof. (KE) First, if a = > and b = >, then ¬Aa ∨ Ab = ⊥ ∨ > = >. Hence, A(¬a ∨ b) ≤
¬Aa ∨ Ab, as required. If we have a = > and b 6= >, then ¬Aa ∨ Ab = ⊥ ∨ ⊥ = ⊥. But we
also then have A(¬a∨ b) = A(⊥∨ b) = Ab = ⊥, so again A(¬a∨ b) ≤ ¬Aa∨Ab. If a 6= > and
b = >, then ¬Aa∨Ab = >∨> = >, which gives A(¬a∨ b) ≤ ¬Aa∨Ab. Finally, if a 6= > and
b 6= >, then ¬Aa ∨ Ab = > ∨⊥ = >, and so A(¬a ∨ b) ≤ ¬Aa ∨ Ab.

(reflE) First, assume a > ⊥. Then Ea = >, and so we have a ≤ Ea. On the other hand,
if a = ⊥, then Ea = ⊥, which clearly means that a ≤ Ea.

(transE) Assume a > ⊥. Then we have EEa = E> = > and Ea = >. For a = ⊥, we have
EEa = E⊥ = ⊥ and Ea = ⊥.

(symE) If a > ⊥, AEa = A> = >, so clearly, a ≤ AEa. On the other hand, if a = ⊥,
AEa = A⊥ = ⊥, which means that a ≤ AEa.

(incl) Since x is an atom, x > ⊥, so, by definition, Ex = >.
(nomE) Assume x ∧ a > ⊥. Then E(x ∧ a) = > by definition. But since x is an atom, we

have x ≤ a, which means that ¬x ∨ a = >. Hence, A(¬x ∨ a) = >. Now, assume x ∧ a = ⊥.
Then E(x ∧ a) = ⊥, which clearly gives E(x ∧ a) ≤ A(¬x ∨ a).

(incl3) If a > ⊥, Ea = >, so 3a ≤ Ea. On the other hand, if a = ⊥, 3a = ⊥ and Ea = ⊥,
which means 3a ≤ Ea.

Example 2.3.5. The structure A = (2,3,E, {1}), where 2 and 3 are defined as in Example
2.1.3, E0 = 0, and E1 = 1, is clearly a hybrid E-algebra.

Example 2.3.6. The structure A = (A,∩,∪,−,∅, ω+ 1∪{ω+ 1}, f,E, XA), where A, f and
XA are defined as in Example 2.1.7, and

EA =

{
ω + 1 ∪ {ω + 1} if A 6= ∅
∅ otherwise,

is a hybrid E-algebra.

In general, we can turn any hybrid algebra into a hybrid E-algebra by simply adding an
operation E defined as in Definition 2.3.2 to the hybrid algebra.

We also interpret H(E)-terms in hybrid E-algebras A = (A, XA) in the usual way but
subject to the constraint that nominals range over XA, while the propositional variables
range over all elements of the algebra.

Definition 2.3.7. An assignment on A = (A, XA) is a function v: PROP ∪ NOM → A
associating an element of A with each propositional variable in PROP and an atom of XA

with each nominal in NOM. Given such an assignment v, we calculate the meaning ṽ(t) of a
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term t as follows:

ṽ(⊥) = ⊥
ṽ(p) = v(p),

ṽ(j) = v(j),

ṽ(¬ψ) = ¬ṽ(ψ),

ṽ(ψ1 ∧ ψ2) = ṽ(ψ1) ∧ ṽ(ψ2),

ṽ(3ψ) = 3ṽ(ψ), and

ṽ(Eψ) = Eṽ(ψ).

An equation ϕ ≈ ψ is true in a hybrid E-algebra A (denoted A |= ϕ ≈ ψ), if for all
assignments θ, θ̃(ϕ) = θ̃(ψ). A set E of equations is true in a hybrid E-algebra A (denoted
A |= E), if each equation in E is true in A. An equation ϕ ≈ ψ is a semantic consequence of a
set E of equations (denoted E |= ϕ ≈ ψ), if for any E-algebra A such that A |= E, A |= ϕ ≈ ψ.

2.3.2 Operations on hybrid E-algebras

Homomorphisms between hybrid E-algebras

Definition 2.3.8 (Homomorphisms). Let A = (A, XA) and B = (B, XB) be two hybrid
E-algebras. A map h: A → B is called a homomorphism between A and B if h is a homo-
morphism between (A,∧,∨,¬,⊥,>,3) and (B,∧,∨,¬,⊥,>,3), h maps elements of XA to
elements of XB, and for all a ∈ A,

h(Ea) = Eh(a).

We say that h is a surjective homomorphism, if h is surjective from A onto B, and furthermore,
h is surjective from XA onto XB. B is a homomorphic image of A (denoted A � B), if there
is a surjective homomorphism h from A onto B. We say that A is embeddable in B (denoted
A � B), if there is an injective homomorphism h from A to B. If a homomorphism is both
surjective and injective, then it is called an isomorphism. Finally, A and B are isomorhic, if
there is an isomorphism h between A and B.

The validity of H(E)-formulas is also preserved under homomorphic images.

Proposition 2.3.9. Let A = (A, XA) and B = (B, XB) be two hybrid E-algebras. If A � B,
then B |= ϕ ≈ ψ whenever A |= ϕ ≈ ψ.

The proof of this is the same as that of Proposition 2.1.11.
As in Proposition 2.1.12, we can also show that the validity ofH(E)-formulas is transferred

from superalgebras to subalgebras.

Proposition 2.3.10. Let A = (A, XA) and B = (B, XB) be two hybrid E-algebras. If
A � B, then A |= ϕ ≈ ψ whenever B |= ϕ ≈ ψ.
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Products of hybrid E-algebras

As in the case for hybrid @-algebras, we cannot form the product of hybrid E-algebras. To
see why, consider the hybrid E-algebras A = (A, XA) and B = (B, XB), and let A × B =
(A×B, XA×B), where A×B is defined as usual and XA×B is defined as in Definition 2.1.13.
Now, note that (>,⊥) 6= (⊥,⊥) but E(>,⊥) = (E>,E⊥) = (>,⊥) 6= (>,>). This means that
A×B is therefore not a hybrid E-algebra.

2.3.3 Permeated hybrid E-algebras

A permeated hybrid E-algebra (PH(E)A) is a hybrid E-algebra satisfying the same conditions
as in Definition 2.1.20. The class of permeated hybrid E-algebras will be denoted by PHEA.

The hybrid E-algebra in Example 2.3.5 is clearly permeated. Also recall that the hybrid
algebra in Example 2.1.7 is permeated (see Example 2.1.23), so the hybrid E-algebra in
Example 2.3.6 is also permeated.

2.3.4 Duality between two-sorted general frames and hybrid E-algebras

Consider the two-sorted general frames g = (W,R,A,B) and h = (W ′, R′, A′, B), where
W = {u, v}, R = {(u, v), (v, u)}, A = {∅, {u}, {v}, {u, v}}, B = {u, v}, W ′ = {u, v, w},
R = {(u, v), (v, u)}, A = {∅, {u}, {v}, {w}, {u, v}, {u,w}, {v, w}, {u, v, w}}, and B′ = {u, v}
(see Figure 2.2). Now, it is easy to see that g can be embedded into h: take the map
g: W → W ′ to be the identity map. But then h 
 E¬3>, while g 1 E¬3>. How-
ever, we know from Proposition 2.3.9 that the validity of H(E)-formulas is preserved under
taking homomorphic images. It turns out that the dual g∗ (see below) does not preserve
E, and is therefore not a homomorphism between g∗ = (A,∩,∪,−,∅,W, 〈R〉,E, XB) and
h∗ = (A′,∩,∪,−,∅,W ′, 〈R′〉,E, XB′). So unlike for hybrid algebras and hybrid @-algebras,
embeddings between two-sorted general frames and homomorphic images between hybrid E-
algebras are not each others duals. However, all is not lost: if there is an isomorphism g
between two two-sorted general frames, then we can show that g∗ respects E. In other words,
isomorphisms between two-sorted general frames correspond to homomorphic images. The
other link is the same as before, i.e. bounded morphic images correspond to embeddings
between hybrid E-algebras. Theorem 2.3.11 below give a concise formulation of the basic
links between hybrid E-algebras and two-sorted general frames. The proof of Theorem 2.3.11
follows immediately from Propositions 2.3.12 and 2.3.13.

u

v

u

v

w

g h

Figure 2.2: An embedding between two-sorted general frames
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Theorem 2.3.11. Let g and h be two two-sorted general frames, and A and B two hybrid
E-algebras.

(i) If g � h, then h∗ � g∗.

(ii) If g ∼= h, then h∗ ∼= g∗.

(iii) If A � B, then B∗ � A∗.

(iv) If A � B, then B∗ ∼= A∗.

Recall that if g = (W,R,A,B) and h = (W ′, R′, A′, B′) are two two-sorted general frames,
and g is a map between W and W ′, then its dual g∗: A′ → P(W ) is defined as

g∗(a′) := g−1[a′] (= {w ∈W | g(w) ∈ a′}).

Proposition 2.3.12. Let g = (W,R,A,B) and h = (W ′, R′, A′, B′) be two-sorted general
frames, g∗ = (A,∩,∪,−,∅,W, 〈R〉,E, XB) and h∗ = (A′,∩,∪,−,∅,W ′, 〈R′〉,E, XB′) their
underlying hybrid E-algebras, and g a map from W to W ′.

(i) If g is a bounded morphism between g and g′, g∗ maps elements of A′ to elements of A.

(ii) If g is a surjective bounded morphism, then g∗ is an injective homomorphism between
h∗ to g∗.

(iii) If g is a bijective bounded morphism, then g∗ is a bijective homomorphism between h∗

to g∗.

Proof. (i) The proof of this is the same as that of item (i) of Proposition 1.1.51.
(ii) We only show that g∗ respects E as the rest of the proof is the same as that of items

(ii) and (iv) of Proposition 1.1.51.

Case 1: a′ = ∅. Then g∗(Ea′) = g∗(∅) = ∅ and Eg∗(∅) = E∅ = ∅.

Case 2: a′ 6= ∅. Here g∗(Ea′) = g∗(W ′) = W . We now claim that g∗(a′) 6= ∅. We know
that from a′ 6= ∅, there is some w′ ∈ W ′ such that w′ ∈ a′. But since g is surjective, there
is some w ∈ W such that g(w) = w′. Hence, g(w) ∈ a′, which means that w ∈ g∗(a′). We
therefore have that Eg∗(a′) = W , and so g∗(Ea′) = Eg∗(a′).

(iii) First, using the injectivity of g, we can show that g∗ is surjective in the same way as
in the proof of item (iii) of Proposition 1.1.51. The surjectivity of g is used to prove that g∗

is injective in the same way as in the proof of item (iv) of Proposition 1.1.51. We also use the
surjectivity of g to prove that g∗ respects E. The fact that g∗ respects the other operations
is proved in the same way as in the proof of item (ii) of Proposition 1.1.51.

If A = (A, XA) and B = (B, XB) are two hybrid E-algebras, and h is a map from A to
B, then its dual h∗ is the map from Uf B to P(A) defined as

h∗(u
′) := h−1[u′] (= {a ∈ A | h(a) ∈ u′}).
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Proposition 2.3.13. Let A = (A, XA) and B = (B, XB) be two hybrid E-algebras, A∗ =
(Uf A, Q3, Â,XA ↑) and B∗ = (Uf B, Q′3, B̂,XB ↑) their two-sorted general ultrafilter frames,
and h a map from A to B.

(i) If h is a homomorphism, then h∗ maps ultrafilters to ultrafilters.

(ii) If h is a homomorphism, then h∗ is a bounded morphism from (Uf B, Q′3) to (Uf A, Q3).

(iii) If h is a surjective homomorphism, then h∗ is bijective.

(iv) If h is an embedding, then h∗ is a surjective.

Proof. Since the definition of a bounded morphism does not involve the global modality, all
items, except (iii), has been proved in Proposition 1.1.52. So let us move on to (iii). The
injectivity of h∗ is also proved in the same way as in item (iii) of Proposition 1.1.52. For the
surjectivity, let u be an ultrafilter of A, and define

F := {h(a) | a ∈ u}.

Now, h∗(F ) might not be defined, the reason being that F might not be upward closed, and
therefore not an ultrafilter, while h∗ is only defined on ultrafilters. So let

F ′ := {a′ | ∃a ∈ u(h(a) ≤ a′)}.

In the same way as in the proof of Proposition 5.52 in [10], we can show that F ′ is a filter.
To show that F ′ is proper, suppose ⊥ ∈ F ′. Then h(a) = ⊥ for some a ∈ u. Hence,
Eh(⊥) = h(E⊥) = ⊥, which means that a = ⊥, for if not Ea = >, and so h(Ea) = h(>) = >,
a contradiction. But then ⊥ ∈ u, contradicting the fact that u is an ultrafilter. Now, by the
Ultrafilter Theorem, F ′ can be extended to an ultrafilter u′. The fact that h∗(u

′) = u can be
proved in the same way as in the proof of Proposition 5.52 in [10].

As for the cases of hybrid algebras and hybrid @-algebras, hybrid E-algebras and per-
meated hybrid E-algebras correspond to descriptive two-sorted general frames and strongly
descriptive two-sorted general frames, respectively.

Theorem 2.3.14. Let A = (A, XA) be a hybrid E-algebra, and g = (W,R,A,B) a two-sorted
general frame. Then

(i) A∗ is a descriptive two-sorted general frame,

(ii) (A∗)
∗ ∼= A, and

(iii) (g∗)∗ ∼= g iff g is descriptive.

Proof. The proofs of items (i) and (iii) are same as that of items (i) and (iii) of Theorem
2.1.40. For item (ii), let h: A → Âbe defined by h(a) = â. We have to show that h is an
isomorphism. But we only show that h respects E since the rest of the proof is the same as
that of item (ii) of Proposition 2.1.40. So let a ∈ A, and consider the following cases:
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Case 1: a = ⊥. Then h(Ea) = h(⊥) = ⊥̂ = ∅ = E∅ = E⊥̂ = Eh(a).

Case 2: a 6= ⊥. In this case h(Ea) = h(>) = Uf A. But we also have that h(a) 6= ∅.
To see this, recall that a ↑∈ â, so a ↑∈ h(a). Hence, Eh(a) = Uf A, which means that
h(Ea) = Eh(a).

Theorem 2.3.15. Let A = (A, XA) be a permeated hybrid E-algebra, and g = (W,R,A,B)
a two-sorted general frame. Then

(i) A∗ is a strongly descriptive two-sorted general frame,

(ii) (A∗)
∗ ∼= A, and

(iii) (g∗)∗ ∼= g iff g is strongly descriptive.





Chapter 3
Completeness with respect to hybrid
algebras

Now that we know which kinds of algebras correspond to the hybrid logics in Chapter 1,
our next goal is to put these algebras to the test and see what uses they have in terms of
solving logical problems in the field of hybrid logic. In this chapter, we focus on proving
algebraic completeness for each of the hybrid logics defined in Chapter 1. The general pattern
is as follows: the axiomatizations without the additional ‘non-orthodox’ rules are complete
with respect to the class of hybrid algebras, whereas the axiomatizations with the additional
‘non-orthodox’ rules are complete with respect to the class of permeated hybrid algebras.
Combining the results in this chapter with our duality results in Chapter 2, we see that the
axiomatizations without the additional ‘non-orthodox’ rules are complete with respect to the
class of descriptive two-sorted general frames, while the axiomatizations with the additional
‘non-orthodox’ rules are complete with respect to the class of strongly descriptive two-sorted
general frames, thus reaffirming Ten Cate’s completeness results in [72].

3.1 Algebraic completeness of H⊕ Σ

Recall that in Subsection 1.1.4 we showed that modal logics are complete with respect Boolean
algebras with operators by making use of the Lindenbaum-Tarski method. One naturally
wonders if the same method can be applied to show that hybrid logics are complete with
respect to hybrid algebras. The answer is no. For this to work, the equivalence classes [i],
i ∈ NOM, must be atoms of the Lindenbaum-Tarski algebra. Actually, the sorted substitution
rule tells us that it is enough for only one such equivalence class to be an atom. However,
for all j ∈ NOM, [j] is not an atom of the Lindenbaum-Tarski algebra. To see this, note for
instance that `H⊕Σ j ∧ j↔ j, which means that j ∧ j ∈ [j] for all j ∈ NOM. This implies that
for all j ∈ NOM, [j] is not a singleton. We must therefore find a different method of proving
completeness with respect to hybrid algebras.

This does not mean that we have to forget about the Lindenbaum-Tarski algebra com-
pletely. In our approach we temporarily interpret the nominals as modal constants and work

79
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with the orthodox Lindenbaum-Tarski-algebra of H⊕Σ over PROP. But since the interpreta-
tions of the nominals in the Lindenbaum-Tarski algebra are not atoms, the Lindenbaum-Tarski
algebra requires a bit of sculpting to change it into a hybrid algebra of the right kind. In
order to do this, we consider the canonical extension of the Lindenbaum-Tarski algebra. The
canonical extension provides us with two useful tools, namely, atomicity and the existence
of 3−1. Using the atomicity of the canonical extension, we get an atom in the canonical
extension. We then construct an algebra validating the axioms and refuting a non-theorem in
the same way as on page 63. Recall that closing under 3−1 lets us simulate taking generated
subframes algebraically. To be more precise, since we will be working with an algebra and
an assignment, we are actually simulating the process of taking generated submodels. It can
then be shown that the interpretation of a nominal in this algebra is either bottom or an
atom. Dropping the constant interpretations, we break the proof up into cases depending on
whether all the interpretations of the nominals are atoms or not. If all the interpretations of
the nominals are atoms, we can just declare all the constant interpretations of the nominals
as designated atoms, and we are done. On the other hand, for the cases where at least one
constant interpretation is ⊥ but not all, or all the constant interpretations are ⊥, we will
form a product of algebras that is a hybrid algebra validating the axioms and refuting a non-
theorem. It is here where the preservation of the validity of a hybrid formula under taking
the product of two hybrid algebras whose associated grounded hybrid algebras validates the
formula comes in.

So let us get to work. We first state and prove the main theorem, and consequently prove
the lemmas needed in it.

Theorem 3.1.1. For any set Σ of H-formulas, the logic H⊕ Σ is sound and complete with
respect to the class of all hybrid algebras which validate Σ. That is to say, `H⊕Σ ϕ iff
|=HA(Σ) ϕ ≈ >.

Proof. It is straightforward to check the “soundness” direction of the above. For the “com-
pleteness” direction, we prove the contrapositive. So suppose 0H⊕Σ ϕ. We need to find a
hybrid algebra A and an assignment v such that A, v 6|= ϕ ≈ >. For the purpose of this
proof, we will temporarily treat the nominals as modal constants and work with orthodox
interpretations of H.

Now, consider the orthodox Lindenbaum-Tarski algebra of H ⊕ Σ over PROP. For the
sake of brevity, we will denote this algebra simply by A. Note that [¬ϕ] > ⊥ in A, for
suppose not, then ¬ϕ ≡ ⊥, which means that `H⊕Σ ¬ϕ ↔ ⊥. Hence, `H⊕Σ ϕ ↔ >, and so
`H⊕Σ > → ϕ. But `H⊕Σ >, so, by (Modus Ponens), `H⊕Σ ϕ, which is a contradiction.

The fact that A validates precisely the theorems of H⊕Σ is proved in the usual way. To
see that A 6|= ϕ ≈ >, let ν be the map ν: PROP→ A defined by ν(p) = [p]. It can easily be
verified by straightforward structural induction that ν̃(ψ) = [ψ] for all formulas ψ that use
variables from the set PROP. But then ν̃(ϕ) = [ϕ] 6= [>] = ν̃(>), for otherwise, [ϕ] = [>],
which means that [¬ϕ] = [⊥], a contradiction.

Next, consider the orthodox canonical extension Aδ of A. First, note that since all
axioms of H are Sahlqvist under the orthodox interpretation, it follows from the canonicity
of Sahlqvist equations that Aδ |= H≈ (see Theorem 1.1.65). However, the validity of the
equations in Σ≈ is not necessarily preserved in passing from A to Aδ.
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We also know from Example 2.1.48 that 3 and 2 have right and left adjoints, respectively,
denoted by 2−1 and 3−1, respectively. Furthermore, [¬ϕ] > ⊥ in Aδ. So since Aδ is atomic,
there is some atom d in Aδ such that d ≤ [¬ϕ]. Denote d by d0. Suppose dn is already
defined, then let dn+1 = 3−1dn and

D =
∨
n∈N

dn.

Define

AD = (AD,∧D,∨D,¬D,⊥D,>D,3D, {sDj }j∈NOM),

where AD = {a ∧D | a ∈ A}, ∧D and ∨D are the restriction of ∧ and ∨ to AD, and

¬Da = ¬a ∧D 3Da = 3a ∧D
sDj = sj ∧D >D = D

⊥D = ⊥

Now, by Lemma 3.1.3, AD is an algebra. We also know from Lemma 3.1.4 that AD |=
H ⊕ Σ≈. To see that AD 6|= ϕ ≈ >, consider the assignment νD: PROP → AD given by
νD(p) = h(ν(p)). Using the fact that h is a homomorphism, we can show by structural
formula induction that ν̃D(ψ) = h(ν̃(ψ)) for all H-formulas ψ that use variables from PROP.
Now, since d ≤ D and d ≤ [¬ϕ],

ν̃D(¬ϕ) = h(ν̃(¬ϕ)) = ν̃(¬ϕ) ∧D = [¬ϕ] ∧D ≥ d > ⊥

Hence, ν̃D(¬ϕ) 6= ⊥d, and so ν̃D(ϕ) 6= D, i.e., ν̃D(ϕ) 6= ν̃D(>).
Now, if we can show that the constant interpretations of the nominals are atoms, we can

just drop the constant interpretations and put all sDi , i ∈ NOM, in our designated set of
atoms. However, this is not necessarily the case. By Lemma 3.1.6, sDi is either an atom or ⊥.
So let AD = (A−D, XAD), where A−D is the modal algebra reduct of AD obtained by omitting
the constant interpretations of nominals, and XAD = {sDi | sDi > ⊥}. But this is still not
necessarily a hybrid algebra since it is possible that X can be empty. In fact, we have three
possibilities, so our reasoning now splits into three cases depending on whether the constant
interpretations of nominals in AD are atoms or not:

Case 1: sDi > ⊥ for all i ∈ NOM. This is the simplest case. Since XAD 6= ∅, it follows
from the foregoing that AD is a hybrid algebra. Furthermore, since Σ is closed under sorted

substitution, AD |= Σ≈. To see that AD 6|= ϕ ≈ >, consider the assignment ν̃ ′D which extends
νD from PROP to PROP ∪ NOM, obtained by simply setting ν ′D(i) = sDi for each i ∈ NOM.

It is clear that ν̃ ′D(ψ) = ν̃D(ψ) for all H-formulas ψ, and hence, ν̃ ′D(ϕ) 6= ν̃ ′D(>).

Case 2: sDi = ⊥ for some i ∈ NOM but not all. From the foregoing, we know that
(AD)0 |= H⊕Σ≈, and hence, by Proposition, 2.1.16, AD×AD |= H⊕Σ≈. Now, let j ∈ NOM
such that sDj 6= ⊥. Then XAD×AD 6= ∅ since (⊥, sDj ) ∈ XAD×AD , so AD × AD is a hybrid
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algebra. Finally, consider the assignment ν ′′D obtained by setting ν ′′D(p) = (νD(p), νD(p)) for
all propositional variables p ∈ PROP, and

ν ′′D(i) =

{
(sDi ,⊥) if sDi > ⊥
(⊥, sDj ) if sDi = ⊥

for all nominals i ∈ NOM. It is straightforward to show (using structural induction) that for

any H-formula ψ, we have ν̃ ′′D(ψ) = (ν̃D(ψ), aψ), where aψ is some element of AD. But then

ν̃ ′′D(ϕ) = (ν̃D(ϕ), aϕ) 6= (ν̃D(>), D) = ν̃ ′′D(>) since ν̃D(ϕ) 6= ν̃D(>).

Case 3: sDi = ⊥ for all i ∈ NOM. In this case, XAD = ∅, so AD is not a hybrid algebra. So
lets get to work finding a hybrid algebra that will work here. First, we claim that [i] > ⊥ in A
for all i ∈ NOM. To see this, suppose [i] = ⊥. Then ` i↔ ⊥, and so ` ¬i↔ >. Hence, ` ¬i,
which means that ` ⊥ by the (NameLite) rule. However, this is a contradiction. We thus
also have that [i] > ⊥ in Aδ for all i ∈ NOM. Now, choose some nominal j ∈ NOM. Since Aδ

is atomic, there is an atom d′ in Aδ such that d′ ≤ [j]. So define D′ and AD′ in the same way
as D and AD. In the same way as for AD, we can prove that AD′ |= H⊕Σ≈, and that sD

′
i is

either ⊥ or an atom of AD′ . Define νD′ in the same way as νD. Note that we do not know if
AD′ , νD′ 6|= ϕ ≈ >. But this is not a problem as we will soon see. Now, let AD′ = (A−D′ , XAD′ )
where A−D′ is the reduct of AD′ obtained by omitting the constant interpretations of nominals,

and XAD′ = {sD′i | sD
′

i > ⊥}. We know that XAD′ 6= ∅ since at least sD
′

j 6= ⊥. Furthermore,
(AD′)0 |= H ⊕ Σ≈, and so, since (AD)0 |= H ⊕ Σ≈, AD × AD′ |= H ⊕ Σ≈ by Proposition
2.1.16. To show that AD × AD′ 6|= ϕ ≈ >, let ν ′′′ be defined by ν ′′′D(p) = (νD(p), νD′(p)) for
all propositional variables p ∈ PROP, and

ν ′′′D(i) =

{
(⊥, sD′i ) if sD

′
i > ⊥

(⊥, sD′j ) if sD
′

i = ⊥

for all nominals i ∈ NOM. Using formula induction, we can show that ν̃ ′′′D(ψ) = (ν̃D(ψ), a′ψ),

where a′ψ is some element in AD′ , for all H-formulas ψ. But then ν̃ ′′′D(ϕ) = (ν̃D(ϕ), a′ϕ) 6=
(ν̃D(>), D′) = ν̃ ′′′D(>) since ν̃D(ϕ) 6= ν̃D(>).

We will now prove the lemmas used in the proof of the above theorem. Unless stated
otherwise, in what follows A, Aδ, AD, ν and νD will be as in the proof of Theorem 3.1.1.
The first lemma we need is that AD is an algebra. To prove this, we have to show that AD is
closed under the operations defined in the proof of Theorem 3.1.1. But first we need to prove
the following lemma:

Lemma 3.1.2. D ≤ 2D
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Proof.

2D = 2
∨
n∈N

dn (by the definition of D)

≥
∨
n∈N

2dn (by the monotonicity of 2)

=

 ∨
n∈N−{0}

23−1dn−1

 ∨2d0 (by the definition of dn)

≥

 ∨
n∈N−{0}

23−1dn−1


≥

∨
n∈N−{0}

dn−1 (since 2 and 3−1 are adjoint)

= D (by the definition of D)

Lemma 3.1.3. AD is closed under the operations ∧D, ∨D, ¬D, and 3D.

Proof. The cases for ∧D and ∨D are straightforward, so we consider the cases for ¬D and
3D. Let a ∈ AD. Then a = a′ ∧D for some a′ ∈ A. Now, for ¬D,

¬Da = ¬(a′ ∧D) ∧D = (¬a′ ∨ ¬D) ∧D = (¬a′ ∧D) ∨ ⊥ = ¬a′ ∧D

But A is closed under ¬, so ¬a′ ∈ A, which means that ¬Da ∈ AD. Finally, for 3D,

3Da = 3(a′ ∧D) ∧D ≤ 3a′ ∧D,

and, conversely,

3Da = 3(a′ ∧D) ∧D
≥ 3a′ ∧2D ∧D
= 3a′ ∧D,

where the last step follows from Lemma 3.1.2. Hence, 3Da = 3a′ ∧ D, and so, since A is
closed under 3, 3a′ ∈ A. We thus have that 3Da ∈ Ad.

To show that the algebra AD validates the equations in H⊕ Σ≈, we prove that AD is a
homomorphic image of A.

Lemma 3.1.4. The map h: A→ AD defined by h(a) = a∧D is a surjective homomorphism
from A onto AD.
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Proof. First, h is clearly surjective. In verifying that h is a homomorphism, all cases except
those for ¬, and 3 are straightforward. The case for ¬ is proved as follows:

h(¬a) = ¬a ∧D
= (¬a ∧D) ∨ (¬D ∧D)

= (¬a ∨ ¬D) ∧D
= ¬(a ∧D) ∧D
= ¬D(a ∧D)

= ¬Dh(a)

The right-to-left inequality for 3 is proved as follows:

h(3a) = 3a ∧D
≥ 3(a ∧D) ∧D
= 3h(a) ∧D
= 3Dh(a),

where the inequality follows from the fact that a ∧ D ≤ a, and the monotonicity of 3.
Conversely,

3Dh(a) = 3(a ∧D) ∧D
≥ 3a ∧2D ∧D
= 3a ∧D
= h(3a)

Here the third step follows from Lemma 3.1.2.

Our next goal is to show that the constant interpretation of a nominal is either an atom
of AD or ⊥. But first, we need the following result:

Lemma 3.1.5. Let A be a BAO, and let a and b be atoms of the canonical extension Aδ of
A. Then a ≤ (3−1)mb iff b ≤ 3ma.

Proof. For the left-to-right direction, let a and b be two atoms in Aδ, and assume
a ≤ (3−1)mb. Suppose for the sake of a contradiction that b � 3ma. Then b ≤ ¬3ma, and
so 3ma ≤ ¬b. By the monotonicity of 2−1, 2−13ma ≤ 2−1¬b. But 3m−1a ≤ 2−133m−1a,
so 3m−1a ≤ 2−1¬b. Continuing this, we get that a ≤ (2−1)m¬b, which means that (3−1)mb
≤ ¬a. Hence, by our assumption, a ≤ ¬a, and so ⊥ = a ∧ ¬a = a, which is a contradiction.

For the converse, assume b ≤ 3ma, and suppose a � (3−1)mb. Then a ≤ ¬(3−1)mb, and
so (3−1)mb ≤ ¬a. Now, (3−1)m−1b ≤ 2(3−1)mb ≤ 2¬a. If we continue this, we get that
b ≤ 2m¬a. Hence, 3ma ≤ ¬b, and so b ≤ ¬b, which is a contradiction.

Lemma 3.1.6. For each i ∈ NOM, sDi is either ⊥ or an atom of Aδ, and, hence, of AD.
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Proof. Suppose that sDi 6= ⊥. We show that if a, b ∈ AtAδ such that a, b ≤ sDi , then a = b. So
let a, b ∈ AtAδ such that a, b ≤ sDi . Then a, b ≤ D, and so a ≤ (3−1)n1d and b ≤ (3−1)n2d
for some natural numbers n1 and n2. We thus have that d ≤ 3n1a and d ≤ 3n2b by Lemma
3.1.5, and so, since a, b ≤ sdi , d ≤ 3n1(a ∧ sdi ) and d ≤ 3n2(b ∧ sdi ). Hence,

d ≤ 3n1(a ∧ si ∧D) ≤ 3n1(a ∧ si)

and
d ≤ 3n2(b ∧ si ∧D) ≤ 3n2(b ∧ si),

so, d ≤ 2m(¬si ∨a) and d ≤ 2m(¬si ∨ b), where m is any natural number. So, since 3−1 and
2 are adjoint,

(3−1)md ≤ ¬si ∨ a

and
(3−1)md ≤ ¬si ∨ b,

which means that, for all m ∈ N, it holds that (3−1)md ≤ (¬si∨a)∧ (¬si∨ b). It thus follows
that D ≤ (¬si ∨ a) ∧ (¬si ∨ b) = ¬si ∨ (a ∧ b). Now, if a 6= b, D ≤ ¬si, so si ≤ ¬D. Hence,
si ∧D ≤ ⊥, i.e., sDi = ⊥, contradicting our assumption that sDi 6= ⊥.

3.2 Algebraic completeness of H(@)⊕ Σ

Recall that the validity of H(@)-formulas is preserved under taking generated subframes.
Normally the preservation of validity on frames follows from the invariance of satisfaction on
models. However, there is a strangeness here: the truth of H(@)-formulas is not generally
transferred from the supermodel to the submodel when taking generated submodels. To see
this, consider the models M = (W,R, V ) and M′ = (W ′, R′, V ′), where W = {u, v}, R =
{(u, u)}, V (p) = {v}, V (q) = {u}, V (i) = {v}, V (j) = {u},W ′ = {u}, R′ = {(u, u)}, V ′(q) =
{u} and V ′(j) = {u} (see Figure 3.1). It is not difficult to see that M′ is a generated submodel
of M. However, M 
 j ∧ 3q ∧ @ip, while M′ 1 j ∧ 3q ∧ @ip. The @-operators allow us to
jump freely to a state named by a nominal, bypassing the accessibility relation, and when we
generated with only u, we lost the part of the model where @ip is true. This means that we
cannot use the same approach as in the proof of Theorem 3.1.1 to prove the completeness
of H(@)⊕ Σ. Not to worry, this is certainly something we can fix: simply generate from all
the interpretations of the nominals in the formula. This is also the route we will follow in
our simulation process, so it is time to roll up our sleeves. We first give the statement of the
completeness result and its proof, and subsequently prove the lemmas needed in the proof.

Theorem 3.2.1. For any set Σ of H(@)-formulas, the logic H(@)⊕Σ is sound and complete
with respect to the class of all hybrid @-algebras which validate Σ. That is to say, `H(@)⊕Σ ϕ
iff |=H@A(Σ) ϕ ≈ >.

Proof. Suppose 0H(@)⊕Σ ϕ. We need to find a hybrid @-algebra A and an assignment v
such that A, v 6|= ϕ ≈ >. As in the proof of Theorem 3.1.1, we will work with the orthodox
interpretation of H(@) for the time being.
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u vM M′q
j i

p

Figure 3.1: A model with a generated submodel

As before, we begin with the orthodox Lindenbaum-Tarski algebra of H(@) ⊕ Σ over
PROP. For simplicity, denote it by A. In the usual way, we can show that A validates
precisely the theorems of H(@)⊕Σ. Also, A, ν 6|= ϕ ≈ >, where ν is the natural map taking
p to [p]. In the same way as in the proof of Theorem 3.1.1, we can also show that [¬ϕ] > ⊥
in A.

Next, consider the orthodox canonical extension Aδ of A. We know that [¬ϕ] > ⊥ in
Aδ, so, since Aδ is atomic, there is an atom d ∈ Aδ such that d ≤ [¬ϕ]. We will get back
to this point shortly, but first denote the constant interpretations of the nominals occurring
in ϕ by si1 , si2 , . . . , sim . Note that, for each 1 ≤ i ≤ m, sii 6= ⊥ in Aδ, for otherwise, since
Aδ validates the axioms of H(@), > = @sii

sii = @sii
⊥ = ⊥, a contradiction. Hence, we

also have atoms d1
0, d

2
0, . . . , d

m
0 in Aδ such that d1

0 ≤ si1 , d
2
0 ≤ si2 , . . . , d

m
0 ≤ sim . Now, let

d0
0 = d, and suppose that for each 0 ≤ i ≤ m, din is already defined. For each 0 ≤ i ≤ m, let
din + 1 = 3−1din and

Di =
∨
n ∈ N

din.

Furthermore, let

D =
∨

0≤i≤m
Di

and

AD = (AD,∧D,∨D,¬D,⊥D,>D,3D,@D, {sDj }j∈NOM),

where AD = {a ∧ D | a ∈ A}, ∧D and ∨D are the restriction of ∧ and ∨ to AD, for all
j ∈ NOM,

@D
sDj
a =

{
D if sDj ≤ a
⊥ if sDj ≤ ¬Da

and

¬Da = ¬a ∧D 3Da = 3a ∧D
>D = D ⊥D = ⊥
sDj = sj ∧D

Now, by Lemma 3.2.3 below, AD is closed under the above operations, so AD is an algebra.
Furthermore, from Lemma 3.2.4 it follows that AD is an orthodox interpretation of H(@),
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and that AD |= H(@) ⊕ Σ≈. To show that AD 6|= ϕ ≈ >, let νD: PROP → AD be the
assignment given by νD(p) = h(ν(p)). Using the fact that h is a homomorphism, we can
show by structural formula induction that ν̃D(ψ) = h(ν̃(ψ)) for all H(@)-formulas ψ that use
variables from PROP. Now, since d ≤ D and d ≤ [¬ϕ],

ν̃D(¬ϕ) = h(ν̃(¬ϕ)) = ν̃(¬ϕ) ∧D = [¬ϕ] ∧D ≥ d > ⊥.

Hence, ν̃D(ϕ) 6= D.
Now, if we can find a suitable designated set of atoms in AD, we can drop the constant

interpretations and we would be done. Luckily, unlike for the language H, the @ operator
makes things easier for us as it ensures that all sDj are atoms of AD (see Lemma 3.2.5).

So let AD = (A−D, XAD), where A−D is the reduct of AD obtained by omitting the constant
interpretations of nominals, and XAD = {sDj | j ∈ NOM}. Then it follows from the foregoing
that AD is a hybrid @-algebra, and, since Σ is closed under sorted substitution, AD |= Σ≈.
To show that AD 6|= ϕ ≈ >, consider the assignment ν ′D which extends νD from PROP to

PROP ∪ NOM by simply setting ν ′D(j) = sDj for each j ∈ NOM. Clearly, ν̃ ′D(ψ) = ν̃D(ψ) for

all H(@)-formulas ψ. Hence, ν̃ ′D(ϕ) = ν̃D(ϕ) 6= ν̃D(>) = ν̃ ′D(>).

In what follows, A, its canonical extension Aδ, and AD will be the algebras in the proof
of Theorem 3.2.1. Now, as in the previous section, we have the following:

Lemma 3.2.2. D ≤ 2D

Proof.

2D = 2
∨

1≤i≤m
Di (by the definition of D)

= 2
∨

1≤i≤m

( ∨
n∈N

din

)
(by the definition of Di)

≥
∨

1≤i≤m

(∨
n∈N

2din

)
(by the monotonicity of 2)

=
∨

1≤i≤m

 ∨
n∈N−{0}

23−1din−1

 ∨2di0 (by the definition of din)

≥
∨

1≤i≤m

 ∨
n∈N−{0}

23−1din−1


≥

∨
1≤i≤m

 ∨
n∈N−{0}

din−1

 (since 3−1 and 2 are adjoint)

=
∨

1≤i≤m
Di (by the definition of Di)

= D (by the definition D)
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Using this result, we can prove the following two lemmas:

Lemma 3.2.3. AD is closed under the operations ∧D, ∨D, ¬D, 3D, and @D.

Proof. We only consider the case for @D. The other cases are proved in the same way as
in Lemma 3.1.3 using Lemma 3.2.2. Let a ∈ AD. If sDj ≤ a, @D

sDj
a = D. But D ∈ AD, so

@D
sDj
a ∈ AD. On the other hand, if sDj ≤ ¬Da, then @D

sDj
a = ⊥, which means that @D

sDj
a ∈ AD

since ⊥ is in AD.

Lemma 3.2.4. The map h: A→ AD defined by h(a) = a∧D is a surjective homomorphism
from A onto AD.

Proof. That h is surjective is obvious. In verifying that h is a homomorphism, all cases except
those for ¬, 3, and @j are straightforward. ¬ and 3 are proved in exactly the same way as
in Lemma 3.1.4. So we need only check @. We consider the following two cases:

Case 1: sj ≤ a. In this case, by Proposition 2.2.3, h(@sja) = h(>) = D. From sj ≤ a, we

have sj ∧D ≤ a ∧D. Hence, h(sj) ≤ h(a), which means that @D
h(sj)

h(a) = D.

Case 2: sj ≤ ¬a. Here h(@sja) = h(⊥) = ⊥. From sj ≤ ¬a, we have sj ∧ D ≤ ¬a ∧ D.

Hence, h(sj) ≤ h(¬a) = ¬Dh(a), giving @D
h(sj)

h(a) = ⊥.

The final lemma tells us that all the sDi are actually atoms of AD.

Lemma 3.2.5. For each i ∈ NOM, sDi an atom of Aδ, and hence, of AD.

Proof. First, sDi 6= ⊥, for otherwise, D = @D
sDi
sDi = @D

sDi
⊥ = ⊥, which is not possible. Now,

let a, b ∈ Aδ such that a ≤ sDi and b ≤ sDi . We want to show that a = b, so suppose that they
are not equal for the sake of a contradiction. From a ≤ sDi and b ≤ sDi , we have a, b ≤ si and

a, b ≤ D. This means there are n1, n2 ∈ N and 0 ≤ j1, j2 ≤ m such that a ≤ (3−1)n1dj10 and

b ≤ (3−1)n2dj20 . Hence, by Lemma 3.1.5, dj10 ≤ 3n1a and dj20 ≤ 3n2b. But since a, b ≤ si,

dj10 ≤ 3n1(si ∧ a) and dj20 ≤ 3n2(si ∧ b). We thus have

dj10 ≤ 3n1(si ∧ a) ≤ 3n1@sia ≤ @sia

and
dj20 ≤ 3n2(si ∧ b) ≤ 3n2@sib ≤ @sib.

This gives @sia = > and @sib = >, for otherwise, dj10 = dj20 = ⊥, a contradiction. Hence,
@sia∧@sib = >, which means that @si(a∧ b) = >. But a 6= b, so ⊥ = @si(a∧ b) = >, which
is a contradiction.
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3.3 Algebraic completeness of H(E)⊕ Σ

Recall that the validity of any modal formula containing the global modality is in general not
preserved under taking generated subframes. We can also show that the truth of a H(E)-
formula is not transferred when we take generated submodels. To see this, consider the models
M = (W,R, V ) and M′ = (W ′, R′, V ′), where W = {u, v, w}, R = {(u, v), (v, u)}, V (p) =
W,W ′ = {u, v}, {(u, v), (v, u)} and V ′(p) = W ′ (see Figure 3.2). Clearly, M′ is a generated
submodel of M. But M 
 E¬3p, while M′ 1 E¬3p. The global modality allow us to jump
freely to any state in a model, bypassing the accessibility relation, so when we generate, we
may throw these states away and therefore validity is not transferred. To fix this, we have to
use the accessibility relation of the global modality to generate, however, this simply gives us
the original model back. So in order to build an algebra refuting a non-theorem like we did in
the proofs of Theorems 3.1.1 and 3.2.1, we will have to take a different approach. As before,
we will start with the orthodox Lindenbaum-Tarski algebra, and then consider an atom in
the canonical extension. Since the canonical extension is isomorphic to the complex algebra
of the ultrafilter frame of the Lindenbaum-Tarski algebra, we can think of this atom as some
singleton of the domain of the ultrafilter frame. But instead of generating a submodel like we
did before, we will ‘cut’ out a piece of the ultrafilter frame containing this ultrafilter falsifying
the non-theorem, and where the accessibility relation of the global modality is the universal
relation.

u v w
M M′p pp

Figure 3.2: A model with a generated submodel demonstrating that the truth of H(E)-
formulas is not transferred when taking submodels

So let us get to work. As before, we first prove completeness, and subsequently prove the
lemmas needed.

Theorem 3.3.1. For any set Σ of H(E)-formulas, the logic H(E)⊕Σ is sound and complete
with respect to the class of all hybrid E-algebras which validate Σ. That is to say, `H(E)⊕Σ ϕ
iff |=HEA(Σ) ϕ ≈ >.

Proof. Suppose 0H(E)⊕Σ ϕ. We need to find a hybrid E-algebra A and an assignment v such
that A, v 6|= ϕ ≈ >. Again, we will mostly work with the orthodox interpretation of H(E).

As before, we begin with the orthodox Lindenbaum-Tarski algebra of H(E)⊕Σ over PROP.
For simplicity, we will denote it by A. The fact that A validates precisely the theorems of
H(E)⊕Σ is proved as usual. Also, A, ν 6|= ϕ ≈ >, where ν is the natural map taking p to [p].
We also have [¬ϕ] > ⊥ in A as before.

Next, consider the orthodox canonical extension Aδ of A. We know that [¬ϕ] > ⊥ in Aδ.
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So let c ∈ AtAδ such that c ≤ [¬ϕ], and define

C =
∧
{a ∈ Aδ | c ≤ a and Ea = a}.

Let

AC = (AC ,∧C ,∨C ,¬C ,⊥C ,>C ,3C ,EC , {sCj }j∈NOM),

where AC = {a ∧ C | a ∈ A}, ∧C and ∨C are the restriction of ∧ and ∨ to AC , and

¬Ca = ¬a ∧ C 3Ca = 3a ∧ C
sCj = sj ∧ C ECa = Ea ∧ C
>C = C ⊥C = ⊥

First, by Lemma 3.3.4, AC is an algebra. Second, by Lemma 3.3.5, we have that AC |=
H(E) ⊕ Σ≈. To show that AC 6|= ϕ ≈ >, let νC : PROP → AC be the assignment given
by νC(p) = h(ν(p)). Using the fact that h is a homomorphism, we can show by structural
induction that νC(ψ) = h(ν(ψ)) for all formulas ψ that use variables from PROP. Now, since
c ≤ C and c ≤ [¬ϕ],

νC(¬ϕ) = h(ν(¬ϕ)) = ν(¬ϕ) ∧ C = [¬ϕ] ∧ C ≥ c > ⊥.

Hence, νC(¬ϕ) 6= ⊥, which means that νC(ϕ) 6= C.
Now, by Lemma 3.3.7, all sCi are atoms of the algebra AC . So let AC = (A−C , XAC ), where

A−C is the reduct of AC obtained by omitting the constant interpretations of nominals, and
XAC = {sCi | i ∈ NOM}. Hence, it follows from the fact that XAC 6= ∅ and Lemma 3.3.6 that
AC is a hybrid E-algebra. Furthermore, from the fact that Σ is closed under substitution,
it follows that AC |= Σ≈. To see that AC 6|= ϕ ≈ >, let ν ′C be the assignment that extends
νC from PROP to PROP ∪ NOM by simply setting ν ′C(i) = sCi for each i ∈ NOM. Clearly,

ν̃ ′C(ψ) = ν̃C(ψ) for all H(E)-formulas ψ. Hence, ν̃ ′C(ϕ) = ν̃C(ϕ) 6= ν̃C(>) = ν̃ ′C(>).

In the lemmas that follow, unless stated otherwise, A,Aδ, AC , ν and νC will be as in the
proof of Theorem 3.3.1.

Lemma 3.3.2. Let A be an orthodox interpretation of H(E), and let a ∈ A. Then Ea = a iff
Aa = a.

Proof. Let a ∈ A, and assume Ea = a. Then AEa = Aa, and so, since a ≤ AEa by (symE),
a ≤ Aa. But we also have Aa ≤ a by (reflE), so Aa = a. Conversely, assume Aa = a. Then
EAa = Ea. But by (symE), EAa ≤ a, which gives a ≥ Ea. Hence, since a ≤ Ea by (reflE),
Ea = a.

Lemma 3.3.3. AC = C, and therefore, EC = C.
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Proof. We first show that AC = C:

AC = A
∧
{a ∈ Aδ | c ≤ a and Ea = a} (by the definition of C)

=
∧
{Aa | a ∈ Aδ, c ≤ and Ea = a} (since A distributes over arbitrary meets)

=
∧
{a ∈ Aδ | c ≤ a and Ea = a} (by Lemma 3.3.2)

= C (by the definition of C

It thus follows from Lemma 3.3.2 that EC = C.

Lemma 3.3.4. AC is closed under the operations ∧C , ∨C , ¬C , 3C , and EC .

Proof. The cases for ∧C and ∨C are straightforward. For ¬C , see Lemma 3.1.3. We consider
the cases for 3C and EC . Let a ∈ AC . Then there is some a′ ∈ A such that a = a′ ∧C. Now,
by the monotonicity of 3,

3Ca = 3(a′ ∧ C) ∧ C ≤ 3a′ ∧ C.

Conversely,

3Ca = 3(a′ ∧ C) ∧ C
≥ 3a′ ∧2C ∧ C
≥ 3a′ ∧ AC ∧ C
= 3a′ ∧ C,

where the third step follows from (incl3) and the last step from Lemma 3.3.3. We thus have
that 3Ca = 3a′ ∧ C. But since A is closed under 3, 3a′ ∈ A, which means that 3Ca ∈ Ac.

For EC ,’ let a ∈ AC . Then a = a′ ∧ C for some a′ ∈ A. Now, by the monotonicity of E,

ECa = E(a′ ∧ C) ∧ C ≤ Ea′ ∧ C,

and, conversely,

ECa = E(a′ ∧ C) ∧ C
≥ Ea′ ∧ AC ∧ C
= Ea′ ∧ C.

Here the final step follows from Lemma 3.3.3. Hence, ECa = Ea′ ∧ C. But A is closed under
E, so Ea′ ∈ A. This means that ECa ∈ AC .

Lemma 3.3.5. Let h: A → AC be the map defined by h(a) = a ∧ C. Then h is a surjective
homomorphism from A onto AC .
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Proof. It is clear from the definition of h that it is surjective. In verifying that h is a ho-
momorphism, all cases except those for 3 and E are proved in exactly the same way as in
Lemma 3.1.4. So all that is left to check is 3 and E. We first prove the case for 3:

h(3a) = 3a ∧ C
≥ 3(a ∧ C) ∧ C
= 3h(a) ∧ C
= 3Ch(a),

where the inequality follows from the fact that a ∧ c ≤ a, and the monotonicity of 3. Con-
versely,

3Ch(a) = 3h(a) ∧ C
= 3(a ∧ C) ∧ C
≥ 3a ∧2C ∧ C
≥ 3a ∧ AC ∧ C
= 3a ∧ C
= h(3a)

Here the fourth step follows from (incl3) and the fifth step from Lemma 3.3.3.
For E, the left-to-right inequality is proved as follows:

h(Ea) = Ea ∧ C
≥ E(a ∧ C) ∧ C
= Eh(a) ∧ C
= ECh(a).

Conversely,

ECh(a) = E(a ∧ C) ∧ C
≥ Ea ∧ AC ∧ C
= Ea ∧ C
= h(Ea),

where the third step follows from Lemma 3.3.3.

The lemma below shows that the global operator behaves like it should. Frame-theoretically,
this lemma tells us that the accessibility relation of the global modality is the universal relation
on the frame that we ‘cut’ out of the ultrafilter frame of the Lindenbaum-Tarski algebra.

Lemma 3.3.6. For all a ∈ AC ,

ECa =

{
C if a > ⊥
⊥ otherwise.
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Proof. Let a ∈ AC , and assume a > ⊥. Then a = a′ ∧ C > ⊥ for some a′ ∈ A. But this
means that both a′ > ⊥ and C > ⊥. Hence,

ECa = E(a′ ∧ C) ∧ C
≥ Ea′ ∧ AC ∧ C
= Ea′ ∧ C
= > ∧ C
= C.

On the other hand, if a = ⊥, EC⊥ = E⊥ ∧ C = ⊥ ∧ C = ⊥.

Finally, we show that all the constant interpretations of the nominals are actually atoms
of AC .

Lemma 3.3.7. For each i ∈ NOM, sCi is an atom of AC .

Proof. First, sCi 6= ⊥ for all i ∈ NOM, for suppose not. Then ECsCi = EC⊥, and so C = ⊥, a
contradiction.

We now show that if a, b ∈ AtAC such that a, b ≤ sCi , then a = b. So let a, b ∈ AtAC

such that a, b ≤ sCi . Then a ∧ sCi = a > ⊥ and b ∧ sCi = b > ⊥, and so EC(a ∧ sCi ) = C and
EC(b ∧ sCi ) = C. Hence, by (reflE) and (nomE),

¬CsCi ∨ a ≥ AC(¬CsCi ∨ a) ≥ EC(a ∧ sCi ) = C,

and
¬CsCi ∨ b ≥ AC(¬CsCi ∨ b) ≥ EC(b ∧ sCi ) = C,

which means that (¬CsCi ∨a)∧ (¬CsCi ∨ b) = C. We thus have ¬CsCi ∨ (a∧ b) = C, so if a 6= b,
¬CsCi = C, giving sCi = ⊥, which is a contradiction.

We could have taken a different approach. Note that in the orthodox Lindenbaum-Tarski
algebra in the proof of Theorem 3.3.1, the global modality is simply an S5-modality, so when
we take the orthodox canonical extension of the orthodox Lindenbaum-Tarski algebra, the
accessibility relation of the global modality in the ultrafilter frame of the Lindenbaum-Tarski
algebra is not the universal relation. So can we generate with the accessibility relation of the
global modality? It is easy to see that if we generate with the accessibility relation of the global
modality, the truth of an H(E)-formula is transferred from the supermodel to the submodel.
What is more, since we know that the accessibility relation of 3 must be contained in the
accessibility relation of the global modality, it is enough to generate with the accessibility
relation of the global modality only. But how do we simulate this idea algebraically? Well,
since A is completely meet-preserving in Aδ, it has a left adjoint, let us call it E−1. Now, we
can simply do our usual construction, but instead of using 3−1, we use E−1.
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3.4 Algebraic completeness of H+ ⊕ Σ

As we will now show, the logic H+⊕Σ is complete with respect to permeated hybrid algebras
which validate Σ. We first state and prove the main theorem, and consequently prove the
results needed.

Theorem 3.4.1. For any set Σ of H-formulas, the logic H+⊕Σ is sound and complete with
respect to the class of all permeated hybrid algebras which validate Σ. That is to say, `H+⊕Σ ϕ
iff |=PHA(Σ) ϕ ≈ >.

Proof. Suppose 0H+⊕Σ ϕ. We have to find a permeated hybrid algebra A and an assignment
v such that A, v 6|= ϕ ≈ >. However, as before, we will work with the orthodox interpretation
of H for the purpose of the proof. Let NOM′ be a denumerably infinite set of nominals disjoint
from NOM. We know from [72] that ¬ϕ is contained in a H+ ⊕ Σ-maximal consistent set of
formulas Γ in the extended language such that

(i) Γ contains at least one nominal, say i0, and

(ii) for each formula of the form 3n(i∧3ϕ) in Γ, there is a nominal j for which the formula
3n(i ∧3(j ∧ ϕ)) is in Γ.

Consider the orthodox Lindenbaum-Tarski algebra of H+⊕Σ over PROP. For simplicity,
denote this algebra by A. In the usual way, we can show that A |= H+ ⊕ Σ≈ and A, ν 6|=
ϕ ≈ >, where ν is the natural map taking p to [p]. Furthermore, by Lemma 3.4.2, the set
[Γ] = {[γ] | γ ∈ Γ} is an ultrafilter of A. We thus know from the finite meet property that
for every finite subset Γ′ ⊆ Γ, it holds that

∧
[Γ′] > ⊥ in A.

Now, consider the orthodox canonical extension Aδ of A. Note that in Aδ we have∧
[Γ] > ⊥. For suppose

∧
[Γ] ≤ ⊥. But we know that the elements of A are closed and that

⊥ is open, so, by the compactness of the embedding of A into Aδ, there is a finite subset
Γ′ ⊆ Γ such that

∧
[Γ′] ≤ ⊥ in A, contradicting the claim above.

Since Aδ is atomic, there is some atom d in Aδ such that d ≤
∧

[Γ]. Denote d by d0,
and suppose dn is already defined. Now, define dn+1, D and AD as in the proof of Theorem
3.1.1. We know that AD is an algebra. Furthermore, using the map h: A→ AD defined as in
Lemma 3.1.4, we can show that AD is a homomorphic image of A. Hence, AD |= H+ ⊕Σ≈.
To see that AD 6|= ϕ ≈ >, consider the assignment νD(p): PROP → AD defined as in the
proof of Theorem 3.1.1. Using the fact that h is a homomorphism, we can show by structural
induction that ν̃D(ψ) = h(ν̃(ψ)) for all H-formulas ψ. Now, since

∧
[Γ] ≤

∧
[Γ′] for every

finite subset Γ′ ⊆ Γ, we have ν(
∧

Γ′) ≥ d. It thus holds that

ν̃D(
∧

Γ′) = h(ν̃(
∧

Γ′)) = ν̃(
∧

Γ′) ∧D ≥ d > ⊥

for every finite subset Γ′ of Γ. But {¬ϕ} is a finite subset of Γ, so ν̃D(ϕ) 6= >.
In the same way as in the proof of Lemma 3.1.6, we can show that for each i ∈ NOM∪NOM′,

sDi is either ⊥ or an atom of AD. So let AD = (A−D, XAD), where A−D is the algebra reduct of
AD obtained by omitting the constant interpretations of nominals and XAD = {sDi | sDi > ⊥}.
We claim that XAD 6= ∅. To see this, recall that i0 ∈ Γ, so d ≤

∧
[Γ] ≤ [i0]. It follows that
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d ≤ sDi0 , and so, at least sDi0 > ⊥. In particular, since sDi0 and d are both atoms, sDi0 = d. Now,
from the fact that H+ ⊕ Σ is closed under (Sorted substitution), we have AD |= H+ ⊕ Σ≈.
Furthermore, by Lemma 3.4.7, AD is also permeated. From here we split our reasoning into
two cases depending on whether the constant interpretations of all nominals in AD are atoms
or not:

Case 1: sDi > ⊥ for all i ∈ NOM ∪ NOM′. In this case, consider the assignment ν ′D which
extends νD from PROP to PROP ∪ NOM ∪ NOM′, obtained by simply setting ν ′D(i) = sDi
for each i ∈ NOM ∪ NOM′. It is clear that ν̃ ′D(ψ) = ν̃D(ψ) for all H-formulas ψ, and hence,

ν̃ ′D(ϕ) 6= ν̃ ′D(>). This means that AD, ν
′
D 6|= ϕ ≈ >, as required.

Case 2: sDi = ⊥ for some i ∈ NOM ∪ NOM′. Here we have that (AD)0 |= H+ ⊕ Σ≈,
and hence, by Proposition 2.1.16, AD × AD |= H+ ⊕ Σ≈. By Proposition 2.1.24, we know
that AD × AD is also permeated. Now, consider the assignment ν ′′D obtained by setting
ν ′′D(p) = (νD(p), νD(p)) for all propositional variables p ∈ PROP, and

ν ′′D(j) =

{
(sDj ,⊥) if sDj > ⊥
(⊥, sDi0 ) if sDj = ⊥

for all nominals j ∈ NOM∪NOM′. For any H-formula ψ, we have ν̃ ′′D(ψ) = (ν̃D(ψ), aψ), where

aψ is some element of AD. But then ν̃ ′′D(ϕ) = (ν̃D(ϕ), aϕ) 6= (ν̃D(>), D) = ν̃ ′′D(>).

Let us now prove the lemmas used in the proof of Theorem 3.4.1. In what follows, unless
stated otherwise, Γ, A, Aδ, AD, ν, νD and AD will be as in the proof of Theorem 3.4.1.

Lemma 3.4.2. The set [Γ] = {[γ] | γ ∈ Γ} is an ultrafilter of A.

Proof. First, we know that ` >, so, since Γ is maximal consistent, H+⊕Σ ⊆ Γ, which means
> ∈ Γ. Hence, [>] ∈ [Γ].

To show that [Γ] is closed under meets, let [γ1], [γ2] ∈ [Γ]. Then γ1 ∈ Γ and γ2 ∈ Γ.
But we know that p → (q → (p ∧ q)) is a classical tautology, and so, by Sorted substitution,
` γ1 → (γ2 → (γ1 ∧ γ2)). Now, since Γ is maximal consistent, H+ ⊕ Σ ⊆ Γ, which means
γ1 → (γ2 → (γ1∧γ2)) ∈ Γ. We also know that Γ is closed under Modus ponens, so γ1∧γ2 ∈ Γ,
and hence, [γ1 ∧ γ2] = [γ1] ∧ [γ2] ∈ [Γ].

Next, we show that [Γ] is upward closed, so let γ1 ∈ [Γ], and assume [γ1] ≤ [γ2]. Then
[γ1] ∧ [γ2] = [γ1 ∧ γ2] = [γ1], and so [γ1 ∧ γ2] ∈ [Γ]. Hence, γ1 ∧ γ2 ∈ Γ. But p ∧ q → q is
a classical tautology, so, by Sorted substitution, ` γ1 ∧ γ2 → γ2. Now, since H+ ⊕ Σ ⊆ Γ,
γ1 ∧ γ2 → γ2 ∈ Γ, and hence, by Modus Ponens, γ2 ∈ Γ. Therefore, [γ2] ∈ [Γ], as required.

To show that [Γ] is proper, assume [⊥] ∈ [Γ]. Then ⊥ ∈ Γ, and so, since ` ⊥ → ⊥, Γ ` ⊥,
contradicting the consistency of Γ.

Finally, assume [γ1] ∈ [Γ]. Then γ1 ∈ Γ, and so, since Γ is maximal consistent, ¬γ1 /∈ Γ.
Hence, [¬γ1] /∈ [Γ]. Likewise, if [¬γ1] ∈ [Γ], [γ1] /∈ [Γ].

We now turn to the biggest task of this section: proving that the algebra AD is permeated.
But first we need to prove a few lemmas. It is here where we crucially use items (i) and (ii)
in the proof of Theorem 3.4.1.
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Lemma 3.4.3. Let A be a BAO, Aδ its canonical extension, and a, b ∈ Aδ. Then we have
a ∧ (3−1)nb > ⊥ iff b ≤ 3na.

Proof. For the left-to-right direction, assume a ∧ (3−1)nb > ⊥. Then there is a c ∈ AtAδ

such that c ≤ a ∧ (3−1)nb, and so c ≤ a and c ≤ (3−1)nb. Hence, by Lemma 3.1.5, b ≤ 3nc,
which means that b ≤ 3na.

For the converse, suppose a ∧ (3−1)nb = ⊥. Then (3−1)nb ≤ ¬a, and so, since 3−1 and
2 are adjoint, b ≤ 2n¬a = ¬3na. Hence, b � 3na.

Lemma 3.4.4. For any element a in AD, if d ≤ 3na, then d ≤ (3D)na.

Proof. The proof is by induction on n. For n = 1, assume d ≤ 3a. Then d ∧D ≤ 3a ∧D,
and so, since d ≤ D, d ≤ 3Da. Now, suppose that for all a in AD, the claim holds for n = k.
For n = k + 1, assume d ≤ 3k+1a. Then d ≤ 3k3a. But we know that d ≤ D = 2kD, so

d ≤ 3k3a ∧2kD ≤ 3k(3a ∧D) = 3k3Da.

Now, since 3Da ∈ AD, we can use the inductive hypothesis to get d ≤ (3D)k3a. Hence,

d ≤ (3D)k3a ∧D ≤ (3D)k3a ∧ (2D)kD ≤ (3D)k(3a ∧D) = (3D)k3Da = (3D)k+1a,

as required.

Lemma 3.4.5. For all H-formulas γ, it holds that γ ∈ Γ iff d ≤ ν̃(γ) iff d ≤ ν̃D(γ).

Proof. Suppose γ ∈ Γ. Then [γ] ∈ [Γ], and so
∧

[Γ] ≤ [γ]. But d ≤
∧

[Γ], so d ≤ [γ] = ν̃(γ).
Conversely, assume γ /∈ Γ. But Γ is a maximal consistent set of formulas, so ¬γ ∈ Γ. Hence,
using the left-to-right direction, d ≤ ν̃(¬γ) = ¬ν̃(γ), and so d � ν̃(γ). Now, assume d ≤ ν̃(γ).
Then d∧D ≤ ν̃(γ)∧D, and so d ≤ ν̃D(γ). Conversely, assume d ≤ ν̃D(γ). Then d ≤ ν̃(γ)∧D,
which gives d ≤ ν̃(γ).

Lemma 3.4.6. Let a be any element in AD, and let n(a) be the least n ∈ N such that
a ∧ (3−1)n(a)d > ⊥, then there is an sDj such that a ∧ sDj ∧ (3−1)n(a)d > ⊥.

Proof. Let a be any element of AD. The proof is by induction on n(a). For n(a) = 0, we
have a ∧ d > ⊥. But d = sDi0 , so we are done. Now, suppose that for every a ∈ AD, the claim

holds for n(a) = k. For n(a) = k+ 1, we have a∧ (3−1)k+1d > ⊥, and so d ≤ 3k+1a = 3k3a
by Lemma 3.4.3. Hence, 3a ∧ (3−1)kd > ⊥ by Lemma 3.4.3, so

3a ∧ ((3−1)kd ∧D) = (3a ∧D) ∧ (3−1)kd = 3da ∧ (3−1)kd > ⊥.

Using the inductive hypothesis, we know that there is a nominal j ∈ NOM ∪ NOM′ such
that 3Da ∧ sDj ∧ (3−1)kd > ⊥. But then d ≤ 3k(3Da ∧ sDj ). So, by Lemma 3.4.4, d ≤
(3D)k(3Da ∧ sDj ), and so, since ν and h are surjective, there is some ψ such that

d ≤ (3D)k(3Dν̃D(ψ) ∧ sDj )

= ν̃D(3k(3ψ ∧ j)).
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We thus have that 3k(j ∧ 3ψ) ∈ Γ by Lemma 3.4.5, which means there is a nominal k in
NOM ∪ NOM′ such that 3k(j ∧3(k ∧ ψ)) ∈ Γ. Hence, by Lemma 3.4.5,

d ≤ ν̃D(3k(j ∧3(k ∧ ψ)))

= (3D)k(sDj ∧3d(sDk ∧ a))

≤ 3k(sDj ∧3(sDk ∧ a)),

so ⊥ < (3−1)kd ∧ sDj ∧ 3(sDk ∧ a) ≤ (3−1)kd ∧ 3(sDk ∧ a). But then d ≤ 3k3(sDk ∧ a) =

3k+1(sDk ∧ a), and therefore, (3−1)k+1d ∧ sDk ∧ a > ⊥.

Finally, we are ready to show that AD is permeated.

Lemma 3.4.7. AD is permeated.

Proof. For the first condition, let b ∈ AD such that b > ⊥. Then b ∧ (3−1)md > ⊥ for some
m ∈ N. Let m(b) be the least m such that b ∧ (3−1)m(b)d > ⊥. By Lemma 3.4.6, there is
an sDj such that b ∧ sDj ∧ (3−1)m(b)d > ⊥. Then d ≤ 3m(b)(b ∧ sDj ) by Lemma 3.4.3. Now,

sDj 6= ⊥, for otherwise, d ≤ 3m(b)⊥ = ⊥, a contradiction. Hence, sDj is an atom by Lemma

3.1.6, and furthermore, sDj ∈ XAD . We also claim that sDj ≤ b, for if not, b ∧ sDj = ⊥, giving
d ≤ ⊥, a contradiction.

To prove the second condition, let a ∈ AD and sDi ∈ XAD , and assume that sDi ≤ 3Db.
Then sDi ≤ 3b ∧ D, which means that sDi ≤ 3b ∧ (3−1)md for some m ∈ N. Hence,
sDi ∧3b ∧ (3−1)md = sDi > ⊥, and so d ≤ 3m(sDi ∧3b). We thus have d ≤ (3D)m(sDi ∧3b)
by Lemma 3.4.4, so d ∧D ≤ (3D)m(sDi ∧3b) ∧D. Hence,

d ≤ (3)m(sDi ∧3b) ∧ (2D)mD

≤ (3D)m(sDi ∧3b ∧D)

= (3D)m(sDi ∧3Db)

= (3D)m(sDi ∧3Dν̃D(ψ))

= ν̃D(3m(i ∧3ψ))

This means that 3m(i ∧ 3ψ) ∈ Γ, and so, there is a nominal j ∈ NOM ∪ NOM′ such that
3m(i ∧3(j ∧ ψ)) ∈ Γ. This gives

d ≤ ν̃D(3m(i ∧3(j ∧ ψ)))

= (3D)m(sDi ∧3D(sDj ∧ b))
≤ 3m(sDi ∧3(sDj ∧ b)).

Now, first note that sDj 6= ⊥, for then d = ⊥, which is a contradiction. This means that sDj is

an atom and in XAD . Second, sDj ≤ b, for otherwise, sDj ∧b = ⊥, giving d = ⊥. Finally, to see

that sDi ≤ 3DsDj , suppose for the sake of a contradiction that it is not. Then sDi ∧3DsDj = ⊥,
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and so

d ≤ 3m(sDi ∧3(sDj ∧ b))
≤ 3m(sDi ∧3sDj )

≤ (3D)m(sDi ∧3sDj ) ∧D
≤ (3D)m(sDi ∧3sDj ) ∧ (2D)mD

≤ (3D)m(sDi ∧3sDj ∧D)

= (3D)m(sDi ∧3DsDj )

= ⊥,

a contradiction.

3.5 Algebraic completeness of H+(@)⊕ Σ

The lemmas needed in the proof of the following theorem follow afterwards.

Theorem 3.5.1. For any set Σ of H(@)-formulas, the logic H+(@)⊕Σ is sound and complete
with respect to the class of all permeated hybrid @-algebras which validate Σ. That is to say,
`H+(@)⊕Σ ϕ iff |=PH@A(Σ) ϕ ≈ >.

Proof. Suppose 0H+(@)⊕Σ ϕ. We need to find a permeated hybrid @-algebra A and an
assignment v such that A, v 6|= ϕ ≈ >.

Let NOM′ be a denumerably infinite set of nominals disjoint from NOM. We know from
Lemma 7.25 in [10] that ¬ϕ is contained in a H+(@)⊕Σ-maximal consistent set of formulas
Γ in the extended language such that

(i) Γ contains at least one nominal, say i0, and

(ii) for each formula of the form @i3ϕ ∈ Γ, there exists a nominal j such that @i3j ∈ Γ
and @jϕ ∈ Γ.

Now, consider the orthodox Lindenbaum-Tarski algebra of H+(@)⊕Σ over PROP. Denote
it by A. In the usual way, A |= H+(@) ⊕ Σ≈, while A, ν 6|= ϕ ≈ >, where ν is the natural
map taking p to [p]. Furthermore, in the same way as in Lemma 3.4.2, we can show that
[Γ] = {[γ] | γ ∈ Γ} is an ultrafilter of A, and thus, by the finite meet property,

∧
[Γ′] > ⊥ in

A for every finite Γ′ ⊆ Γ.
Next, consider the orthodox canonical extension Aδ of A. Then

∧
[Γ] > ⊥ in Aδ, for if∧

[Γ] ≤ ⊥, by the compactness of the embedding of A into Aδ, there is a finite subset Γ′ ⊆ Γ
such that

∧
[Γ′] ≤ ⊥ in A, which is not true according to the previous paragraph.

Let d in AtAδ such that d ≤
∧

[Γ], and denote it by d0. Furthermore, let si1 , si2 , . . . , sim
be the constant interpretations of the nominals occurring in ϕ. Since sii 6= ⊥ in Aδ for each
1 ≤ i ≤ m, there are atoms d1

0, d
2
0, . . . , d

m
0 in Aδ such that d1

0 ≤ si1 , d
2
0 ≤ si2 , . . . , d

m
0 ≤ sim .

Now, suppose din is already defined for each 1 ≤ i ≤ m, and then define din+1, D and AD as
in the proof of Theorem 3.2.1. In the same way as in Lemma 3.2.3, we can then show that
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AD is an algebra, and furthermore, by Lemma 3.2.4, we have that AD |= H+(@)Σ≈. To see
that AD 6|= ϕ ≈ >, consider the assignment νD defined as in the proof of Theorem 3.2.1. We
then get that ν̃D(

∧
Γ′) > ⊥ for every finite subset Γ′ of Γ. But {¬ϕ} is a finite subset of Γ,

so ν̃D(ϕ) 6= >.
Now, in the same way as in the proof of Theorem 3.2.1, we can show that for each

i ∈ NOM ∪ NOM′, sDi is an atom of AD. So let AD = (A−D, XAD), where A−D is the
reduct of AD obtained by omitting the constant interpretations of nominals, and XAD =
{sDi | i ∈ NOM ∪ NOM′}. XAD is thus clearly non-empty. Furthermore, since H+(@) ⊕ Σ
is closed under sorted substitution, it follows from the foregoing that AD |= H(@)+ ⊕ Σ≈.
To see that AD 6|= ϕ ≈ >, consider the assignment ν ′D which extends νD from PROP to
PROP ∪ NOM ∪ NOM′, obtained by simply setting ν ′D(i) = sDi for each i ∈ NOM ∪ NOM′. It

is clear that ν̃ ′D(ψ) = ν̃D(ψ) for all H(@)-formulas ψ, and hence, ν̃ ′D(ϕ) 6= ν̃ ′D(>). Finally, by
Lemma 3.5.3, AD is permeated.

As in the previous section, the biggest task is proving that AD is permeated. But first we
need the lemma below. In what follows, unless stated otherwise, Γ, A, Aδ, AD, ν, νD and
AD will be as in the proof of the above theorem.

Lemma 3.5.2. Let a be an element of AD. Then d ≤ @D
sDi

(3D)na implies there is a nominal

j ∈ NOM ∪ NOM′ such that sDj ≤ a.

Proof. The proof is by induction on n. For n = 0, d ≤ @D
sDi
a. This implies that sDi ≤ a,

for if not, d ≤ @D
sDi
a = ⊥, which is a contradiction. Hence, sDi works. Now, suppose that

for every a ∈ AD, the claim holds for n = k. For n = k + 1, assume d ≤ @D
sDi

(3D)k+1a =

@D
sDi

(3D)k3Da. Hence, since AD is closed under 3D, 3Da ∈ AD. Using the inductive

hypothesis, we have a nominal k ∈ NOM ∪ NOM′ such that sDk ≤ 3Da. We then have that
D = @D

sDk
sDk ≤ @D

sDk
3Da, and so d ≤ @D

sDk
3Da. Now, since both ν and h are surjective, there

is a ψ such that d ≤ @D
sDk

3Dν̃D(ψ) = ν̃D(@k3ψ). In the same way as in Lemma 3.4.5, we

can show that for every H(@)-formula γ, γ ∈ Γ iff d ≤ ν̃D(γ). But then @k3ψ ∈ Γ, which
means there is a nominal j ∈ NOM ∪ NOM′ such that @k3j ∈ Γ and @jψ ∈ Γ. Hence,
d ≤ ν̃D(@jψ) = @D

sDj
ν̃D(ψ) = @D

sDj
a, and so D = @D

sDi0
d ≤ @D

sDi0
@D
sDj
a ≤ @D

sDj
a. Therefore,

@D
sDj
a = D, so sDj ≤ a.

Lemma 3.5.3. AD is permeated.

Proof. To prove the first condition, let b ∈ AD such that b > ⊥. Then

b ∧
∨

0≤i≤m
Di > ⊥,

which means there is a 0 ≤ j ≤ m such that b ∧Dj > ⊥. Hence,

b ∧
∨
n∈N

(3−1)ndj0 > ⊥,
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and so there is some nj ∈ N such that b ∧ (3−1)njdj0 > ⊥. We thus know from Lemma 3.4.3

that dj0 ≤ 3njb. Now, since dj0 ≤ sij , d
j
0 ≤ sDij . But both are atoms, so dj0 = sDij . Hence,

D = @D
sDij
sDij ≤ @D

sDij
3njb, which means that d ≤ @D

sDij
3njb. It thus follows from Lemma 3.5.2

that there is an atom sDj ∈ XAD such that sDj ≤ b.
For the second condition, let sDi ∈ XAD and b ∈ AD such that sDi ≤ 3Db. Then D =

@D
sDi
sDi ≤ @D

si
3Db. Hence,

d ≤ D = @D
sDi

3Db = @D
sDi

3Dν̃D(ψ) = ν̃D(@i3ψ),

and so @i3ψ ∈ Γ. We thus know that there is a nominal j ∈ NOM∪NOM′ such that @i3j ∈ Γ
and @jψ ∈ Γ. Hence, d ≤ @D

sDi
3DsDj and d ≤ @D

sDj
b. We now make the following claims:

Claim 1. sDj ≤ b.

Proof of claim. To see this, suppose for the sake of a contradiction that sDj � b. Then

sDj ≤ ¬Db, and so @D
sDj
b = ⊥. However, this is a contradiction, since @D

sDj
b ≥ d > ⊥.

Claim 2. sDi ≤ 3DsDj .

Proof of claim. Suppose sDi � 3DsDj . Then sDi ≤ ¬D3DsDj , and so @D
sDi

3DsDj = ⊥. However,

this is a contradiction, since @D
sDi

3DsDj ≥ d > ⊥.

3.6 Algebraic completeness of H+(E)⊕ Σ

Theorem 3.6.1. For any set Σ of H(E)-formulas, the logic H+(E)⊕Σ is sound and complete
with respect to the class of all permeated hybrid E-algebras which validate Σ. That is, `H+(E)⊕Σ

ϕ iff |=PHEA(Σ) ϕ ≈ >.

Proof. Suppose 0H+(E)⊕Σ ϕ. We need to find a permeated hybrid E-algebra A and an as-
signment v such that A |= Σ≈ and A, v 6|= ϕ ≈ >. We will again work with the orthodox
interpretation of H(E) for the time being.

Let NOM′ be a denumerably infinite set of nominals such that NOM ∩ NOM′ = ∅. We
know from Lemma 3.6.2 that ¬ϕ is contained in a H+(E) ⊕ Σ-maximal consistent set of
formulas Γ in the extended language such that

(i) Γ contains at least one nominal, say i0,

(ii) for all E(i∧3ϕ) ∈ Γ, there is a nominal j such that E(i∧3j) ∈ Γ and E(j∧ϕ) ∈ Γ, and

(iii) for all E(i ∧ Eϕ) ∈ Γ, there is a nominal j such that E(i ∧ Ej) ∈ Γ and E(j ∧ ϕ) ∈ Γ.

Consider the orthodox Lindenbaum-Tarski algebra of H+(E)⊕ Σ over PROP and denote
it by A for simplicity. As usual, A |= H+(E)⊕Σ≈ and A, ν 6|= ϕ ≈ >, where ν is the natural
map taking p to [p]. Furthermore, Γ is an ultrafilter of A, so, by the finite meet property,∧

[Γ′] > ⊥ in A for every finite subset Γ′ of Γ.
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Next, consider the orthodox canonical extension Aδ of A. By the compactness of the
embedding of A into Aδ,

∧
[Γ] > ⊥ in Aδ. So since Aδ is atomic, there is some c ∈ AtAδ

such that c ≤
∧

[Γ]. Now, define C and AC as in the proof of Theorem 3.3.1. We then know
that AC is an algebra, and furthermore, AC |= H+(E) ⊕ Σ≈ and AC , νC 6|= ϕ ≈ >, where
νC is also defined as in the proof of Theorem 3.3.1. We can also show that sCi is an atom for
all i ∈ NOM ∪ NOM′. So let AC = (A−C , XAC ), where A−C is the reduct of AC obtained by
omitting the constant interpretations of the nominals, and XAC = {sCi | i ∈ NOM ∪ NOM′}.
It thus follows that AC is a hybrid E-algebra, and, since Σ is closed under sorted substitution,
we have AC |= Σ≈. To see that AC 6|= ϕ ≈ >, consider the assignment ν ′C which extends νC
from PROP to PROP∪NOM∪NOM′ obtained by setting ν ′C(i) = sCi for each i ∈ NOM∪NOM′.
Clearly, ν̃ ′C(ψ) = ν̃C(ψ) for all H(E)-formulas ψ. Hence, ν̃ ′C(ϕ) = ν̃C(ϕ) 6= ν̃C(>) = ν̃ ′C(>).
Finally, by Lemma 3.6.3 below, AC is permeated.

The following lemma is not readily available in the literature:

Lemma 3.6.2 (Extended Lindenbaum Lemma). Let NOM′ be a countable infinite collec-
tion of nominals disjoint from NOM. Then every H+(E)⊕ Σ-consistent set Γ of formulas in
the original language can be extended to a maximal H+(E)⊕Σ-consistent set Γ+ of formulas
in the extended language satisfying the following:

(i) Γ+ contains at least one nominal.

(ii) For all E(i∧3ϕ) ∈ Γ+, there is a nominal j such that E(i∧3j) ∈ Γ and E(j∧ϕ) ∈ Γ+.

(iii) For all E(i∧Eϕ) ∈ Γ+, there is a nominal j such that E(i∧Ej) ∈ Γ+ and E(j∧ϕ) ∈ Γ+.

Proof. Let (in)n∈N be an enumeration of NOM′. Define Γi0 to be Γ∪{i0}. We now show that
Γi0 is consistent. So suppose it is not. Then there are ψ1, . . . , ψn ∈ Γ such that `H+(E)⊕Σ

i0 ∧ψ1 ∧ · · · ∧ψn → ⊥. Hence, `H+(E)⊕Σ i0 → ¬(ψ1 ∧ · · · ∧ψn). But i0 is a new nominal, and
therefore does not occur in ψ1 ∧ · · · ∧ ψn, so, by (NameE), `H+(E)⊕Σ ¬(ψ1 ∧ · · · ∧ ψn). This
means `H+(E)⊕Σ ψ1 ∧ · · · ∧ ψn → ⊥, contradicting the consistency of Γ.

Now, let (γn)n∈N be an enumeration of all H(E)-formulas in the extended language. Define
Γ0 to be Γi0 . Suppose we already defined Γm, where m ≥ 0. Let γm+1 be the (m + 1)-th
formula in our enumeration. We then define Γm+1 as follows: if Γm ∪ {γm+1} is inconsistent,
let Γm+1 = Γm; otherwise,

(i) Γm+1 = Γm ∪ {γm+1}, if γm+1 is not of the form E(i ∧3ϕ) or E(i ∧ Eϕ).

(ii) Γm+1 = Γm ∪{γm+1}∪ {E(i∧3j)∧E(j∧ϕ)}, if γm+1 is of the form E(i∧3ϕ) (here j is
the first new nominal in the nominal enumeration that does not occur in Γm or γm+1).

(iii) Γm+1 = Γm ∪ {γm+1} ∪ {E(i∧ Ej)∧ E(j∧ ϕ)}, if γm+1 is of the form E(i∧ Eϕ) (here j is
the first new nominal in the nominal enumeration that does not occur in Γm or γm+1).

Each step preserves consistency. The only non-trivial cases are items (ii) and (iii). Let
us first check the case for item (ii). Suppose Γm ∪ {γm+1} ∪ {E(i ∧ 3j) ∧ E(j ∧ ϕ)} is
not consistent. Then there are formulas ψ1, . . . , ψn ∈ Γm ∪ {γm+1} such that `H+(E)⊕Σ
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ψ1∧· · ·∧ψn∧E(i∧3j)∧E(j∧ϕ)→ ⊥. Hence, `H+(E)⊕Σ E(i∧3j)∧E(j∧ϕ)→ ¬(ψ1∧· · ·∧ψn).
But j does not occur in ϕ or Γm, so, by (BGE3), `H+(E)⊕Σ E(i ∧ 3ϕ) → ¬(ψ1 ∧ · · · ∧ ψ).
Hence, `H+(E)⊕Σ E(i∧3ϕ)∧ψ1∧ · · · ∧ψ → ⊥, contradicting the consistency of Γm∪{γm+1}.
For (iii), suppose Γm ∪ {γm+1} ∪ {E(i ∧ Ej) ∧ E(j ∧ ϕ)} is not consistent. Then there are
ψ1, . . . , ψn ∈ Γm∪{γm+1} such that `H+(E)⊕Σ ψ1∧ · · ·∧ψn∧E(i∧Ej)∧E(j∧ϕ)→ ⊥. Hence,
`H+(E)⊕Σ E(i∧Ej)∧E(j∧ϕ)→ ¬(ψ1∧· · ·∧ψn). But j does not occur in ϕ or Γm, so by (BGEE),
`H+(E)⊕Σ E(i∧Eϕ)→ ¬(ψ1∧ · · · ∧ψn), which means `H+(E)⊕Σ E(i∧Eϕ)∧ψ1∧ · · · ∧ψn → ⊥,
contradicting the consistency of Γm ∪ {γm+1}.

Now, let Γ+ =
⋃
m≥0 Γm. First, since each step preserves consistency, Γ+ is also consis-

tent. Furthermore, since every formula or its negation is in our enumeration, Γ+ must also
be maximal. Finally, it is also clear from the way we constructed Γ+ that is must satisfy
conditions (i) – (iii).

Before we show that AC is permeated, note that since i0 ∈ Γ, c ≤
∧

[Γ] ≤ [i0], and so
c ≤ [i0] ∧ C = sCi0 . But both c and sCi0 are atoms, so c = sCi0 . Furthermore, since Γ is a
maximal consistent set of formulas, we can show in the same way as in Lemma 3.4.5 that for
each H(E)-formula ψ, ψ ∈ Γ iff c ≤ ν̃(ψ) iff c ≤ ν̃C(ψ).

Lemma 3.6.3. AC is permeated.

Proof. For the first condition, let b ∈ AC such that b 6= ⊥. Then we have ECb = C, and so
c = sCi0 ≤ C = ECb. Hence, c ≤ sCi0 ∧ ECb, which gives c ≤ ECc ≤ EC(sCi0 ∧ ECb). But since
both ν and h are surjective, there is a formula ψ such that

c ≤ EC(sCi0 ∧ EC ν̃C(ψ)) = ν̃C(E(i0 ∧ Eψ)).

So E(i0 ∧ Eψ) ∈ Γ, and hence, there is a nominal j 6= i0 not occurring in the formula ψ such
that E(i0 ∧ Ej) and E(j ∧ ψ) ∈ Γ. This means that

c ≤ ν̃C(E(j ∧ ψ)) = EC(sCj ∧ b).

We now claim that sCj ≤ b. For suppose not, then sCj ≤ ¬Cb, which means that sCj ∧ b = ⊥.
This gives c ≤ ⊥, a contradiction.

To prove the second condition, let sCi ∈ XAC and b ∈ AC such that sCi ≤ 3Cb. Then
sCi = sCi ∧3Cb, and so EC(sCi ∧3Cb) = C. Hence, since both h and ν are surjective, there is
a ψ such that

c ≤ C = EC(sCi ∧3Cb) = EC(sCi ∧3C ν̃C(ψ)) = ν̃C(E(i ∧3ψ)),

which means that E(i ∧3ψ) ∈ Γ. We thus know that there is some nominal j 6= i such that
E(i ∧ 3j) ∈ Γ and E(j ∧ ψ) ∈ Γ, so c ≤ EC(sCi ∧ 3CsCj ) and c ≤ EC(sCj ∧ b). We now claim
the following:

Claim 1. sCj ≤ b.

Proof of claim. Suppose sCj � b. Then sCj ≤ ¬Cb, and so sCj ∧ b = ⊥. But this means that

c ≤ EC(sCj ∧ b) = ⊥, which is a contradiction.
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Claim 2. sCi ≤ 3CsCj .

Proof of claim. For the sake of a contradiction, assume that sCi � 3CsCj . Then sCi ≤ ¬C3CsCj ,

which means that sCi ∧3CsCj = ⊥. Hence, c ≤ EC(sCi ∧3CsCj ) = ⊥, a contradiction.





Chapter 4
Sahlqvist theory for hybrid logics

A natural research direction is to investigate the transfer of Sahlqvist theory from modal
logic to hybrid logics. The reader will recall that every modal Sahlqvist formula enjoys two
properties: firstly, it has a local-first order frame correspondent and, secondly, it is canonical.
The second property implies that any normal modal logic axiomatized with Sahlqvist formulas
(in addition to the axioms of the base logic K) is strongly complete with respect to its Kripke
frames.

As regards Sahlqvist theory for hybrid logic, it is fairly straightforward to see that nominals
may be freely introduced into modal Sahlqvist formulas without destroying the first property.
The second property is more tricky. In this regard, Ten Cate, Marx and Viana [73] show that
any hybrid logic obtained by adding modal Sahlqvist formulas to the basic hybrid logic H is
strongly complete. Also, one of the very first results in the study of hybrid logic was the fact
that any extension of H with pure axioms is strongly complete [40]. In [73], it is shown that
these two results cannot be combined in general, since there is a modal Sahlqvist formula and
a pure formula which together give a Kripke-incomplete logic when added to H.

The intention of this chapter is to see to what extent these two results can be combined
and, in so doing, to develop a genuinely hybrid Sahlqvist theory. Some initial results in
this direction appear in [28]. We define a hybrid version of the inductive formulas [55],
encompassing both the modal Sahlqvist formulas and the pure formulas. In addition we define
two subclasses, called the skeletal and nominally skeletal hybrid inductive formulas. We show
that members of these subclasses are respectively preserved under canonical extensions and
Dedekind-MacNeille completions of certain hybrid algebras, which is enough to ensure that
these formulas axiomatize relationally complete logics.

The key methodological tool in proving the above results is a hybrid version of the ALBA
algorithm [35], which we formulate and call hybrid-ALBA. This algorithm manipulates formulas
by applying a calculus of rewrite rules. In line with the philosophy of unified correspondence
theory [32], these rules are entirely predicated upon the order-theoretic behaviour of the
connectives. However, applying this philosophy in the setting of hybrid algebras requires
certain innovations. In particular, the linchpin of the canonicity strategy employed in works
like [35] and [32], namely the equivalence of validity and admissible validity of pure formulas,

105
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fails in this setting. This necessitates an investigation of the preservation of pure inequalities
under completions of hybrid algebras.

4.1 Preliminaries

In this section, we collect some essential details we will be using.

4.1.1 Expanded language of H(@)

The expansion of H(@) discussed here will play a critical role in the Sahlqvist theory for
hybrid logics, and includes the connectives corresponding to all the adjoint operations. In
particular, the computations used to calculate first-order correspondents takes place in the
expanded language.

Let us now introduce the expanded language formally. The formulas of the expanded
language H+(@)1 are defined as follows:

ϕ ::= ⊥ | p | j | ¬ϕ | ϕ ∧ ψ | 3ϕ | 3−1ϕ | @jϕ | Eϕ,

where p ∈ PROP and j ∈ NOM. As usual, 2−1ϕ := ¬3−1¬ϕ.
A quasi-inequality of the language H+(@) is an expression of the form

ϕ1 ≤ ψ1 & · · ·& ϕn ≤ ψn ⇒ ϕ ≤ ψ,

where ϕi, ψi, ϕ and ψ are formulas of H+(@).

4.1.2 Semantics

We interpret H+(@)-formulas in Kripke frames, general frames and models. Given a model
M and a state w in M, then the truth definition is extended with the following clause:

M, w 
 3−1ϕ iff there exists v such that vRw and M, v 
 ϕ.

Fix a model M and a state w in M. For any ϕ and ψ in H+(@), M, w 
 ϕ ≤ ψ iff M, w 

ϕ → ψ. For ϕi, ψi, ϕ and ψ in H+(@), M, w 
 ϕ1 ≤ ψ1 & · · ·& ϕn ≤ ψn ⇒ ϕ ≤ ψ iff
M, w 1 ϕi ≤ ψi for some 1 ≤ i ≤ n, or M, w 
 ϕ ≤ ψ.

Algebraically, H+(@) is interpreted in complete hybrid @-algebras. However, in this
section, we will drop the @ and talk about hybrid algebras instead. In particular, 3−1 is
interpreted as the left adjoint of 2 in complete hybrid algebras.

A quasi-inequality ϕ1 ≤ ψ1 & · · ·& ϕn ≤ ψn ⇒ ϕ ≤ ψ is true in a hybrid algebra A
under assignment v, if ϕi ≤ ψi is not true in A under v for some 1 ≤ i ≤ n, or ϕ ≤ ψ is true
in A under v.

1Note that the logic H+(@) does not refer to the logic corresponding to the extended languageH+(@), as the
common superscript + might suggest. These notations are well established in the hybrid logic and algorithmic
correspondence literatures, respectively. We opt to keep with these traditions, and risk the potential confusion.
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4.1.3 Standard translation and frame correspondents

The H+(@)-formulas are translated into L1 by means of the usual standard translation func-
tion STx, defined by induction on H+(@)-formulas. In particular, we have STx(3−1ϕ) :=
∃y(yRx ∧ STy(ϕ)), where y is a variable that has not been used in the translation.

In the usual way, one can prove by induction on formulas that M, w 
 ϕ iff M |=
STx(ϕ)[x := w], that M, w 
 ϕ ≤ ψ iff M |= STx(ϕ) → STx(ψ)[x := w] and that M 

&n
i=1 ϕi ≤ ψi ⇒ ϕ ≤ ψ iff M |=

∧n
i=1 ∀x(STx(ϕi) → STx(ψi)) → ∀x(STx(ϕ) → STx(ψ)).

Here the suffix ‘[x := w]’ means that the variable x is interpreted as w. Similarly, on frames
we have that F, w 
 ϕ iff F |= ∀P∀ySTx(ϕ)[x := w], where P is the vector of all predicate
symbols Pi corresponding to propositional variables pi occurring in ϕ and y is the vector
of all variables yi corresponding to nominals i occurring in ϕ. Similar equivalences hold for
inequalities and quasi-inequalities interpreted on frames.

A H+(@) formula ϕ and a L0 formula α(x) with one free variable x are local frame
correspondents if F, w 
 ϕ iff F |= α(x)[x := α].

4.1.4 Residuals of the satisfaction operators

Now, we know from Proposition 2.2.5 that @ is completely join-preserving (meet-preserving)
in the second coordinate, and therefore it has a right (left) residual (see e.g. [36]), which will
be denoted by @+2 and @−2, respectively. The following proposition derives definitions of
@+2 and @−2 from the general theory of residuals:

Proposition 4.1.1. Let A = (A, XA) be a complete hybrid algebra. Then

@+2
x a =

{
> if a = >
¬x otherwise

and @−2
x a =

{
⊥ if a = ⊥
x otherwise

.

Proof. (i) Since @ is completely join-preserving in the second coordinate,

@+2
x a =

∨
{b ∈ A | @xb ≤ a}.

Now, if a = >, then we have that {b ∈ A | @xb ≤ a} = A, so @+2
x a =

∨
A = >. If a < >,

then {b ∈ A | @xb ≤ a} = {b ∈ A | b ≤ ¬x}, which means @+2
x a =

∨
{b ∈ A | b ≤ ¬x} = ¬x.

(ii) We know that @ is also completely meet preserving in the second coordinate, so

@−2
x a =

∧
{b ∈ A | a ≤ @xb}.

Now, if a = ⊥. Then {b ∈ A | a ≤ @xa} = A, and so @−2
x a =

∧
A = ⊥. On the other

hand, if a > ⊥, then {b ∈ A | a ≤ @xb} = {b ∈ A | x ≤ b}. But this means that
@−2
x a =

∧
{b ∈ A | x ≤ b} = x.

4.1.5 Dedekind MacNeille completions

Let A be a Boolean algebra with operators. Recall that the Dedekind MacNeille completion B
of A is a completion of A such that A is both meet-dense and join-dense in B. It can be shown
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that the Dedekind MacNeille completion of a BAO always exists and that it is unique up to
isomorphism (see for instance [68]). This justifies our speaking of ‘the’ Dedekind MacNeille
completion of BAO A, and from now on this algebra will be denoted by Adm .

The complete extension of 3A on A is the operation 3Adm
on Adm defined by

3Adm
a =

∨
{3b | b ∈ A and b ≤ a}.

If we know that 3A preserves all existing joins, then 3Adm
is completely join preserving

on Adm . Indeed, the case for non-empty joins follows from Lemma 13 in [45], which tells
us that the complete extension of a completely additive map between Boolean algebras is
completely additive. The case for the empty join follows since we have 3Adm ∨∅ = 3Adm⊥ =∨
{3Ab | b ∈ A and b ≤ a} =

∨
{3A⊥} = ⊥ =

∨
∅ =

∨
{3Adm

b | b ∈ ∅}.
We will also make use of the following lemma later:

Lemma 4.1.2. If a BAO is atomic, then its the Dedekind MacNeille completion is also
atomic, and moreover, it has exactly the same atoms as the original BAO.

Proof. For the first claim, let A be an atomic BAO, and consider its Dedekind MacNeille
completion Adm . To show that Adm is atomic, let b ∈ Adm such that b 6= ⊥. Since A is
join-dense in Adm , b =

∨
{a ∈ A | a ≤ b}. But since b 6= ⊥, there is some a0 ∈ A such that

a0 ≤ b, and we are done. To see that A and Adm have the same atoms, first let y ∈ AtA,
and suppose there is some b ∈ Adm such that ⊥ < b ≤ y. But since A is join-dense in Adm ,
b =

∨
{a ∈ A | a ≤ b}, and hence, since b 6= ⊥, there is some a0 ∈ A such that a ≤ b ≤ y.

Hence, since y ∈ AtA, y = a0, which means that y = b. Conversely, let y ∈ AtAdm . But
since A is atomic, y =

∨
{x ∈ AtA | x ≤ y}. But we know that y is an atom, so this means

that y must be an atom of A.

Now, we define the Dedekind MacNeille completion of a hybrid algebra A = (A, XA) as
the pair Adm = (Adm ,AtAdm). We say that a hybrid algebra A = (A, XA) is atomic if A
is atomic and XA = AtA. Clearly, the Dedekind MacNeille completion of an atomic hybrid
algebra is also atomic, and it has exactly the same atoms as the original hybrid algebra.

Finally, it turns out that preservation under Dedekind MacNeille completions implies di-
persistence. This originates from the fact that the Dedekind MacNeille completion of the
underlying hybrid algebra g∗ = (A,∩,∪,−,∅,W, 〈R〉, XB) of the discrete two-sorted general
frame g = (W,R,A,B) is the complex algebra (g])

+ of the underlying Kripke frame g] of g.
The notion of di-persistence then becomes: ϕ ≈ ψ is di-persistent, if g∗ |= ϕ ≈ ψ implies
(g])

+ |= ϕ ≈ ψ. But this is just preservation under Dedekind MacNeille completions.

4.1.6 Admissible validity

Let A = (A, XA) be a hybrid subalgebra of B = (B, XB), i.e, A is a subalgebra of B andXA ⊆
XB. An admissible assignment in B relative to A is any assignment sending propositional
variables into A and nominals into XA. We say that an equality ϕ ≈ ψ is admissibly valid in B
relative to A, denoted B |=A ϕ ≈ ψ, if B, v |= ϕ ≈ ψ for every assignment v admissible relative
to A. Admissible validity of inequalities and quasi-inequalities is defined in the obvious,
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analogous way. Note that if ϕ,ψ ∈ H(@), then B |=A ϕ ≈ ψ iff A |= ϕ ≈ ψ. Therefore,
the notion of admissible validity is only interesting for formulas from the extended language
H+(@). In particular, we will be interested in the cases when B is the canonical extension or
the Dedekind-MacNeille completion of A.

Notice that our definition of admissible validity differ from the usual definition used for
instance in [30] and [35] in the sense that since we have nominals in the language H(@), we
require nominals to range over XA rather than over XB.

4.1.7 Signed generation trees

To any formula/term in H+(@) we assign two signed generation trees. That is, for ϕ ∈ H(@)
we consider two trees +ϕ and −ϕ, each beginning at the root with the main connective and
then branching out into n-nodes at each n-ary connective. Each leaf is either a propositional
variable, a constant, or a nominal. The nodes are signed as follows:

• the root node of +ϕ is signed + and the root node of −ϕ is signed −;

• if a node is labelled with ∨,∧,3,2, 3−1, or 2−1, its children inherit its sign;

• if a node is labelled with ¬, its child is assigned the opposite sign;

• if a node is labelled with →, the right child inherits its sign, while the left child is
assigned the opposite sign;

• if a node is labelled with @ (corresponding to a subformula @iα), the right child (cor-
responding to α) inherits its sign, while the left child (corresponding to i) is assigned
the sign ±.

Note that E,A,3−1 and 2−1 do not belong to the language H(@), so we do not assign
signed generation trees to the formulas Eϕ,Aϕ,3−1ϕ and 2−1ϕ.

A node in a signed generation tree is said to be positive if it is signed “+”, negative if it
is signed “−”, and bi-polar if its is signed “±”. Examples of signed generation trees can be
found in Figure 4.1 and Figure 4.2.

A formula ϕ is positive (negative) in a propositional variable p if every occurrence of p
in a leaf of the generation tree +ϕ is signed + (−). A formula ϕ is positive (negative) in a
nominal i if every occurrence of i in a leaf of the generation tree +ϕ is signed + or ± (− or
±).

Note that the only nodes signed “±” are those corresponding to the nominal “subscript”
argument of the @ operator. The intuition behind this is the fact that @iϕ is equivalent to
both A(i → ϕ) and E(i ∧ ϕ) and can therefore be seen as negative or positive depending on
the needs of the context.

4.1.8 Order types

We will often use formulas in n variables and therefore write p to denote an n-tuple of variables.
An order-type over n ∈ N is an n-tuple ε ∈ {1, ∂}n. Given an order-type ε = (εp1 , . . . , εpn),
its opposite order-type, denoted ε∂ , is defined by ε∂pi = 1 iff εpi = ∂ for each 1 ≤ i ≤ n.
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Skeleton (P3) PIA (P1)

∆-adjoints SRA
Primary Secondary
+ ∨
− ∧

+ ∧
− ∨

+ 2 ∧ ¬
− 3 ∨ ¬

SLR SRR
+ 3 ¬ @
− 2 ¬ @ →

+ ∨ @ →
− ∧ @

Table 4.1: Skeleton and PIA nodes.

4.2 Syntactic classes

Here we introduce a new syntactically defined class of H(@)-inequalities. This class expands
the Sahlqvist and inductive formulas (introduced and studied by Goranko and Vakarelov in
[53], [54] and [55]) to H(@). What is more, it generalizes the nominalized Sahlqvist–van
Benthem formulas in [35]. In this chapter, we prove that the formulas in this class have
first-order local frame correspondents. We also define subclasses, and prove that they are
preserved under canonical extensions and Dedekind MacNeille completions, respectively.

For any H(@) formula ϕ(p1, . . . , pn), any order-type ε = (ε1, . . . , εn), and any 1 ≤ i ≤ n,
an ε-critical node in a signed generation tree of ϕ is a (leaf) node labelled with +pi if εi = 1,
or −pi if εi = ∂. An ε-critical branch in the tree is a branch terminating in an ε-critical node.
The intuition, which will be built upon later, is that variable occurrences corresponding to
ε-critical nodes are to be solved for, according to ε. We say that +ϕ (resp. −ϕ) agrees with
ε, and write ε(+ϕ) (resp. ε(−ϕ)), if every leaf node in the signed generation tree of +ϕ
(resp. −ϕ) which is labelled with a propositional variable is ε-critical. In other words, ε(+ϕ)
(resp. ε(−ϕ)) means that all propositional variable occurrences corresponding to leaves of +ϕ
(resp. −ϕ) are to be solved for according to ε.

We will also make use of the sub-tree relation γ ≺ ϕ, which extends to signed generation
trees, and we will write ε(γ) ≺ ∗ϕ to indicate that γ, regarded as a sub-tree of ∗ϕ, agrees
with ε.

We will refer to the nodes in signed generation trees as skeleton nodes and PIA nodes,
and further classify them as ∆-adjoints, SLR, SRA and SRR, according to the specification
given in Table 4.12. The acronym PIA stands for “positive antecedent implies atom” and
is due to van Benthem [75]. The abbreviations SLR, SRA and SRR stand for syntactically
left residual, right adjoint and right residual, respectively. The nodes are therefore classified
according to the order-theoretic properties of their interpretations.

Why P3 and not P2? Notice that in [30], nodes are classified as P1, P2 and P3, and that
our P1 and P3 correspond to their P1 and P3, respectively. So following [30], we use P3 instead
of P2.

2The classification P1 and P3 agrees with that in [31] where nodes are classified as P1, P2 and P3. The
absence of fixed points in the current setting accounts for the missing P2.
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While reading the following definition, the reader might find it useful to refer to Example
4.2.6 for an illustration of the concepts being introduced.

Definition 4.2.1. Let ϕ(p1, . . . , pn) be a formula in the propositional variables p1, . . . , pn,
let ε be an order type on {1, . . . , n}, and <Ω a strict partial order on the variables p1, . . . , pn.
A branch in a signed generation tree ∗ϕ, ∗ ∈ {+,−}, ending in a propositional variable is an
(ε,Ω)-conforming branch if, apart from the leaf, it is the concatenation of two paths P1 and
P3, one of which may possibly be of length 0, such that P1 is a path from the leaf consisting
only of PIA-nodes, P3 consists only of skeleton-nodes, and moreover, it satisfies the conditions
(CB1) and (CB2) below:

(CB1) For every SRR-node in P1 of the form γ � β or β � γ, where β is the side where the
branch lies, ε∂(γ) ≺ ∗ϕ (i.e., γ contains no variable occurrences to be solved for — see
above). In particular:

(i) if γ � β is +(γ ∨ β) or +(β → γ), then ε∂(+γ);

(ii) if γ � β is +(γ → β) or −(γ ∧ β), then ε∂(−γ) (equivalently, ε(+γ));

(iii) if γ � β is +@γβ or −@γβ, then, by the definition of the syntax, γ must be a
nominal, so the condition is met.

(CB2) For every SRR-node in P1 of the form γ � β or β � γ, where β is the side where the
branch lies, pj <Ω pi for every pj occurring in γ, where pi is the propositional variable
labelling the leaf of the branch.

A branch is called skeletal if, apart from the leaf node, it consists entirely of P3 nodes.

Definition 4.2.2. A signed generation tree ∗ψ, ∗ ∈ {+,−}, is said to be (ε,Ω)-inductive
if every ε-critical branch in it is (ε,Ω)-conforming. A formula ψ is (ε,Ω)-inductive if −ψ is
(ε,Ω)-inductive. The formula ψ is inductive if it is (ε,Ω)-inductive for some ε and some Ω.
We say that an inequality ϕ ≤ ψ is (ε,Ω)-inductive if both the generation trees +ϕ and −ψ
are (ε,Ω)-inductive. The inequality ϕ ≤ ψ is inductive if it is (ε,Ω)-inductive for some ε and
some Ω.

Remark 4.2.3. Why +ϕ and −ψ, and not the other way around, as one would expect? This
goes back to [42], and this tradition has been followed in for example [30] and [35]. So we will
keep with tradition to make comparisons easier. However, after first approximation (defined
in Section 4.3), ϕ is on the right of the inequality sign, while ψ is on the left, and from there,
it is as one would expect.

Definition 4.2.4. We say that a signed generation tree ∗ψ, ∗ ∈ {+,−}, is (ε,Ω)-skeletal if
each ε-critical branch is skeletal. A formula ψ is said to be (ε,Ω)-skeletal if −ψ is (ε,Ω)-
skeletal. A formula ψ is skeletal if it is (ε,Ω)-skeletal for some order type ε and some Ω. An
inequality ϕ ≤ ψ is (ε,Ω)-skeletal if both the generation trees +ϕ and −ψ are (ε,Ω)-skeletal.
An inequality ϕ ≤ ψ is skeletal if it is (ε,Ω)-skeletal for some order type ε and Ω.
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+∧

+@

±i +¬

−p

+2

+∨

+¬

−2

−q

+p

−@

±i −3

−¬

+q

Figure 4.1: The signed generation trees of +@i¬p ∧2(2q → p) and −@i3¬q.

Note that every (ε,Ω)-skeletal signed generation tree is (ε,Ω)-inductive. Indeed, every
ε-critical branch is the concatenation of paths P1 and P3, where P1 has length 0, and (CB1)
and (CB2) trivially holds since the signed generation tree does not contain any SRR nodes.

Definition 4.2.5. A signed generation tree ∗ψ, ∗ ∈ {+,−}, is said to be nominally skeletal
if every branch with leaf +j, for some nominal j,

(NS1) is skeletal, and

(NS2) it shares no secondary ∆-adjoint node (+∧ or −∨) with another branch also ending
in the same positively signed nominal j.

A formula ψ is said to be nominally skeletal if −ψ is nominally skeletal. A nominally skeletal
formula ψ is singular if, for each nominal i, the generation tree −ψ contains at most one leaf
labelled +i. An inequality ϕ ≤ ψ is nominally skeletal if both the generation trees +ϕ and
−ψ are nominally skeletal and no positively signed nominal occurs as a leaf in both trees. A
nominally skeletal inequality ϕ ≤ ψ is singular if, for each nominal i, there is at most one
leaf labelled +i between the generation trees +ϕ and −ψ.

It is an easy exercise to check that every Sahlqvist formula, every inductive formula in
[53], [54] and [55], and every nominalized Sahlqvist–van Benthem formula in [35] is inductive
in the sense of Definition 4.2.2.

Example 4.2.6. The inequality @i¬p ∧2(2q → p) ≤ @i3¬q is inductive for (i) εp = 1 = εq
and q <Ω p, and (ii) εp = ∂, εq = 1 and Ω anything, as can be seen from the signed generation
trees in Figure 4.1. Note that the option εp = ∂ = εq does not work since the branch labelled
with −q does not divide correctly into P1 and P3 parts. This inequality is nominally skeletal.
However, it is not skeletal for the ε’s given in (i) and (ii), as both signed generation trees have
ε-critical branches with P1 nodes.
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Figure 4.2: The signed generation trees of +3(p ∧2i) and −2(p ∨3i).

Example 4.2.7. The formula 3(p ∧ 2i) → 2(p ∨ 3i) is inductive for εp = 1, εp = ∂ and
Ω = ∅, as can be seen from the signed generation trees in Figure 4.2. Moreover, it is skeletal.
However, this formula is not nominally skeletal, as the branch labelled with +i contains a P1

node and therefore is not skeletal.

Example 4.2.8. The formula @i2(p→ 2q)∧2(3i→ p)→ 32q is inductive for εp = 1 = εq
and p <Ω q. Moreover, it is nominally skeletal. However, it is not skeletal, as the signed
generation tree +@i2(p→ 2q) ∧2(3i→ p) has ε-critical branches that contains P1 nodes.

Example 4.2.9. The formula @ip∧32(p∧ i)→ 23(p∨ i) is inductive for εp = 1 and Ω = ∅.
However, it is neither skeletal nor nominally skeletal.

Figure 4.3 illustrates the relationships between the inductive, skeletal and nominally skele-
tal inductive H(@)-formulas and some other relevant ‘Sahlqvist-type’ classes found in the
literature. These other classes are the Sahlqvist formulas, the inductive formulas in the basic
modal language [55, 33], here referred to as inductive formulas (ML) to distinguish them form
the inductive formulas in H(@)), and the nominalized Sahlqvist–van Benthem formulas [28].
We now discuss these relationships in a little more detail.

First we discuss the inclusions. The inclusion of the skeletal and nominally skeletal in-
ductive H(@)-formulas in the inductive H(@)-formulas is immediate by the definitions. It
is easy to see that all nominalized Sahlqvist–van Benthem formulas are nominally skeletal
inductive H(@)-formulas. In fact, they are are exactly those which contain no @ operators
and where the P1 parts of critical branches contain no SRR nodes. The relationship between
inductive and Sahlqvist formulas is well known, see e.g. [55]. The nominalized Sahlqvist–van
Benthem formulas without nominal occurrences are, modulo some propositional equivalences,
exactly the ordinary modal Sahlqvist formulas, so the intersection between the inductive and
nominalized Sahlqvist–van Benthem formulas is exactly the Sahlqvist formulas. Since a pure
formula contains no critical branches it is inductive and, in particular, skeletal. A skeletal
inductive formula in ML must be Sahlqvist as the only difference between Sahlqvist and in-
ductive formulas is in the PIA (P1) part of critical branches and these parts are vacuous for
skeletal formulas. Therefore, the subset shaded in black in figure 4.3 is empty.

We next demonstrate the non-emptiness of each of the subsets labelled 1 to 12 in the
diagram. The formula in Example 4.2.9 is neither skeletal nor nominally skeletal, and so
belongs to subset 1. The formula (corresponding to the inequality) in Example 4.2.6 is
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Figure 4.3: Relationships between the syntactic classes.

nominally skeletal but not skeletal and the presence of the @ disqualifies it as inductive
(ML) and nominalized Sahlqvist–van Benthem, so it belongs to subset 2. The inductive (ML)
formula p∧2(3p→ 2q)→ 322q is not Sahlqvist (and in fact, its frame class is not definable
by any Sahlqvist formula [55]), not skeletal and not nominalized Sahlqvist–van Benthem, so
it belongs to subset 3. The Geach formula 32p→ 23p is Sahlqvist but not skeletal and so
belongs to subset 4. The nominalized Sahlqvist–van Benthem formula 2(¬i∨3¬p)∨3(i∨2p)
is neither skeletal nor inductive (ML), and hence witnesses the non-emptiness of subset 5. The
formula p→ 2p belongs to subset 6, being Sahlqvist and skeletal. The nominalized Sahlqvist–
van Benthem formula 2(¬p∨2¬i)∨32p is Skeletal but neither pure nor Sahlqvist, and so is
a member of subset 7. To see that subset 8 is non-empty, consider the non-pure skeletal and
nominally skeletal inductive formula @i3p→ 2(i∧2p) which, because of the presence of the
@, is neither inductive (ML) nor nominalized Sahlqvist–van Benthem. The formula 3i → i
belongs to subset 9 since it is pure and a nominalized Sahlqvist–van Benthem formula. In
subset 10 we find formulas like @i3¬i which is pure, nominally skeletal and (trivially) skeletal
but, because of the presence of the @, not nominalized Sahlqvist–van Benthem. The formula
in Example 4.2.7 is skeletal but neither pure nor nominally skeletal, and is therefore to be
found in subset 11. Lastly, subset 12 contains formulas like 32i → i which is pure but not
nominally skeletal.

Let us now give the main results we will prove in this chapter. The first result concerns
correspondence and is a consequence of Theorems 4.5.1 and 4.9.1.

Theorem 4.2.10. Every inductive formula has a local first order frame correspondent.

The next two theorems deal with preservation. In particular, the first preservation result
says that all skeletal formulas are preserved under Dedekind MacNeile completions. This
result follows from Theorems 4.5.4 and 4.9.2.

Theorem 4.2.11. Every skeletal formula is preserved under Dedekind MacNeille completions
of atomic hybrid algebras in which 3 preserves all existing joins.
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Since the canonical general frame of any hybrid logic H+(@)⊕Σ is discrete [10], and given
the connection between di-persistence and preservation under MacNeille completions outlined
in Subsection 4.1.5, we have the following:

Corollary 4.2.12. For any set Σ of skeletal formulas, the logic H+(@) ⊕ Σ is sound and
strongly complete with respect to its class of Kripke frames (i.e., the class of Kripke frames
defined by the first-order correspondents of the axioms in Σ).

The final result says that if an inductive formula is nominally skeletal, then it is pre-
served under canonical extensions of permeated hybrid algebras. This theorem follows from
Theorems 4.5.3 and 4.9.4.

Theorem 4.2.13. Every inductive formula that is nominally skeletal is preserved under
canonical extensions of permeated hybrid algebras.

Since every hybrid logic H+(@) ⊕ Σ is strongly sound and complete with respect its
class of permeated hybrid algebras (or dually, with respect to its class of strongly descriptive
two-sorted general frames, we have the following:

Corollary 4.2.14. For any set Σ of inductive formulas that are nominally skeletal, the logic
H+(@)⊕Σ is sound and strongly complete with respect to its class of Kripke frames (i.e., the
class of Kripke frames defined by the first-order correspondents of the axioms in Σ).

4.3 A calculus and algorithm for correspondence — hybrid-
ALBA

The algorithm ALBA was introduced in [35]. Here we present an adaptation called hybrid-
ALBA. The aim of this algorithm is to eliminate all propositional variables from a given
H(@)-formula or inequality through application of the rules. If this is successful, applying
the standard translation to the set of pure quasi-inequalities produced, yields a first-order
frame correspondent for the given formula or inequality. Moreover, under certain conditions,
success also guarantees canonicity or preservation under Dedekind MacNeille completions.

4.3.1 Strategy and rules

The algorithm proceeds in four phases. The first phase takes an H(@) inequality ϕ ≤ ψ, or
formula ψ (in this case ψ is replaced with the inequality > ≤ ψ), and preprocesses it. To
each inequality resulting from this preprocessing, the first approximation rule is applied in the
second phase. The aim of the third phase is to eliminate all occurring propositional variables
from the set of inequalities obtained in the second phase. If this is possible, we proceed to
the fourth phase; if not, hybrid-ALBA reports failure and terminates. The fourth phase is the
output phase, which returns a first-order frame correspondent for the inequality.

We will now specify these stages and the rules used in each. Although it would be possible
to specify rules only for a minimal adequate set of primitive connectives, we will give rules for
all connectives. This makes it easier to argue about the algorithm’s performance on syntactic
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classes like the Sahlqvist and inductive formulas, which are typically given in terms of a full
complement of connectives. The names approximation, adjunction and residuation derive
from the order-theoretic properties that justify the soundness of the rules in these groupings,
namely, approximation by atoms or co-atoms and distribution, adjunction, and residuation.

Phase 1: preprocessing

The purpose of preprocessing is to equivalently break up an inequality ϕ ≤ ψ, given in
input, into smaller inequalities through the application of the rules (∨-Adj) and (∧-Adj)
given in Subsection 4.3.1, in this context referred to as splitting rules. To facilitate this,
consider the positive generation tree of ϕ and the negative generation tree of ψ, and surface
positive occurrences of ∨ and negative occurrences of ∧ by applying the following standard
equivalences:

α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ) α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)

¬(α ∨ β) ≡ ¬α ∧ ¬β ¬(α ∧ β) ≡ ¬α ∨ ¬β
3(α ∨ β) ≡ 3α ∨3β 2(α ∧ β) ≡ 2α ∧2β

@i(α ∨ β) ≡ @iα ∨@iβ @i(α ∧ β) ≡ @iα ∧@iβ

Phase 2: first approximation

Each inequality produced by preprocessing is turned into a quasi-inequality by applying the
first approximation rule (First-Approx) given below. The algorithm now proceeds separately
on each of the quasi-inequalities obtained.

First approximation rule

Let {ϕi ≤ ψi | i ∈ I} be the set of inequalities obtained in Phase 1. Then the following
first-approximation rule is applied to each ϕi ≤ ψi only once:

ϕi ≤ ψi (First-Approx)
i0 ≤ ϕi &ψi ≤ ¬j0 ⇒ i0 ≤ ¬j0

Here i0 and j0 are special reserved nominals which do not occur in any inequality received in
input.

Phase 3: reduction and elimination

The aim of this phase is to eliminate all propositional variables from the quasi-inequalities
resulting from Phase 2 through the application of the Ackermann rules (RH-Ack) and (LH-
Ack), or their special cases (RH-Ack-0) and (LH-Ack-0). To bring the quasi-inequality into
the shape to which one of these rules is applicable, the approximation, residuation and adjunc-
tion rules are used. All these rules transform one quasi-inequality into another by rewriting
part of the antecedent. The only exceptions are the rules (@-R-Res) and (@-L-Res), which
introduce a disjunction ` in the antecedent, and thus cause the quasi-inequality to be rewrit-
ten as two quasi-inequalities by distributing the ⇒ over the `. We proceed separately on
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each of the latter. If all propositional variable occurrences have been eliminated, we denote
the resulting set of pure quasi-inequalities by pure(ϕ ≤ ψ). If some propositional variable
occurrences could not be eliminated, the algorithm reports failure.

Adjunction rules

The first batch of rules is called adjunction rules and is given below:

α ≤ β ∧ γ
(∧-Adj)

α ≤ β & α ≤ γ
α ∨ β ≤ γ

(∨-Adj)
α ≤ γ & β ≤ γ

α ≤ 2β
(2-Adj)

3−1α ≤ β
3α ≤ β

(3-Adj)
α ≤ 2−1β

α ≤ ¬β
(¬-R-Adj)

β ≤ ¬α
¬α ≤ β

(¬-L-Adj)¬β ≤ α

The rules (∧-Adj) and (∨-Adj) follow from the fact that ∧ is a right adjoint and ∨ a left
adjoint of the diagonal map ∆: A → A × A given by ∆: a 7→ (a, a). The rules (2-Adj) and
(3-Adj) are justified by the fact that 2 is the right adjoint of 3−1 and 3 the left adjoint of
2−1. Finally, the last two rules follow from the fact that ¬ is its own adjoint.

Residuation rules

The next batch of rules is called residuation rules and is as follows:

α ∧ β ≤ γ
(∧-Res)

α ≤ β → γ

α ≤ β ∨ γ
(∨-Res)

α ∧ ¬β ≤ γ
α ≤ β → γ

(→-Res)
α ∧ β ≤ γ

α ≤ @jβ
(@-R-Res)

α ≤ ⊥ ` j ≤ β
@jα ≤ β

(@-L-Res)> ≤ β ` α ≤ ¬j

The residuation rules are based on the residuation properties of the interpretations of the
connectives. But why are (@-R-Res) and (@-L-Res) morally residuation rules? Well, by
Proposition 4.1.1, these are the right and left residuals of α ≤ @jβ and @jα ≤ β, respectively.

Approximation rules

The approximation rules are based on the fact that in a complete and atomic hybrid algebra
each element is the join of atoms below it and the meet of co-atoms above it, and on the
infinitary distribution properties of a complete and atomic hybrid algebra. These rules are
given below:
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2α ≤ ¬i
(2-Approx)

∃j(2¬j ≤ ¬i & α ≤ ¬j)

i ≤ 3α
(3-Approx)

∃j(i ≤ 3j & j ≤ α)

i ≤ @jα
(@-R-Approx)

j ≤ α
@jα ≤ ¬i

(@-L-Approx)
α ≤ ¬j

Note that the introduced nominal j in (2-Approx) and (3-Approx) must be fresh, i.e., j is
not allowed to occur in the computation thus far.

Remark 4.3.1. It would be possible to give approximation for negation, but these would
reduce to special cases of the adjunction rules.

Ackermann rules

The Ackermann rules are used to eliminate the propositional variables, and therefore form
the core of hybrid-ALBA. In contrast to the adjunction, approximation and residuation rules,
which are applied to individual inequalities within the antecedents of quasi-inequalities, the
Ackermann rules are applied to whole antecedents of quasi-inequalities. These rules are as
follows:

&n
i=1 αi ≤ p & &m

j=1 βj(p) ≤ γj(p)
(RH-Ack)

&m
j=1 βj(

∨n
i=1 αi) ≤ γj(

∨n
i=1 αi)

&n
i=1 p ≤ αi & &m

j=1 γj(p) ≤ βj(p)
(LH-Ack)

&m
j=1 γj(

∧n
i=1 αi) ≤ βj(

∧n
i=1 αi)

Here

(i) the αi are p-free,

(ii) the βj are positive in p, and

(iii) the γi are negative in p.

If n = 0,
∨n
i=1 αi ≡ ⊥ and

∧n
i=1 αi ≡ >, so we have the following special cases of (RH-Ack)

and (LH-Ack):

&m
j=1 βj(p) ≤ γj(p)

(RH-Ack-0)
&m
j=1 βj(⊥) ≤ γj(⊥)

&m
j=1 γj(p) ≤ βj(p)

(LH-Ack-0)
&m
j=1 γj(>) ≤ βj(>)

Phase 4: translation

The resulting set of quasi-inequalities pure(ϕ ≤ ψ) is rewritten as a (conjunction of) H+(@)
formula(s) and translated into first-order logic by means of the standard translation. The
result is a first order frame correspondent for the input formula or inequality.
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4.3.2 Safe and topological reductions

An application of (RH-Ack) or (LH-Ack) in which the αi are all formulas of the original
language H(@) is said to be safe. A run of hybrid-ALBA is called safe if all applications of
(RH-Ack) and (LH-Ack) in it are.

An application of an Ackermann rule is called topological, if each inequality in the an-
tecedent of the quasi-inequality to which it is applied is either p-free, or has a syntactically
pre-closed left-hand side and a syntactically pre-open right-hand side (for the definition of
pre-closed and pre-open formulas, see Definition 4.7.3). More precisely, an application of (RH-
Ack) is called topological, if the αi are syntactically pre-closed, and for each 1 ≤ j ≤ m, the
inequality βj(p) ≤ γj(p) is p-free, or βj(p) is syntactically pre-closed and γj is syntactically
pre-open. Similarly, an application of (LH-Ack) is called topological, if the αi are syntactically
pre-open, and for each 1 ≤ j ≤ m, the inequality γj(p) ≤ βj(p) is p-free, or γj(p) is syntacti-
cally pre-closed and βj is syntactically pre-open. A run of hybrid-ALBA is called topological
if all applications of (RH-Ack) and (LH-Ack) in it are.

4.4 Examples

In this section, we provide some examples of the algorithm at work.

Example 4.4.1. Consider the formula @i¬p ∧ 2(2q → p)→ @i3¬q in Example 4.2.6. The
corresponding inequality @i¬p∧2(¬2q∨p) ≤ @i3¬q remains unchanged under preprocessing,
and first approximation turns it into

&
{

i0 ≤ @i¬p ∧2(¬2q ∨ p) @i3¬q ≤ ¬j0

}
⇒ i0 ≤ ¬j0.

Now, applying (∧-Adj) to i0 ≤ @i¬p ∧2(¬2q ∨ p) gives

&
{

i0 ≤ @i¬p @i3¬q ≤ ¬j0

i0 ≤ 2(¬2q ∨ p)

}
⇒ i0 ≤ ¬j0.

Next, we apply (2-Adj) to i0 ≤ 2(¬2q ∨ p) and (@-L-Approx) to @i3¬q ≤ ¬j0 to get

&
{

i0 ≤ @i¬p 3¬q ≤ ¬i
3−1i0 ≤ ¬2q ∨ p

}
⇒ i0 ≤ ¬j0.

Applying (∨-Res) to 3−1i0 ≤ ¬2q ∨ p and (3-Adj) to 3¬q ≤ ¬i yields

&
{

i0 ≤ @i¬p ¬q ≤ 2−1¬i
3−1i0 ∧ ¬¬2q ≤ p

}
⇒ i0 ≤ ¬j0.

We next apply (¬-L-Adj) to ¬q ≤ 2−1¬i to obtain

&
{

i0 ≤ @i¬p ¬2−1¬i ≤ q
3−1i0 ∧ ¬¬2q ≤ p

}
⇒ i0 ≤ ¬j0.
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Applying (RH-Ack) gives

&
{

i0 ≤ @i¬p
3−1i0 ∧ ¬¬2¬2−1¬i ≤ p

}
⇒ i0 ≤ ¬j0.

Finally, another application of (RH-Ack) produces

i0 ≤ @i¬(3−1i0 ∧ ¬¬2¬2−1¬i)⇒ i0 ≤ ¬j0.

At this point all propositional variables have been eliminated and the the standard translations
of the above quasi-inequality will be a first-order frame correspondent of this formula. Before
attempting this translation, however, we first simplify the above quasi-inequality to get

i0 ≤ @i(2
−1¬i0 ∨32−1¬i)⇒ i0 ≤ ¬j0.

Now,

∀i∀j0

(
i0 ≤ @i(2

−1¬i0 ∨32−1¬i)⇒ i0 6= j0

)
≡ ∀i∀j0

(
i0 ≤ @i2

−1¬i0 ∨@i32−1¬i⇒ i0 6= j0

)
≡ ∀i

(
i0 ≤ @i2

−1¬i0 ∨@i32−1¬i⇒ ∀j0(i0 6= j0)
)

≡ ∀i
(
i0 ≤ @i2

−1¬i0 ∨@i32−1¬i⇒ ⊥
)

≡ ∀i
(
i0 ≤ @i2

−1¬i0 ⇒ ⊥
)

≡ ∀i(i0 ≤ @i3
−1i0).

Translating this gives

STyi0

(
∀i(i0 ≤ @i3

−1i0)
)

= ∀yi (∃y(yRyi ∧ y = yi0)) = ∀yi(yi0Ryi).

Example 4.4.2. Consider the formula 3(p ∧ 2i) → 2(p ∨ 3i) in Example 4.2.7. The
corresponding inequality 3(p∧2i) ≤ 2(p∨3i) remains unchanged under preprocessing, and
first approximation turns it into

&
{

i0 ≤ 3(p ∧2i) 2(p ∨3i) ≤ ¬j0

}
⇒ i0 ≤ ¬j0.

Applying (3-Approx) to i0 ≤ 3(p ∧2i) produces the quasi-inequality

&
{

i0 ≤ 3j 2(p ∨3i) ≤ ¬j0

j ≤ p ∧2i

}
⇒ i0 ≤ ¬j0.

Now, apply (∧-Adj) to the inequality j ≤ p ∧2i to obtain

&


i0 ≤ 3j 2(p ∨3i) ≤ ¬j0

j ≤ p
j ≤ 2i

⇒ i0 ≤ ¬j0.

Applying (RH-Ack) to the above quasi-inequality gives

&
{

i0 ≤ 3j 2(j ∨3i) ≤ ¬j0

j ≤ 2i

}
⇒ i0 ≤ ¬j0.

At this point all propositional variables have been eliminated from all quasi-inequalities, and
it can be further simplified and then translated. This is left for the reader.
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Example 4.4.3. Consider the formula @ip ∧32(p ∧ i)→ 23(p ∨ i) in Example 4.2.9. The
corresponding inequality @ip∧32(p∧i) ≤ 23(p∨i) remains unchanged under preprocessing,
and first approximation turns it into

&
{

i0 ≤ @ip ∧32(p ∧ i) 23(p ∨ i) ≤ ¬j0

}
⇒ i0 ≤ ¬j0.

Now, applying (∧-Adj) to the inequality i0 ≤ @ip ∧32(p ∧ i) gives

&
{

i0 ≤ @ip 23(p ∨ i) ≤ ¬j0

i0 ≤ 32(p ∧ i)

}
⇒ i0 ≤ ¬j0.

Applying (@-R-Approx) to i0 ≤ @ip and (3-Approx) to i0 ≤ 32(p ∧ i) yields

&


i ≤ p 23(p ∨ i) ≤ ¬j0

i0 ≤ 3j
j ≤ 2(p ∧ i)

⇒ i0 ≤ ¬j0.

We now apply (2-Adj) to j ≤ 2(p ∧ i) to get

&


i ≤ p 23(p ∨ i) ≤ ¬j0

i0 ≤ 3j
3−1j ≤ p ∧ i

⇒ i0 ≤ ¬j0.

Another application of (∧-Adj) yields

&


i ≤ p 23(p ∨ i) ≤ ¬j0

i0 ≤ 3j
3−1j ≤ p
3−1j ≤ i

⇒ i0 ≤ ¬j0.

Now, apply (RH-Ack) to the above quasi-inequality to get

&
{

i0 ≤ 3j 23(i ∨3−1j ∨ i) ≤ ¬j0

3−1j ≤ i

}
⇒ i0 ≤ ¬j0.

At this point all propositional variables have been eliminated, and we leave it to the reader
to simplify and translate.

4.5 Correspondence and preservation

Sahlqvist theory consists of two parts: correspondence and preservation. In the first part of
this section, we will focus on correspondence. In particular, we show that whenever hybrid-
ALBA succeeds in eliminating all propositional variables from an inequality, the first-order
formula returned is locally equivalent on frames to the inequality. We first give the main
theorem and its proof, and subsequently give the lemma needed to prove this theorem.
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Theorem 4.5.1. If hybrid-ALBA succeeds on a H(@)-formula ψ, then ∀y∀xSTx(pure(ψ)) is
a local first-order frame correspondent for ψ. Here STx(pure(ψ)) is the conjunction of the
standard translations of the quasi-inequalities in pure(ψ) and y is the vector off all variables
yi corresponding to nominals i other than i0 occurring in pure(ψ).

Proof. Let ϕi ≤ ψi, 1 ≤ i ≤ n be the inequalities produced by preprocessing the inequality
> ≤ ψ. Then we have the following equivalences:

F, w 
 ψ ⇐⇒ F, w 

n∧
i=1

ϕi ≤ ψi

⇐⇒ for all 1 ≤ i ≤ n, F, w 
 ϕi ≤ ψi
⇐⇒ for all 1 ≤ i ≤ n, F 
 i0 ≤ ϕi ⇒ i0 ≤ ψi[i0 := w]

⇐⇒ for all 1 ≤ i ≤ n, F 
 i0 ≤ ϕi &ψi ≤ ¬j0 ⇒ i0 ≤ ¬j0[i0 := w]

⇐⇒ for all 1 ≤ i ≤ n, F+ |= i0 ≤ ϕi &ψi ≤ ¬j0 ⇒ i0 ≤ ¬j0[i0 := w]

⇐⇒ F+ |= pure(ψ)[i0 := w].

⇐⇒ F 
 pure(ψ)[i0 := w]

⇐⇒ F |= ∀y∀xSTx(pure(ψ))[i0 := w].

In the last line above y is the vector off all variables yi corresponding to nominals i other than
i0 occurring in pure(ψ). Thus the only free variable in ∀y∀xSTx(pure(ψ)) is yi0 . The first
equivalence is a consequence of Lemma 4.5.2 below, while the third last equivalence follows
from Proposition 4.6.2.

The following lemma is immediate as the equivalences and rules applied during prepro-
cessing are obviously valid on all hybrid algebras and also (locally) on frames.

Lemma 4.5.2. Let F be a frame. If ϕ ≤ ψ is an H(@)-inequality and {ϕi ≤ ψi | 1 ≤ i ≤ n}
is the set of inequalities obtained from it by the application of one or more preprocessing steps,
then

(i) for any hybrid algebra B = (B, XB) and hybrid subalgebra A = (A, XA), it holds that

B |=A ϕ ≤ ψ iff B |=A ϕi ≤ ψi for all 1 ≤ i ≤ n;

(ii) for any F = (W,R) and w ∈W , it holds that

F, w 
 ϕ ≤ ψ iff F, w 
 ϕi ≤ ψi for all 1 ≤ i ≤ n.

Let us now move on to preservation. In particular, we look at canonicity and preservation
under Dedekind-MacNeille completions.

Our approach can be illustrated by the “U-shaped argument” in Figure 4.4. In this
diagram, A is an atomic hybrid algebra, and B some completion of A. Let us now focus on
the left-hand arm of the diagram. The first equivalence follows from the fact that the validity
ofH(@)-formulas in A coincides with admissible validity ofH(@)-formulas in B. The aim now
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is to transform the inequality into a set of pure inequalities, denoted pure(ϕ ≤ ψ) in Figure
4.4. It is here where the algorithm hybrid-ALBA comes in. Moving on to the equivalence
in the base of the “U”, note that since our idea of admissible validity differ from the usual
definition, this equivalence is not a given. If B is the Dedekind MacNeille completion of A,
the equivalence forming the base of the “U” follows from the fact that B and A have the same
atoms, and hence that the validity and admissible validity of pure formulas coincide. However,
if B is the canonical extension of A, we need an additional requirement that the inequalities
obtained have a specific shape. But what guarantees the second and third equivalences in the
left-hand arm and the equivalences on the right-hand arm? Unlike the other equivalences,
these require a bit more work. But before we give formal proofs of these equivalences, we give
the preservation results.

A |= ϕ ≤ ψ

⇔

B |=A ϕ ≤ ψ

⇔

B |=A i0 ≤ ϕ & ψ ≤ j0 ⇒ i0 ≤ ¬i0

⇔

B |=A pure(ϕ ≤ ψ) B |= pure(ϕ ≤ ψ)

⇐
⇒

B |= i0 ≤ ϕ & ψ ≤ j0 ⇒ i0 ≤ ¬i0

⇐⇒

⇔

B |= ϕ ≤ ψ

Figure 4.4: The U-shaped argument for preservation of inequalities interpreted on a hybrid
algebra A.

We begin with canonicity.

Theorem 4.5.3. If a topological run of hybrid-ALBA succeeds on an H(@)-inequality ϕ ≤ ψ,
and every quasi-inequality produced is of the form prescribed by Proposition 4.8.5, then ϕ ≤ ψ
is canonical.

Proof. Note that if we can show that each of the inequalities we obtain after preprocessing is
canonical, then their conjunction is also canonical, so we may assume without loss of generality
that the preprocessing process yields a single inequality ϕ ≤ ψ. Now, let pure(ϕ ≤ ψ) be the
quasi-inequalities obtained after executing hybrid-ALBA. Then we have the following:

A |= ϕ ≤ ψ

⇔

Aδ |=A ϕ ≤ ψ

⇔

Aδ |=A i0 ≤ ϕ & ψ ≤ j0 ⇒ i0 ≤ ¬i0

⇔

Aδ |=A pure(ϕ ≤ ψ) Aδ |= pure(ϕ ≤ ψ)

⇐
⇒

Aδ |= i0 ≤ ϕ & ψ ≤ j0 ⇒ i0 ≤ ¬i0

⇐⇒

⇔

Aδ |= ϕ ≤ ψ

The first equivalence in the left-hand arm of the “U” follows from the fact that the formulas
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ϕ and ψ are in H(@). For the second equivalence in the left-hand arm, we use Lemma 4.6.1.
The third equivalence in the left-hand arm follows from Proposition 4.6.4. The equivalence
in the base of the “U” follows from Proposition 4.8.5. For the second equivalence in the
right-hand arm, we use Proposition 4.6.2. Finally, the first equivalence in the right-hand arm
follows from Lemma 4.6.1.

In the case of Dedekind-MacNeille completions, we have the following preservation result:

Theorem 4.5.4. If a safe run of hybrid-ALBA succeeds on an H(@)-inequality ϕ ≤ ψ, then
ϕ ≤ ψ is preserved under Dedekind-MacNeille completions of atomic hybrid algebras in which
3 preserves all existing joins.

Proof. Note that if we can show that each of the inequalities we obtain after preprocessing
is preserved under Dedekind MacNeille completions, then their conjunction is also preserved
under Dedekind MacNeille completions, so we may assume without loss of generality that
the preprocessing process yields a single inequality ϕ ≤ ψ. Now, let pure(ϕ ≤ ψ) be the
quasi-inequalities obtained after a safe run of hybrid-ALBA. We then have the following:

A |= ϕ ≤ ψ

⇔

Adm |=A ϕ ≤ ψ

⇔

Adm |=A i0 ≤ ϕ & ψ ≤ j0 ⇒ i0 ≤ ¬i0

⇔

Adm |=A pure(ϕ ≤ ψ) Adm |= pure(ϕ ≤ ψ)

⇐
⇒

Adm |= i0 ≤ ϕ & ψ ≤ j0 ⇒ i0 ≤ ¬i0

⇐⇒

⇔

Adm |= ϕ ≤ ψ

The first equivalence in the left-hand arm follows from the fact that the formulas ϕ and
ψ are in the language H(@). For the second equivalence in the left-hand arm, we apply
Lemma 4.6.1. The third equivalence in the left-hand arm is a consequence of Proposition
4.6.5. The equivalence in the base of the “U” follows from the fact that pure(ϕ ≤ ψ)
contains no propositional variables and that A and Adm have the same atoms, and hence
that its admissible validity and validity coincide. The second equivalence in the right-hand
arm follows from Proposition 4.6.2. Finally, the first equivalence in the right-hand arm is a
consequence of Lemma 4.6.1.

4.6 Soundness

Here we prove the results that complete the “U”-shaped arguments in Theorems 4.5.3 and
4.5.4. We begin with the second equivalence in the left-hand arm and the first equivalence in
the right-hand arm.

Lemma 4.6.1. Let A = (A, XA) be an atomic hybrid algebra and ϕ ≤ ψ an H(@) inequality.
Then A |= ϕ ≤ ψ iff A |= i0 ≤ ϕ&ψ ≤ ¬j0 ⇒ i0 ≤ ¬j0, where i0 and j0 are any two nominals
not occurring in ϕ ≤ ψ.
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Proof. The implication from left to right is immediate. For the sake of the other direction,
assume that A |= i0 ≤ ϕ&ψ ≤ ¬j0 ⇒ i0 ≤ ¬j0, and let v be a arbitrary assignment on A.
We need to show that v(ϕ) ≤ v(ψ). Since A is atomic, v(ϕ) =

∨
{x ∈ XA | x ≤ v(ϕ)}, so

it is enough to show that x ≤ v(ϕ) implies x ≤ v(ψ) for all x ∈ XA. Accordingly, suppose
that x ≤ v(ϕ), while x 6≤ v(ψ). Then x ≤ ¬v(ψ), and hence, v(ψ) ≤ ¬x. Let v′ the variant
of v sending both i0 and j to x. Then v′(i0) ≤ v′(ϕ) and v′(ψ) ≤ v′(¬j0) but v′(i0) 6≤ v′(¬j0),
contradicting our assumption.

Let us now move on to the second equivalences in the right-hand arms of the “U”-shaped
arguments in Theorems 4.5.3 and 4.5.4. Note that the implication from top to bottom tells
us that hybrid-ALBA must be sound on complete and atomic hybrid algebras, while the im-
plication from bottom to top says that the inverses of the rules of hybrid-ALBA must also be
sound on complete and atomic hybrid algebras. This is exactly what the next proposition
tells us. In order to prove this proposition, we need algebraic versions of the Ackermann
lemmas, which will be proved in Section 4.7.

Proposition 4.6.2 (Parameterized soundness on complete and atomic hybrid al-
gebras). Let A = (A, XA) be a complete and atomic hybrid algebra. If ϕ1 ≤ ψ1 & · · ·&ϕn ≤
ψn ⇒ i0 ≤ ¬j0 is an H+(@)-quasi-inequality, and ϕ′1 ≤ ψ′1 & · · ·&ϕ′m ≤ ψ′m ⇒ i0 ≤ ¬j0 is
obtained from it by any approximation, residuation, adjunction, or Ackermann rule, then for
x0 ∈ XA, A |= ϕ1 ≤ ψ1 & · · ·&ϕn ≤ ψn ⇒ i0 ≤ ¬j0[i0 := x0] iff A |= ϕ′1 ≤ ψ′1 & · · ·&ϕ′m ≤
ψ′m ⇒ i0 ≤ ¬j0[i0 := x0]3.

Proof. We need to verify the claim for each approximation, residuation, adjunction and Ack-
ermann rule. We will treat the cases for (2-Approx), (3-Adj), (@-L-Res) and (RH-Ack) as a
representative sample, the cases for the other rules each being similar to one of these.

(2-Approx) Let C be a conjunction of inequalities, and assume that we have A |=
C & 2α ≤ ¬i ⇒ i0 ≤ ¬j0[i0 := x0]. Suppose that under assignment v with v(i0) = x0,
it is the case that C & α ≤ ¬j & 2¬j ≤ ¬i. We need to show that i0 ≤ ¬j0 under v. But
by the monotonicity of 2, it follows that 2α ≤ ¬i, i.e., under v, C & 2α ≤ ¬i, so by our
assumption, i0 ≤ ¬j0.

Conversely, assume A |= C &α ≤ ¬j &2¬j ≤ ¬i⇒ i0 ≤ ¬j0[i0 := x0]. Suppose that under
assignment v with v(i0) = x0, C & 2α ≤ ¬i. Now, 2

∧
{¬x | α ≤ ¬x and x ∈ XA} ≤ ¬i, so∧

{2¬x | α ≤ ¬x and x ∈ XA} ≤ ¬i. This means that i ≤ ¬
∧
{2¬x | α ≤ ¬x and x ∈ XA},

and hence, i ≤
∨
{¬2¬x | α ≤ ¬x and x ∈ XA}. Since the value of i under v must be an

atom, i ≤ ¬2¬y0 for some y0 ∈ XA such that α ≤ ¬y0. Let v′ be the j-variant of v which
sends the fresh nominal j to y0. Then, under v′, we have α ≤ ¬j and i ≤ ¬2¬j, i.e., α ≤ ¬j
and 2¬j ≤ ¬i. Thus, by our assumption, it follows that i0 ≤ ¬j0.

(3-Adj) Let C be a conjunction of inequalities, and assume that we have A |=
C & 3α ≤ β ⇒ i0 ≤ ¬j0[i0 := x0]. Suppose that under assignment v with v(i0) = x0,
it is the case that C & α ≤ 2−1β. We have to show that under v, i0 ≤ ¬j0. Now, by the
definition of an adjoint pair, 3α ≤ β. Hence, by our assumption, i0 ≤ ¬j0.

3Note that the rules (@-L-Res) and (@-R-Res) introduce disjunctions, so the resulting expressions are of
course not strictly speaking quasi-inequalities.
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For the converse, assume A |= C & α ≤ 2−1β ⇒ i0 ≤ ¬j0[i0 := x0]. Furthermore, suppose
that under assignment v with v(i0) = x0, C & 3α ≤ β. Again, by the definition of an adjoint
pair, α ≤ 2−1β, so, by our assumption, i0 ≤ ¬j0.

(@-L-Res) Let C be a conjunction of inequalities, and assume that we have A |=
C & @jα ≤ β ⇒ i0 ≤ ¬j0[i0 := x0]. Suppose that under assignment v with v(i0) = x0,
C & (> ≤ β ` α ≤ ¬j). We have to show that under v, i0 ≤ ¬j0. If > ≤ β, @jα ≤ β, so
by our assumption i0 ≤ ¬j0. On the other hand, if α ≤ ¬j, @jα = ⊥, which means that
@jα ≤ β, so, again, by our assumption, i0 ≤ ¬j0.

Conversely, assume A |= C & (> ≤ β ` α ≤ ¬j)⇒ i0 ≤ j0[i0 := x0]. Suppose that under
assignment v with v(i0) = x0, C & @jα ≤ β. First, assume j ≤ α. Then @jα = >, which
means that > ≤ β. Next, assume j � α. But the value of j under v must be an atom, so
j ≤ ¬α. Hence, α ≤ ¬j, and so, we have C & (> ≤ β ` α ≤ ¬j) under v. Thus, by our
assumption i0 ≤ ¬j0.

(RH-Ack) Assume that A |= &n
i=1 αi ≤ p & &m

j=1 βj(p) ≤ γj(p) ⇒ i0 ≤ ¬j0[i0 := x0].

Suppose that under assignment v with v(i0) = x0, &m
j=1 βj(

∨n
i=1 αi) ≤ γj(

∨n
i=1 αi). Now,

by Lemma 4.7.1, there is some a ∈ A such that
∨n
i=1 αi ≤ a and βj(a) ≤ γj(a) for each

1 ≤ j ≤ m. Hence, by our assumption, i0 ≤ ¬j0.
For the converse, assume A |= &m

j=1 βj(
∨n
i=1 αi) ≤ γj(

∨n
i=1 αi) ⇒ i0 ≤ ¬j0[i0 := x0].

Suppose that under assignment v with v(i0) = x0, &n
i=1 αi ≤ p & &m

j=1 βj(p) ≤ γj(p). But
since the value of p under v must be an element of A, we can apply Lemme 4.7.1 again to
get that for each 1 ≤ j ≤ m, βj(

∨n
i=1 αi) ≤ γj(

∨n
i=1 αi). Therefore, by our assumption,

i0 ≤ ¬j0.

Remark 4.6.3. Note that Proposition 4.6.2 implies the version of itself where the parame-
terization [i0 := x0] is omitted.

We now consider the third equivalences in the left-hand arms of the “U”-shaped argu-
ments in Theorems 4.5.3 and 4.5.4. For both canonical extensions and Dedekind-MacNeille
completions, this equivalence requires the rules of hybrid-ALBA, as well as their inverses, to be
sound with respect to admissible validity. We first prove this for permeated hybrid algebras
and their canonical extensions. This proposition makes use of the topological Ackermann
lemmas, also proved in Section 4.7.

Proposition 4.6.4 (Soundness: permeated hybrid algebras and their canonical
extensions). Let A = (A, XA) be a permeated hybrid algebra, and let Aδ = (Aδ,AtAδ) be
its canonical extension. If ϕ1 ≤ ψ1 & · · ·&ϕn ≤ ψn ⇒ i0 ≤ ¬j0 is an H+(@)-quasi-inequality,
and ϕ′1 ≤ ψ′1 & · · ·&ϕ′m ≤ ψ′m ⇒ i0 ≤ ¬j0 is obtained from it by any approximation, re-
siduation or adjunction rule, or through a topological application of an Ackermann rule, then
Aδ |=A ϕ1 ≤ ψ1 & · · ·&ϕn ≤ ψn ⇒ i0 ≤ ¬j0 iff Aδ |=A ϕ

′
1 ≤ ψ′1 & · · ·&ϕ′m ≤ ψ′m ⇒ i0 ≤ ¬j0.

Proof. We need to verify the claim for each approximation, residuation and adjunction rule,
as well as for topological applications of the Ackermann rule. The cases for the residuation
and adjunction rules follow, as in the proof of Proposition 4.6.2, from the adjunction and
residuation properties of the interpretations of the connectives. The cases for the approx-
imation rules also follow as in the proof of Proposition 4.6.2, making use of the complete
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distributivity of the interpretations in Aδ of the involved connectives and the fact that every
element in A is equal to a join of atoms in XA. The cases for the Ackermann rules follow
from Lemmas 4.7.10 and 4.7.11.

Finally, we show that the rules of hybrid-ALBA, as well as their inverses, are sound on
the Dedekind MacNeille completion of an atomic hybrid algebra with respect to admissible
validity. In this case we make use of the safe Ackermann lemmas.

Proposition 4.6.5 (Soundness: atomic hybrid algebras and their MacNeille com-
pletions). Let A = (A, XA) be atomic with 3A preserving all existing joins. Let Adm =
(Adm , XA) be its Dedekind-MacNeille completion. If ϕ1 ≤ ψ1 & · · ·&ϕn ≤ ψn ⇒ i0 ≤ ¬j0

is an H+(@)-quasi-inequality, and ϕ′1 ≤ ψ′1 & · · ·&ϕ′m ≤ ψ′m ⇒ i0 ≤ ¬j0 is obtained from
it by any approximation, residuation or adjunction rule, or through a safe application of
an Ackermann rule, then Adm |=A ϕ1 ≤ ψ1 & · · ·&ϕn ≤ ψn ⇒ i0 ≤ ¬j0 iff Adm |=A

ϕ′1 ≤ ψ′1 & · · ·&ϕ′m ≤ ψ′m ⇒ i0 ≤ ¬j0.

Proof. It is sufficient to verify the claim for each approximation, residuation and adjunction
rule, as well as for safe applications of the Ackermann rule. The cases for the Ackermann
rules follow from Lemmas 4.7.12 and 4.7.13.

4.7 Ackermann lemmas

In this section, we collect the tools used to prove the results in Section 4.6. To begin with, we
prove the Ackermann lemmas needed to prove the second equivalences in the right-handed
arms of the “U”-shaped arguments in Theorems 4.5.3 and 4.5.4.

Lemma 4.7.1 (Right-handed Ackermann lemma). Let A = (A, XA) be a complete and
atomic hybrid algebra. Let α(q, i) be an H+(@)-formula that does not contain any occurrences
of p, and let β(p, q, i) and γ(p, q, i) be H+(@)-formulas such that

(i) β(p, q, i) is positive in p, and

(ii) γ(p, q, i) is negative in p.

Then for any b ∈ A and x ∈ XA, the following are equivalent:

1. there exists a ∈ A such that α(b, x) ≤ a and β(a, b, x) ≤ γ(a, b, x), and

2. β(α(b, x), b, x) ≤ γ(α(b, x), b, x).

Proof. The implication from top to bottom follows from the monotonicity of β in p and the
anti-monotonicity of γ in p. For the converse, if β(α(b, x), b, x) ≤ γ(α(b, x), b, x) we simply
take a = α(b, x).

Lemma 4.7.2 (Left-handed Ackermann lemma). Let A = (A, XA) be a complete and
atomic hybrid algebra. Let α(q, i) be an H+(@)-formula that does not contain any occurrences
of p, and let β(p, q, i) and γ(p, q, i) be H+(@)-formulas such that
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(i) β(p, q, i) is negative in p, and

(ii) γ(p, q, i) is positive in p.

Then for any b ∈ A and x ∈ XA, the following are equivalent:

1. there exists a ∈ A such that a ≤ α(b, x) and β(a, b, x) ≤ γ(a, b, x), and

2. β(α(b, x), b, x) ≤ γ(α(b, x), b, x).

So can we use the Ackermann lemmas above to prove the second equivalence in the right-
hand arm of the “U-shaped argument” in Figure 4.4? Well, in this case, we cannot take
a = α(b, x) since α(q, i) is in the expanded language H+(@), and therefore might contain
operators under which A is not closed. If B is the canonical extension of A, we can make
use of the compactness of A in its canonical extension to find a suitable a in A. But there is
a price to pay: we require additional syntactic restrictions on formulas in terms of openness
and closedness. So we need the following definitions:

Definition 4.7.3 (Syntactically closed and open formulas). An H+(@) formula is syn-
tactically open if, in it, all occurrences of nominals and 3−1 are negative, while all occurrences
of 2−1 are positive. Dually, an H+(@) formula is syntactically closed if, in it, all occurrences
of nominals and 3−1 are positive, while all occurrences of 2−1 are negative. We obtain
the notions of syntactically pre-open and syntactically pre-closed formulas by dropping the
constraints on nominal occurrences in the definitions of syntactically open and syntactically
closed formulas, respectively.

In order to prove the topological Ackermann lemmas (Lemmas 4.7.10 and 4.7.11), we will
need some technical results, the proofs of which will make extensive use of Lemmas 4.7.4 and
4.7.5 below.

Lemma 4.7.4. For all x ∈ XAδ , a ∈ Aδ, c ∈ K(Aδ) and o ∈ O(Aδ),

1. 2c ∈ K(Aδ);

2. 2o ∈ O(Aδ);

3. 3o ∈ O(Aδ);

4. 3c ∈ K(Aδ);

5. 2−1o ∈ O(Aδ);

6. 3−1c ∈ K(Aδ);

7. Aa ∈ K(Aδ) ∩O(Aδ);

8. Ea ∈ K(Aδ) ∩O(Aδ);

9. @xa ∈ K(Aδ) ∩O(Aδ).

Proof. The proofs of items 1 – 6 can be found in [33] and [35]. We will prove items 7, 8 and
9.

7. If a = >, Aa = >, and so, since > is both open and closed, Aa ∈ K(Aδ)∩O(Aδ). On the
other hand, if a 6= >, Aa = ⊥. But ⊥ is also both open and closed, so Aa ∈ K(Aδ) ∩O(Aδ).

8. If a = ⊥, Ea = ⊥, which means that Ea ∈ K(Aδ)∩O(Aδ). On the other hand, if a 6= ⊥,
then Ea = >, so Ea ∈ K(Aδ) ∩O(Aδ).

9. If x ≤ a, @xa = >, and so @xa ∈ K(Aδ) ∩ O(Aδ). On the other hand, if x � a,
@xa = ⊥, which means @xa ∈ K(Aδ) ∩O(Aδ).
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Lemma 4.7.5. Let ∅ 6= D ⊆ K(Aδ) be down-directed, ∅ 6= U ⊆ O(Aδ) up-directed, S ⊆ A,
and x ∈ AtAδ. Then, in Aδ,

1. 3
∨
S =

∨
s∈S 3s;

2. 3
∧
D =

∧
d∈D3d;

3. 2
∧
S =

∧
s∈S 2s;

4. 2
∨
U =

∨
u∈U 2u;

5. 3−1
∨
S =

∨
s∈S 3

−1s;

6. 3−1
∧
D =

∧
d∈D3−1d;

7. 2−1
∧
S =

∧
s∈S 2

−1s;

8. 2−1
∨
U =

∨
u∈U 2−1u;

9. E
∨
S =

∨
s∈S Es;

10. E
∧
D =

∧
d∈D Ed;

11. A
∧
S =

∧
s∈S As;

12. A
∨
U =

∨
u∈U Au;

13. @x
∨
S =

∨
s∈S @xs;

14. @x
∧
S =

∧
s∈S @xs;

Proof. Item 2 is Esakia’s lemma (see [37]) and item 4 is its dual. Proofs of items 1 to 8 can
be found in [33] and in [35]. We prove items 9, 10, 11, 12, 13 and 14.

9. The right-to-left inequality follows from the monotonicity of E. For the converse
inequality, first suppose

∨
S = ⊥. Then E

∨
S = ⊥, and so E

∨
S ≤

∨
s∈S Es. Next, suppose∨

S 6= ⊥. Then E
∨
S = >. But this also means that there is some s0 ∈ S such that s0 6= ⊥.

Hence, Es0 = >, which gives
∨
s∈S Es = >. We therefore have E

∨
S =

∨
s∈S E

∧
s.

10. The left-to-right inequality follows from the monotonicity of E. For the converse
inequality, first suppose

∧
D 6= ⊥. Then we have E

∧
D = >, and so

∧
d∈D Ed ≤ E

∧
D. Now,

suppose
∧
D = ⊥. Then E

∧
D = ⊥. But we also know that D ⊆ K(Aδ) and ⊥ ∈ O(Aδ),

so, by compactness, there is a finite subset D0 ⊆ D such that
∧
D0 ≤ ⊥. Since D is down-

directed, there is some d0 ∈ D0 such that d0 ≤
∧
D0 ≤ ⊥. Hence, Ed0 = ⊥, which means

that
∧
d∈D Ed = ⊥. So we have

∧
d∈D Ed = E

∧
D.

11. We use duality and 9:

A
∧
S = ¬E¬

∧
S = ¬E

∨
s∈S
¬s = ¬

∨
s∈S

E¬s =
∧
s∈S
¬E¬s =

∧
s∈S

As

12. Here we make use of the fact that {¬u | u ∈ U} is a set of closed elements and
down-directed if U is up-directed, duality and 10:

A
∨
U = ¬E¬

∨
U = ¬E

∧
u∈U
¬u = ¬

∧
u∈U

E¬u =
∨
u∈U
¬E¬u =

∨
u∈U

Au

13. The right-to-left inequality follows from the monotonicity of @ in the second coor-
dinate. For the other inequality, first assume x �

∨
S. Then @x

∨
S = ⊥, which gives

@x
∨
S ≤

∨
s∈S @xs. Next, suppose x ≤

∨
S. Then @x

∨
S = >. But since x is an atom, this

also means that x ≤ s0 for some s0 ∈ S. Hence, @xs0 = >, and so
∨
s∈S @xs = >. Therefore,

@x
∨
S =

∨
s∈S @xs.

14. We use duality and 13:

@x

∧
S = ¬@x¬

∧
S = ¬@x

∨
s∈S
¬s = ¬

∨
s∈S

@x¬s =
∧
s∈S
¬@x¬s =

∧
s∈S

@xs

The intention behind the definition of syntactically open and closed H+(@) formulas is
that admissible assignments will always interpret them as open and closed elements of Aδ,
respectively.
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Lemma 4.7.6. Let ϕ(p, q, i) be syntactically closed and ψ(p, q, i) syntactically open. Let
b ∈ A, x ∈ AtAδ, k ∈ K(Aδ) and u ∈ O(Aδ).

1. (i) If ϕ(p, q, i) is positive in p, then ϕ(k, b, x) ∈ K(Aδ).

(ii) If ψ(p, q, i) is negative in p, then ψ(k, b, x) ∈ O(Aδ).

2. (i) If ϕ(p, q, i) is negative in p, then ϕ(u, b, x) ∈ K(Aδ).

(ii) If ψ(p, q, i) is positive in p, then ψ(u, b, x) ∈ O(Aδ).

Proof. The proof is by simultaneous mutual induction on ϕ and ψ. For the language without
the @ operator this has been proved in [33] and in [35] in the setting of descriptive general
frames. We therefore only need to consider the cases for ϕ of the form @iϕ1, Eϕ1 or Aϕ1 and
ψ of the form @iψ1, Eψ1 or Aψ1. Since each of these always evaluate to either the top or the
bottom element of the algebra this is immediate.

The next corollary says that if, in Lemma 4.7.6, we take the x in XA instead of in At(Aδ),
then we may loosen the conditions on ϕ and ψ to syntactic pre-closedness and pre-openness
and still obtain the same result. The proof is identical except for the extra base case for ψ of
the form i which now also follows since the x are clopen.

Corollary 4.7.7. Let ϕ(p, q, i) be syntactically pre-closed and ψ(p, q, i) syntactically pre-open.
Let b ∈ A, x ∈ At(A), k ∈ K(Aδ) and u ∈ O(Aδ).

1. (i) If ϕ(p, q, i) is positive in p, then ϕ(k, b, x) ∈ K(Aδ).

(ii) If ψ(p, q, i) is negative in p, then ψ(k, b, x) ∈ O(Aδ).

2. (i) If ϕ(p, q, i) is negative in p, then ϕ(u, b, x) ∈ K(Aδ).

(ii) If ψ(p, q, i) is positive in p, then ψ(u, b, x) ∈ O(Aδ).

Lemma 4.7.8. Let ϕ(p, q, i) be syntactically closed and ψ(p, q, i) be syntactically open. Let
D ⊆ K(Aδ) be down-directed, U ⊆ O(Aδ) up-directed, b ∈ A and x ∈ AtAδ.

1. (i) If ϕ(p, q, i) is positive in p, then ϕ(
∧
D, b, x) =

∧
{ϕ(d, b, x) | d ∈ D}.

(ii) If ψ(p, q, i) is negative in p, then ψ(
∧
D, b, x) =

∨
{ψ(d, b, x) | d ∈ D}.

2. (i) If ϕ(p, q, i) is negative in p, then ϕ(
∨
U, b, x) =

∧
{ϕ(u, b, x) | u ∈ U}.

(ii) If ψ(p, q, i) is positive in p, then ψ(
∨
U, b, x) =

∨
{ψ(u, b, x) | u ∈ U}.

Proof. The proof is again by simultaneous mutual induction on ϕ and ψ. Again, for the
language without the @ operator this has been proved in [33] and in [35] in the setting of
descriptive general frames. We therefore only need to consider the cases when the main
connective of ϕ or ψ is @, E or A.

Suppose that ϕ(p, q, i) is of the form @i0ϕ1(p, q, i), where i0 is among the i, and ϕ1 is
syntactically closed and positive in p. Then @x0ϕ1(

∧
D, b, x) = E(x0 ∧ϕ1(

∧
D, b, x)). By the

inductive hypothesis, the latter is equal to E(x0 ∧
∧
d∈D ϕ1(d, b, x)), which, by the associa-

tivity of ∧, is equal to E
∧
d∈D(x0 ∧ ϕ1(d, b, x)). By the monotonicity of ϕi in p, the family

{x0∧ϕ1(d, b, x) | d ∈ D} is down-directed and its members are closed by Lemma 4.7.6. We may
thus apply Lemma 4.7.5 to conclude that E

∧
d∈D(x0 ∧ϕ1(d, b, x)) =

∧
d∈D E(x0 ∧ϕ1(d, b, x)).

The other cases are similar.
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The next corollary follows from Lemma 4.7.8, but using Corollary 4.7.7, whereas Lemma
4.7.8 uses Lemma 4.7.6.

Corollary 4.7.9. Let ϕ(p, q, i) be syntactically pre-closed and ψ(p, q, i) be syntactically pre-
open. Let D ⊆ K(Aδ) be down-directed, U ⊆ O(Aδ) up-directed, b ∈ A and x ∈ At(A).

1. (i) If ϕ(p, q, i) is positive in p, then ϕ(
∧
D, b, x) =

∧
{ϕ(d, b, x) | d ∈ D}.

(ii) If ψ(p, q, i) is negative in p, then ψ(
∧
D, b, x, o) =

∨
{ψ(d, b, x, o) | d ∈ D}.

2. (i) If ϕ(p, q, i) is negative in p, then ϕ(
∨
U, b, x) =

∧
{ϕ(u, b, x) | u ∈ U}.

(ii) If ψ(p, q, i) is positive in p, then ψ(
∨
U, b, x) =

∨
{ψ(u, b, x) | u ∈ U}.

We are now ready to prove the topological Ackermann lemmas.

Lemma 4.7.10 (Right-handed topological Ackermann lemma). Let A = (A, XA) be a
permeated hybrid algebra, and let α(q, i), β(p, q, i) and γ(p, q, i) be H+(@)-formulas such that

(i) α(q, i) is syntactically pre-closed and does not contain any occurrences of p,

(ii) β(p, q, i) is syntactically pre-closed and positive in p, and

(iii) γ(p, q, i) is syntactically pre-open and negative in p.

Then for any b ∈ A and x ∈ XA, the following are equivalent:

1. there exists a ∈ A such that α(b, x) ≤ a and β(a, b, x) ≤ γ(a, b, x) as interpreted in Aδ,
and

2. β(α(b, x), b, x) ≤ γ(α(b, x), b, x) as interpreted in Aδ.

Proof. For the implication from top to bottom, we appeal to the monotonicity of β in p and
the anti-monotonicity of γ in p to get β(α(b, x), b, x) ≤ β(a, b, x) ≤ γ(a, b, x) ≤ γ(α(b, x), b, x).

For the converse direction, assume β(α(b, x), b, x) ≤ γ(α(b, x), b, x). By Corollary 4.7.7,
α(b, x) is closed, and so α(b, x) =

∧
{s ∈ A | α(b, x) ≤ s}. Now, let S = {s ∈ A | α(b, x) ≤ s}.

Then we have β(
∧
S, b, x) ≤ γ(

∧
S, b, x). But S is a down-directed set of clopen elements, and

furthermore, β is syntactically pre-closed and positive in p, while γ is syntactically pre-open
and negative in p, so, by Corollary 4.7.9,

∧
{β(s, b, x) | s ∈ S} ≤

∨
{γ(s, b, x) | s ∈ S}. By

Corollary 4.7.7, β(s, b, x) is closed and γ(s, b, x) open for all s ∈ A, so, by compactness,

n∧
i=1

β(ui, b, x) ≤
m∨
j=1

γ(u′j , b, x)

for some s1, . . . , sn ∈ A such that α(b, x) ≤ si for 1 ≤ i ≤ n, and s′1, . . . , s
′
m ∈ A such that

α(b, x) ≤ s′j for 1 ≤ j ≤ m. Now, let s1∧ · · · ∧ sn∧ s′1∧ · · · ∧ s′m = a. Clearly then α(b, x) ≤ a.
Furthermore, by the monotonicity of β is p and the anti-monotonicity of γ in p,

β(a, b, x) ≤
n∧
i=1

β(ui, b, x) ≤
m∨
j=1

γ(u′j , b, x) ≤ γ(a, b, x).
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The proof of the next lemma is similar.

Lemma 4.7.11 (Left-handed topological Ackermann lemma). Let A = (A, XA) be a
permeated hybrid algebra, and α(q, i), β(p, q, i) and γ(p, q, i) be H+(@)-formulas such that

(i) α(q, i) is syntactically pre-open and does not contain any occurrences of p,

(ii) β(p, q, i) is syntactically pre-open and positive in p, and

(iii) γ(p, q, i) is syntactically pre-closed and negative in p.

Then for any b ∈ A and x ∈ XA, the following are equivalent:

1. there exists a ∈ A such that a ≤ α(b, x) and γ(a, b, x) ≤ β(a, b, x) as interpreted in Aδ,
and

2. γ(α(b, x), b, x) ≤ β(α(b, x), b, x) as interpreted in Aδ.

Unfortunately, an algebra need not be compact in its Dedekind-MacNeille completion.
This creates an obvious impediment for the proof of the direction from bottom to top of the
equivalence in the topological Ackermann lemma. We need versions of the above lemmas
which apply to atomic hybrid algebras seen as embedded in their Dedekind MacNeille com-
pletions. However, this is not enough. The only way to push the direction from bottom to
top through is to require that α(q, i) be an H(@)-formula like in Lemmas 4.7.1 and 4.7.2. We
will refer to these Ackermann lemmas as the safe Ackerman lemmas.

Lemma 4.7.12 (Right-handed safe Ackermann lemma). Let A = (A, XA) be an atomic
hybrid algebra with 3A preserving all existing joins. Let α(q, i) be an H(@)-formula such that
α(q, i) does not contain any occurrences of p, and let β(p, q, i) and γ(p, q, i) be H+(@)-formulas
such that

(i) β(p, q, i) is positive in p, and

(ii) γ(p, q, i) is negative in p.

Then for any b ∈ A and x ∈ XA, the following are equivalent:

1. there exists a ∈ A such that α(b, x) ≤ a and β(a, b, x) ≤ γ(a, b, x) as interpreted in Adm ,
and

2. β(α(b, x), b, x) ≤ γ(α(b, x), b, x) as interpreted in Adm .

Proof. The implication from top to bottom follows from the monotonicity of β in p and the
anti-monotonicity of γ in p. For the converse inequality, assume β(α(b, x), b, x) ≤ γ(α(b, x), b, x).
Now, since α(q, i) is a H(@)-formula, α(b, x) ∈ A, so let a = α(b, x). Furthermore, by our
assumption, β(a, b, x) ≤ γ(a, b, x).

Lemma 4.7.13 (Left-handed safe Ackermann lemma). Let A = (A, XA) be an atomic
hybrid algebra with 3A preserving all existing joins. Let α(q, i) be an H(@)-formula such that
α(q, i) does not contain any occurrences of p, and let β(p, q, i) and γ(p, q, i) be H+(@)-formulas
such that
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(i) β(p, q, i) is negative in p, and

(ii) γ(p, q, i) is positive in p.

Then for any b ∈ A and x ∈ XA, the following are equivalent:

1. there exists a ∈ A such that a ≤ α(b, x) and β(a, b, x) ≤ γ(a, b, x) as interpreted in Adm ,
and

2. β(α(b, x), b, x) ≤ γ(α(b, x), b, x) as interpreted in Adm .

4.8 Canonicity of pure quasi-inequalities

In this section, we give some definitions and lemmas needed to complete the base of the
“U”-shaped argument in Theorem 4.5.3.

Definition 4.8.1. A diamond-link formula is a formula of the form i → 3j or 2¬j → ¬i.
Note that these two implications are equivalent. Analogously, a diamond-link inequality is an
inequality of the form i ≤ 3j or 2¬j ≤ ¬i. A flat-link formula is a formula of the from i→ j,
and a flat-link inequality is an inequality of the form i ≤ j. A nominal-link formula is any
diamond-link formula or flat-link formula. A compound nominal-link formula is a conjunction
of one or more nominal link formulas.

Let ϕ be a compound nominal-link formula. Define an equivalence relation ∼ on the set of
nominals occurring in ϕ such that i ∼ j iff i→ j or j→ i is a conjunct of ϕ. The dependency
digraph D(ϕ) of ϕ has the set of equivalence classes of all nominals appearing in ϕ as vertex
set, while its arc set consists of all ordered pairs ([i], [j]) such that i′ → 3j′ or 2¬j′ → ¬i′ is
a conjunct of ϕ for some i′ ∈ [i] and j′ ∈ [j]. A compound nominal-link formula ϕ is called
forest-like if every vertex in D(S) has at most one predecessor. The dependency digraph D(S)
of a set S of nominal-link inequalities is defined analogously, and S is called forest-like if every
vertex in D(S) has at most one predecessor.

Example 4.8.2. The following formula is an example of a forest-like compound nominal-link
formula:

(j1 → 3j2) ∧ (j1 → 3j3) ∧ (j2 → 3j4) ∧ (j3 → 3j5) ∧ (j3 → 3j6) ∧ (j3 → j7)∧
(j8 → 3j9) ∧ (j8 → 3j10) ∧ (j10 → 3j11).

Lemma 4.8.3. Let γ(j1, . . . , jn) be a forest-like compound nominal-link formula, and let
A = (A, XA) be a permeated hybrid algebra. If x1, . . . , xn ∈ AtAδ and a1, . . . , an ∈ A such
that xi ≤ ai for all 1 ≤ i ≤ n, and Aδ |= γ(x1, . . . , xn) = >, then there exists y1, . . . , yn ∈ XA

such that Aδ |= γ(y1, . . . , yn) = >.

Proof. Keeping track of the tree structures makes the proof of this lemma extremely tedious,
so we will illustrate the idea of the proof with an example instead. This should make the
general proof idea clear. Let γ be the forest-like compound nominal-link formula in Example
4.8.2. The dependency digraph of this formula is given in Figure 4.5. Let x1, . . . , x11 ∈ AtAδ
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[j1]

[j2]

[j3]

[j5]

[j6]

[j4]

[j8]

[j9]

[j10]

[j11]

Figure 4.5: The dependency digraph of the forest-like compound nominal-link formula in
Example 4.8.2.

and a1, . . . , a11 ∈ A such that xi ≤ ai for all 1 ≤ i ≤ 11, and Aδ |= γ(x1, . . . , x11) = >.
Then x1 ≤ 3x2, x1 ≤ 3x3, x2 ≤ 3x4, x3 ≤ 3x5, x3 ≤ 3x6, x3 ≤ x7, x8 ≤ 3x9, x8 ≤ 3x10,
and x10 ≤ 3x11, so we have that x1 ≤ a1 ∧ 3(a2 ∧ 3a4) ∧ 3(a3 ∧ 3a5 ∧ 3a6 ∧ a7) and
x8 ≤ a8 ∧3a9 ∧3(a10 ∧3a11). But we know that Aδ is permeated, so there are y1 and y8 in
XA such that y1 ≤ a1∧3(a2∧3a4)∧3(a3∧3a5∧3a6∧a7) and y8 ≤ a8∧3a9∧3(a10∧3a11).
From the first inequality we have y1 ≤ 3(a2 ∧ 3a4) and y1 ≤ 3(a3 ∧ 3a5 ∧ 3a6 ∧ a7), and
hence, since Aδ is permeated, there is a y2 ∈ XA such that y2 ≤ a2 ∧ 3a4 and y1 ≤ 3y2.
Likewise, there is a y3 ∈ XA such that y3 ≤ a3∧3a5∧3a6∧a7 and y1 ≤ 3y3. From y2 ≤ 3a4,
we know there is a y4 ∈ XA such that y4 ≤ a4 and y2 ≤ 3y4. Similarly, from y3 ≤ 3a5∧3a6,
we have y5, y6 ∈ XA such that y5 ≤ a5, y3 ≤ 3y5, y6 ≤ a6 and y3 ≤ 3y6. We therefore have
that

(y1 → 3y2) ∧ (y1 → 3y3) ∧ (y2 → 3y4) ∧ (y3 → 3y5) ∧ (y3 → 3y6) ∧ (y3 → y3) = >.

In a similar way, from y8 ≤ a8 ∧3a9 ∧3(a10 ∧3a11), we can find y8, y9, y10, y11 ∈ XA such
that y8 ≤ 3y9, y8 ≤ 3y10, y10 ≤ 3y11. Hence, (y8 → 3y9)∧ (y8 → 3y10)∧ (y10 → 3y11) = >,
and so Aδ |= γ(y1, . . . , y11) = >.

Lemma 4.8.4. Let A = (A, XA) be a permeated hybrid algebra. Let β(j1, . . . , jn) ∈ H+(@)
be pure and syntactically open4, and let γ(j`, . . . , jn), ` ≤ n, be a forest-like nominal-link
formula. If x1, . . . , xn ∈ AtAδ such that β(x1, . . . , xn) ∧ γ(x`, . . . , xn) = >, then there exist
y1, . . . , yn ∈ XA such that β(y1, . . . , yn) ∧ γ(y`, . . . , yn) = >.

Proof. Let x1, . . . , xn ∈ AtAδ such that we have β(x1, . . . , xn) ∧ γ(x`, . . . xn) = >. Then
¬β(x1, . . . , xn) = ⊥. But we know that the atoms of AtAδ are closed, so xi =

∧
Ai with

4We only assume that the nominals occurring in β are among j1, . . . , jn, not that all these nominals neces-
sarily occur in β.



Chapter 4. Sahlqvist theory for hybrid logics 135

Ai = {a ∈ A | xi ≤ a} for each 1 ≤ i ≤ n, and ¬β(
∧
A1, . . . ,

∧
An) = ⊥. Now, since

¬β(p1, . . . , pn) is syntactically closed and positive in the pi and the Ai are down directed sets
of closed elements, Lemma 4.7.8 gives∧

a1∈A1

· · ·
∧

an∈An

¬β(a1, . . . , an) = ⊥.

But ¬β is syntactically closed and positive in the pi, so, by Lemma 4.7.6, each ¬β(a1, . . . , an)
is closed. Hence, by compactness, for each 1 ≤ i ≤ n, there is a a′i ∈ Ai such that
¬β(a′1, . . . , a

′
n) = ⊥. Now, we know that x` ≤ a′`, . . . , xn ≤ a′n and that γ(x`, . . . , xn) = >,

so, by Lemma 4.8.3, there are y`, . . . , yn ∈ XA such that yi ≤ a′i for each ` ≤ i ≤ n, and
γ(y`, . . . , yn) = >. Since A is permeated, we can choose arbitrary y1, . . . , y`−1 ∈ XA such
that yi ≤ a′i, 1 ≤ i ≤ ` − 1. But ¬β is positive in all nominals, so, by monotonicity,
¬β(y1, . . . , yn) = ⊥, and therefore, β(y1, . . . , yn) ∧ γ(y`, . . . , yn) = >.

Proposition 4.8.5. Let S be a finite forest-like set of nominal-link inequalities such that [i0]
and [j0] have no predecessors in D(S). Let ϕi be syntactically closed and pure, while ψi is

syntactically open and pure, 1 ≤ i ≤ k. Then Aδ |=A &S& &k
i=1 ϕi ≤ ψi ⇒ i0 ≤ ¬j0 iff

Aδ |= &S& &k
i=1 ϕi ≤ ψi ⇒ i0 ≤ ¬j0.

Proof. We only prove the implication from left to right, as the other direction is immediate

from Lemma 4.8.6 below. We proceed by contraposition, so assume that Aδ 6|= &S& &k
i=1 ϕi ≤

ψi ⇒ i0 ≤ ¬j0. We rewrite &k
i=1 ϕi ≤ ψi and &S as formulas β and γ, respectively, and set

α(j1, . . . , jn, i0, j0) := β ∧ γ. Note that the nominals i0 and i0 may or may not actually occur
in α. By assumption, there are x1, . . . , xn, d1, d2 ∈ AtAδ such that α(x1, . . . , xn, d1, d2) = >
and d1 6≤ ¬d2, i.e., d1 = d2. Let α′(j1, . . . , jn, i0) be obtained from α by identifying i0 and j0,
i.e, it is the formula β′∧γ′, where β′ and γ′ are obtained by substituting i0 for all occurrences
of j0 in β an γ, respectively. Since i0 and j0 have no predecessors in D(γ), it follows that
D(γ′) is still forest-like — we are identifying the roots of disjoint trees. Now, by Lemma 4.8.4,
there are y1, . . . , yn, c1 ∈ XA such that α′(y1, . . . , yn, c1) = >. If we let v be an admissible
assignment sending ji to yi, 1 ≤ i ≤ n, and sending the nominals i0 and j0 both to c1, then
v(α′) = >, while v(i1) 6≤ ¬v(i2). Hence,

Aδ, v 6|= γ(y1, . . . , yn, c1, c1) = >&β(y1, . . . , yn, c1, c1) = > ⇒ c1 ≤ ¬c1,

and so Aδ 6|=A &S& &k
i=1 ϕi ≤ ψi ⇒ i0 ≤ ¬j0.

Lemma 4.8.6. If A is an atomic BAO, then every atom of A is also an atom of Aδ.
Consequently, if (A, XA) is permeated, then every atom of XA is also an atom of (Aδ, XAδ).

Proof. Assume x is an atom of A, and let b ∈ Aδ such that ⊥ < b ≤ x. Now, we know that
b =

∨
{c ∈ K(Aδ) | c ≤ b}. Since b 6= ⊥, there is some c0 ∈ K(Aδ) such that ⊥ < c0 ≤ b ≤ x.

By definition, c0 =
∧
{a ∈ A | c0 ≤ a}. But since A is an atomic BAO, we have c0 =∧

{
∨
{y ∈ AtA | y ≤ a} | c0 ≤ a}. Distributing this, we see that c0 can be written as a join of

meets of atoms of A. Now, since different atoms meet at ⊥, it follows that c0 can be written
as a join of atoms of A. Hence, there is some y0 ∈ AtA such that ⊥ < y0 ≤ c0 ≤ b ≤ x. Since
y0, x0 ∈ AtA, we have y0 = x, and hence b = x, as required.
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4.9 The algorithm hybrid-ALBA is complete for all inductive
H(@)-formulas.

In [35], it is proven that ALBA succeeds on all inductive inequalities in the language of dis-
tributive modal logic (DML) [42]. It is also shown how this implies that ALBA succeeds
on all inductive inequalities in the language of basic modal logic, where these inequalities
can be conveniently defined by simply restricting Definition 4.2.2 to the basic modal lan-
guage. In outline, the proof consists in showing that, given an (ε,Ω)-inductive inequality, the
propositional variable occurrences corresponding to the leaves of all ε-critical branches can
be ‘surfaced’ or ‘solved for’, and hence, the quasi-inequalities can be brought into the shape
required by the Ackermann rule and the propositional variables can be eliminated. This sur-
facing process proceeds from the root to the leaves by removing the skeleton nodes through
preprocessing and the application of (∧-Adj), (∨-Adj) and approximation rules, and then
removing the PIA nodes by applying adjunction and residuation rules. An Ackermann rule
may be applied to eliminate a particular propositional variable from the quasi-inequality as
soon as that propositional variable has been solved for, or one can solve for all propositional
variables first, and then eliminate them by consecutive applications of the Ackermann rules,
thus postponing these applications to the very end of the run. The latter strategy is followed
in the proof in [35]. We also followed this strategy in Example 4.4.1.

In fact, the proof in [35] can also be used to show that hybrid-ALBA succeeds on all
inductive H(@)- inequalities. What we need to account for is how the novel language elements
— negation, nominals and the @ operator — are accommodated by the strategy outlined
above. Negation plays exactly the same role as the unary order-reversing connectives � and
� of the DML language in [35]. Unlike propositional variables, nominals do not need to
be solved for or eliminated: they do not occur in ε-critical branches and can therefore be
completely ignored as far as it concerns the success of a run of hybrid-ALBA. Occurrences
of +@ and −@ in the skeleton are handled like any binary residuated connective (like →
for example) by applying the appropriate approximation rule — indeed, as we showed in
Proposition 4.1.1, the rules (@-R-Approx) and (@-L-Approx) are refinements of the generic
approximation rule for residuated connectives. Similarly, occurrences of +@ and −@ on the
PIA parts of critical branches are handled like any binary residuated connective (like → for
example) by applying the appropriate residuation rules. Again, the rules (@-R-Res) and
(@-L-Res) are refinements of the generic residuation rule.

Theorem 4.9.1. The algorithm hybrid-ALBA succeeds on all inductive H(@) inequalities and
formulas.

We can also show that hybrid-ALBA succeeds on skeletal inductive formulas.

Theorem 4.9.2. The algorithm hybrid-ALBA succeeds on all skeletal inductive H(@) inequal-
ities and formulas by means of safe runs.

Proof. Since skeletal inductive inequalities and formulas are inductive, Theorem 4.9.1 guar-
antees that hybrid-ALBA succeeds on them. We therefore just need to argue that it does so by
means of safe runs. For this it is sufficient to show that the αi in the applications of the Ack-
ermann rules do not contain occurrences of 3−1 or 2−1. Indeed, something stronger holds:
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neither 3−1 nor 2−1 ever appears in any expression during the entire run. To see this, note
that 3−1 and 2−1 do not appear in the input, nor can they be introduced by preprocessing
or the approximation rules (∧-Adj) and (∨-Adj). They can only be introduced by applying
(2-Adj) and (3-Adj), which only happens when processing occurrences of 2 and 3 on the
PIA parts of critical branches. By definition the PIA parts of the ε-critical branches of a
skeletal (ε,Ω)-inductive inequality are vacuous. The claim follows.

Finally, we show that for every nominally skeletal inductive H(@)-inequality, there is a
topological run of hybrid-ALBA that succeeds on it, but first we need the following lemma:

Lemma 4.9.3. The hybrid-ALBA preprocessing reduces any nominally skeletal inductive H(@)-
inequality to a set of singular nominally skeletal inductive H(@)-inequalities.

Proof. That each inequality produced by preprocessing is again inductive follows directly
from Lemma 10.4 in [35]. An easy inspection reveals that ‘all branches with positively signed
nominals as leaves satisfy conditions (NS1) and (NS2)’ is a condition which is invariant
under the application of preprocessing rules. We thus have that each inequality produced by
preprocessing is skeletal inductive. We need to argue that these inequalities will be singular.
To this end, suppose that +ϕ or −ψ contains at least two leaves labelled +i. These two
leaves must share a binary ancestor which, given the conditions (NS1) and (NS2), can only
be labelled +∨ or −∧. Since this +∨ or −∧ only has SLR and primary ∆-adjoints as ancestors,
it may be made the root of the tree by applying preprocessing rules. Moreover, it will ‘surface’
as +∨ in the transformed tree +ϕ′, or as −∧ in the transformed tree −ψ′. Preprocessing will
therefore separate the two occurrences of +i into two different inequalities by applying either
(∨-Adj) or (∧-Adj) to the inequality ϕ′ ≤ ψ′. Continuing in this way, all leaves labelled with
positively signed nominals are separated, leaving only singular inequalities.

Theorem 4.9.4. For every nominally skeletal inductive H(@)-inequality, there is a topological
run of hybrid-ALBA which succeeds on it. Moreover, each member of the set of pure quasi-

inequalities pure(ϕ ≤ ψ) resulting from this run has the form &S& &k
i=1 ϕi ≤ ψi ⇒ i0 ≤

¬j0, where

(i) S is a finite forest-like set of nominal-link inequalities such that [i0] and [j0] have no
predecessors in D(S), and

(ii) ϕi (ψi) is pure and syntactically closed (open) for each 1 ≤ i ≤ k.

Proof. By Lemma 4.9.3, preprocessing turns any nominally skeletal inequality into a set of
singular ones. It is therefore sufficient to prove the claim for singular nominally skeletal
inductive inequalities. Let ϕ(p, i1, . . . , in) ≤ ψ(p, i1, . . . , in) be a nominally skeletal (ε,Ω)-
inductive inequality with its propositional variables among p and nominals among i1, . . . , in.
Let ϕ′(p, q1, . . . , qn, i1, . . . , in) be the formula obtained from ϕ by substituting qi for each
occurrence of ii that is not the first (subscript) argument of an @, for each 1 ≤ i ≤
n. Let the formula ψ′(p, q1, . . . , qn, i1, . . . , in) be defined similarly. Then ϕ(p, i1, . . . , in) is
equal to ϕ′(p, i1/q1, . . . , in/qn, i1, . . . , in), and similarly, the formula ψ(p, i1, . . . , in) is equal to
ψ′(p, i1/q1, . . . , in/qn, i1, . . . , in). By the assumption that ϕ ≤ ψ is singular, it follows that,
for each 1 ≤ i ≤ n, there is at most one leaf labelled +qi between +ϕ′ and −ψ′.
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Now, we claim that +ϕ′ and −ψ′ are (ε′,Ω′)-inductive, where εqi = 1 for all 1 ≤ i ≤ n and
Ω′ = Ω∪{(qi, p) | 1 ≤ i ≤ n, p ∈ p}. Indeed, since every branch in +ϕ and −ψ ending in +ii is
skeletal, it consists only of skeleton-nodes, and hence is (ε′,Ω′)-conforming; in particular, since
these branches contain no SRR-nodes, conditions (CB1) and (CB2) are vacuously satisfied.
It follows from Theorem 4.9.1 that hybrid-ALBA succeeds on ϕ′ ≤ ψ′. By a simple induction
on the number of rule application after first approximation, one can prove that during any
hybrid-ALBA run on ϕ′ ≤ ψ′, the following hold:

(i) Every inequality in the antecedent of each quasi-inequality is either a diamond-link
inequality, or has a syntactically closed left-hand side and a syntactically open right-
hand side (the fact that nominals occur only as the first arguments of @ is used).

(ii) The set S of all diamond-link inequalities occurring in any given quasi-inequality is
forest-like and [i0] and [j0] have no predecessors in D(S). We use the facts that every
occurring diamond-link inequality is the result of applying the of the rules (2-Approx) or
(3-Approx). Indeed, item (i) helps to guarantee that diamond-link inequalities cannot
be introduced in another way.

As described above, all applications of Ackermann rules can be postponed to the end of
the run. Consider the point in the run where all propositional variables among p have been
eliminated and all propositional variables q1, . . . , qn have been solved for but have not yet been
eliminated. It follows from the forgoing argument that, at this point, the antecedent of every
quasi-inequality will consist of a forest-like set of diamond-link inequalities, inequalities of the
form β ≤ γ where β (γ) is syntactically closed (open) and positive (negative) in q1, . . . , qn,
and inequalities of the form j ≤ qi. Moreover, since there was at most one leaf labelled +qi
between +ϕ′ and −ψ′, there is at most one inequality of the form j ≤ qi, for each 1 ≤ i ≤ n
(approximation, residuation and adjunction rules do not multiply variable occurrences, and
since the branches leading to +q’s are skeletal, they will never feature in formulas being
substituted with in Ackermann rule applications w.r.t other variables).

Taking the entire run, up to this point, and substituting ii for qi, 1 ≤ i ≤ n, we obtain a
successful hybrid-ALBA run on ϕ ≤ ψ. Moreover, in this run every inequality in the antecedent
of each quasi-inequality is either a nominal-link inequality, or has a syntactically pre-closed
left-hand side and a syntactically pre-open right-hand side. Therefore, every application of
an Ackermann rule is topological. It follows that the antecedent of every final pure quasi-
inequality obtained consists of:

(i) a forest-like set S of diamond-link inequalities such that [i0] and [j0] have no predecessors
in D(S),

(ii) inequalities of the form β(i1/q1, . . . , in/qn) ≤ γ(i1/q1, . . . , in/qn), where β (γ) is syntac-
tically closed (open), and

(iii) at most one inequality of the form j ≤ ii, for each 1 ≤ i ≤ n.

But then the union of S and the set of these latter inequalities is forest-like and [i0] and [j0]
still have no predecessors in the resulting graph.



Chapter 5
Hybrid logics with the finite model property

In 1965, R.A. Bull showed that the systems obtained by extending S4 with any of the mem-
bers of a certain inductively defined class of formulas have the finite model property [18].
Shortly thereafter, he famously proved that each normal extension of S4.3 has the finite
model property [20]. In this chapter, we give hybrid analogues of these results. Like the orig-
inal proofs of Bull’s results, ours are algebraic, and thus our secondary aim with this work
is to illustrate the usefulness of algebraic methods within hybrid logic research, a field where
such methods have been largely ignored.

Recall that in relational semantics, a normal modal logic has the finite model property
(FMP) if every non-theorem of the logic is refuted in some finite model for the logic. If there
is a function f from natural numbers to natural numbers such that every non-theorem ϕ of
a normal modal logic is refuted in some f(n)-size model, then the logic has the strong finite
model property. We say that it has the finite frame property, if every non-theorem of the
logic is refuted in some finite frame for the logic. Algebraically, we say that a normal modal
logic has the finite algebra property, if every non-theorem of the logic is refuted in some finite
algebra for the logic. It is a well-known fact that these notions coincide for normal modal
logics. See for instance [10] and [23]. We can therefore prove that a normal modal logic has
the finite model property using an algebraic toolkit.

Now, for hybrid logics, we say that a hybrid logic has the finite hybrid algebra property
if every non-theorem ϕ of the hybrid logic is refuted in some finite hybrid algebra for the
hybrid logic. If there is a function f from natural numbers to natural numbers such that
this hybrid algebra has size f(n), we say that the hybrid logic has the strong finite hybrid
algebra property. In the first section, we prove hybrid analogues for Bull’s theorem. Well, we
will prove something stronger: we will prove the strong finite hybrid algebra property. In the
second section, we show that hybrid extensions of S4 with certain inductively defined hybrid
formulas have the strong finite hybrid algebra property. Note that we will sometimes use the
phrase ‘finite model property’ as an abbreviation for ‘finite hybrid algebra property’.

139
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5.1 Analogues of Bull’s Theorem for H, H(@) and H(E)

Why S4.3? The normal logics extending S4.3 are particularly well-behaved. Not only do
such logics have the finite model property, but they are also finitely axiomatizable and have
a negative characterization in terms of finite sets of finite frames (see [39]).

The logics extending S4.3 are logics of the frames that are rooted, transitive and con-
nected (∀x∀y(xRy ∨ yRx)). To see this, recall that S4.3 has as axioms (T ), (4) and (.3).
These formulas are canonical for reflexivity, transitivity, and no branching to the right
(∀x∀y∀z(xRy ∧ xRz → yRz ∨ y = z ∨ zRy)), respectively. Note that branching to the
left is allowed. By taking a point generated subframe, however, we obtain a frame that inher-
its all three of these properties, but which is also rooted and connected. Now, any connected
frame is reflexive, so rootedness, transitivity and connectedness are fundamental. Note that
we can view any S4.3 frame as a chain of clusters1 (see Figure 5.1), a perspective which will
be useful in what follows.

· · ·

Figure 5.1: A chain of clusters

As we already mentioned, Bull worked with the algebraic semantics, more precisely, closure
algebras. A closure algebra is a BAO (A,∧,∨,¬,⊥,>,3) such that for all a ∈ A,

(i) a ≤ 3a, and

(ii) 33a ≤ 3a.

Why ‘closure’ algebra? The answer is simple: 3 is a closure operator. A closure operator is
a map C: A→ A satisfying

(extensiveness) a ≤ C(a),

(idempotency) C(C(a)) = C(a), and

(isotoness) a ≤ b implies C(a) ≤ C(b).

The first and second conditions follow from the reflexivity and transitivity of 3, respectively,
while the third condition follows from the fact that 3 is monotone.

In the first part of Bull’s proof, he falls back on a result of McKinsey and Tarski in [62], as
well as that of Birkhoff in [8]. McKinsey and Tarski proved that each normal extension of S4
is sound and complete with respect to the corresponding class of closure algebras. Birkhoff

1A cluster on a transitive frame (W,R) is a maximal, nonempty equivalence class under R. That is, C ⊆W
is a cluster if the restriction of R to C is an equivalence relation, and this is not the case for any subset D
properly extending C.
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showed that any closure algebra is sub-directly reducible to well-connected closure algebras
(a well-connected BAO is one in which 3a ∧ 3b = ⊥ iff a = ⊥ or b = ⊥). Bull put these
facts together and concluded that every normal extension of S4 is sound and complete with
respect to the corresponding class of well-connected closure algebras.

Next, Bull generated a finite Boolean subalgebra of a well-connected closure algebra from
a finite subset X of elements of the well-connected closure algebra. He then proceeded by
defining a new operation on this finite Boolean subalgebra that is an operator and, further-
more, preserves 3 in X. What Bull essentially did, was a filtration. So let us give a short
overview on algebraic filtrations. For more details on algebraic filtrations, see [34].

Let A = (A,∧,∨,¬,⊥,>, f) be a BAO, and let S be a finite subset of A. The subalgebra
of A generated by S is in general infinite, due to the modal operator f , and we cannot expect
to generate a finite BAO in this way. However, the Boolean subalgebra of A generated by S
(denoted by AS) is finite and, clearly, preserves all existing Boolean operations in S. The goal
is to define a new operation f ′ on this finite Boolean subalgebra such that f ′ is an operator
and f ′ preserves f in S (i.e., if a ∈ S and f(a) ∈ S, then f ′(a) = f(a)).

Next, let S be a subset of S such that f(a) ∈ S whenever a ∈ S. If f ′ is such that
f ′(a) = f(a) whenever a ∈ S, we say that f ′ extends f �S .

Before we define this new operation on AS , recall that for any function g: AtAS → AS
(and therefore any operator on AS), there is an associated binary relation Rg on AtAS defined
by

xRgy iff x ≤ g(y).

Conversely, any binary relation R on AtAS has an associated function gR: AtAS → AS
defined by

gR(y) =
∨
{x ∈ AtAS | xRy}

It is not difficult to show that the functions g: AtAS → AS and binary relations R ⊆ AS×AS
are in a one-to-one correspondence.

Given a binary relation R on AtAS , the function gR: AtAS → AS defined above extends
uniquely to an operator fR on AS as follows:

fR(a) = f
(∨
{y ∈ AtAS | y ≤ b}

)
=

∨
{gR(y) | y ∈ AtAS and y ≤ a}

=
∨{∨

{x ∈ AtAAS | xRy} | y ∈ AtAS and y ≤ a
}

=
∨
{x ∈ AtAS | ∃y ∈ AtAS(y ≤ a and xRy)}

The operation fR is an operator on AS . First, fR(⊥) =
∨
∅ = ⊥, so fR is normal. For

the additivity, let a, b ∈ AS , and denote {x ∈ AtAS | ∃y ∈ AtAS(y ≤ a and xRy)} and
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{x ∈ AtAS | ∃y ∈ AtAS(y ≤ b and xRy)} by X and Y for simplicity. Now,

x0 ∈ {x ∈ AtAS | ∃y ∈ AtAS(y ≤ a ∨ b and xRy)}
⇐⇒ ∃y0 ∈ AtAS(y0 ≤ a ∨ b and x0Ry0)

⇐⇒ ∃y0 ∈ AtAS(y0 ≤ a or y0 ≤ b and x0Ry0)

⇐⇒ ∃y0 ∈ AtAS((y0 ≤ a and x0Ry0) or (y0 ≤ b and x0Ry0))

⇐⇒ ∃y0 ∈ AtAS(y0 ≤ a and x0Ry0) or ∃y0 ∈ AtAS(y0 ≤ b and x0Ry0)

⇐⇒ x0 ∈ X or x0 ∈ Y
⇐⇒ x0 ∈ X ∪ Y,

so

fR(a ∨ b)
=

∨
{x ∈ AtAS | ∃y ∈ AtAS(y ≤ a ∨ b and xRy)}

=
∨

(X ∪ Y )

=
∨
X ∨

∨
Y

= fR(a) ∨ fR(b)

To ensure that fR extends f �S it suffices that R satisfy the following condition:

(∀a ∈ S)(∀x ∈ AtAS)(x ≤ f(a)⇐⇒ (∃y ∈ AtAS)(y ≤ a and xRy)) (R)

To see this, let R be a binary relation on AtAS such that (R) holds, and let a ∈ S. Then

fR(a) =
∨
{x ∈ AtAS | ∃y ∈ AtAS(y ≤ a and xRy)}

=
∨
{x ∈ AtAS | x ≤ f(a)}

= f(a),

where the second equality follows from (R) and the last equality from the fact that f(a) ∈
S ⊆ AS .

Now, the BAO (AS , f
R) is called the algebraic filtration of A through (S, S) with R.

We now return to our discussion of Bull’s proof that every normal extension of S4.3 has
the finite model property. Bull had his finite algebra. All that he needed to show is that this
algebra validates the axioms of the logic. He proved this by showing that the finite algebra
can be imbedded into the original well-connected algebra. This forms the crux of his work in
[20]. It is here where he crucially used the fact that the original algebra is well-connected.

5.1.1 An analogue of Bull’s Theorem for H

In this section, we give an analogue of Bull’s Theorem for the language H. Our approach
is not entirely the same as that of Bull. Recall that the validity of H-formulas is gene-
rally not preserved under taking products of hybrid algebras. We therefore don’t have a
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result similar to Birkhoff’s result in [8] that says that any closure algebra is sub-directly
reducible to well-connected closure algebras for our hybrid algebras. However, all is not lost
— well-connectedness is closely related, in the dual relational semantics, to the ability to take
point-generated submodels, and we have a way of simulating the process of taking generated
submodels algebraically, so we do not need a result similar to Birkhoff’s result for our hybrid
algebras to obtain a completeness result with respect to well-connected hybrid algebras. The
rest of our approach is pretty much the same as that of Bull: we obtain a finite hybrid algebra
by a filtration and embed this finite hybrid algebra into the original hybrid algebra.

To begin with, recall that every normal extension of S4 is sound and complete with respect
to the corresponding class of closure algebras. We can obtain a similar result for extensions
of the hybrid logic obtained by extending H with (T ) and (4). Formally:

Definition 5.1.1. The logic HS4 is the smallest set ofH-formulas containing all propositional
tautologies, the axioms in Table 5.1, except for (.3), and which is closed under the inference
rules in Table 5.1.

Axioms:

(Taut) ` ϕ for all propositional tautologies ϕ.
(K) ` 2(p→ q)→ (2p→ 2q)
(Dual) ` 3p↔ ¬2¬p
(Nom) ` 3n(i ∧ p)→ 2m(i→ p) for all n,m ∈ N.
(4) ` 33p→ 3p
(T ) ` p→ 3p
(.3) ` 3p ∧3q → 3(p ∧3q) ∨3(p ∧ q) ∨3(q ∧3p)

Rules of inference:

(Modus ponens) If ` ϕ→ ψ and ` ϕ, then ` ψ.
(Sorted substitution) ` ϕ′ whenever ` ϕ, where ϕ′ is obtained from ϕ by sorted

substitution.
(Nec) If ` ϕ, then ` 2ϕ.
(NameLite) If ` ¬i, then ` ⊥.

Table 5.1: Axioms and inference rules of HS4 and HS4.3

Algebraically, hybrid extensions of HS4 are characterized by classes of hybrid closure
algebras (defined below).

Definition 5.1.2 (Hybrid closure algebra). A hybrid closure algebra is a hybrid algebra
A = (A, XA) such that for all a, b ∈ A the following holds:

(refl) a ≤ 3a and

(trans) 33a ≤ 3a.
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Theorem 5.1.3. Let Σ be a set of H-formulas. Then every normal hybrid logic HS4⊕Σ is
sound and complete with respect to the class of all hybrid closure algebras validating Σ.

Proof. This result follows directly from Theorem 3.1.1.

Bull next showed that every normal extension of the logic S4 is sound and complete
with respect to the corresponding class of well-connected closure algebras by falling back
on Birkhoff’s result that any closure algebra is sub-directly reducible to well-connected clo-
sure algebras in [8]. As we mentioned earlier, here we will fall back on the fact that well-
connectedness is equivalent, in the dual relational semantics, to the ability to take gener-
ated submodels, and make use of our construction on page 63 to obtain a similar result for
HS4. However, we work with piecewise well-connected hybrid closure algebras instead of
well-connected hybrid algebras.

Definition 5.1.4. A hybrid algebra A is piecewise well-connected, if there are a1, a2, . . . , am
in A such that

(i) ai ∧ aj = ⊥ for i 6= j,

(ii) a1 ∨ a2 ∨ · · · ∨ am = >,

(iii) 3ai = ai for each 1 ≤ i ≤ m, and

(iv) 3a ∧3b = ⊥ iff a = ⊥ or b = ⊥ for all a, b ≤ ai and 1 ≤ i ≤ m.

We will often refer to a1, . . . , am as ‘pieces’ of the algebra.
So let us prove our claim before Definition 5.1.4. The lemmas needed to prove this will

follow afterwards.

Theorem 5.1.5. Every normal hybrid logic HS4⊕ Σ is sound and complete with respect to
the class of all piecewise well-connected hybrid closure algebras validating Σ. Moreover, at
most two pieces will always suffice.

Proof. We only prove the completeness direction as the soundness direction is just a special
case of the soundness direction of Theorem 5.1.3. So suppose ϕ /∈ HS4 ⊕ Σ. By Theorem
5.1.3, there is a hybrid closure algebra A = (A, XA) and an assignment ν such that A |= Σ≈

but A, ν 6|= ϕ ≈ >. Next, consider the canonical extension Aδ of A. We know that ν(¬ϕ) > ⊥
in Aδ, so, since Aδ is atomic, there is some atom d in Aδ such that d ≤ ν(¬ϕ). Let d0 = d,
and suppose dn is already defined. Then define dn+1 = 3−1dn. Using Lemma 5.1.6 below,
we see that dn+1 = 3−1d for all n ∈ N, so let

D =
∨

3−1d.

Next, let AD = (AD,∧D,∨D,¬D,⊥D,>D,3D), where AD = {a ∧ D | a ∈ A}, ∧D and ∨D
are the restriction of ∧ and ∨ to AD,

¬Da = ¬a ∧D 3Da = 3a ∧D
⊥D = ⊥ >D = D.
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Finally, let AD = (AD, XD), where XD = {x ∈ XA | x ≤ D}. Now, in a similar way as in
Lemma 3.1.3, we can show that AD is closed under the operations ∧D, ∨D, ¬D, and 3D.
Furthermore, by Lemma 5.1.7 below, AD is well-connected. From here we break the proof up
into three cases:

Case 1: x ≤ D for all x ∈ XA. This is the easiest case. First, note that in this case
XA = XD. Now, let h: A → AD be the map defined by h(a) = a ∧ D. Then clearly h is
surjective from A onto AD, and h maps elements of XA to elements of XD. To see that h
is surjective from XA onto XD, let x ∈ XD. We know that x ≤ D, so x = x ∧ D = h(x).
Hence, since x ∈ XA, x is its own pre-image. Showing that h is a homomorphism is done in a
similar way as in Lemma 3.1.4. This means that AD |= HS4Σ≈. Furthermore, AD 6|= ϕ ≈ >.
To see this, consider the assignment νD: PROP ∪ NOM → AD defined by νD(p) = h(ν(p))
and νD(j) = h(ν(j)). It is easy to show using structural induction that νD(ψ) = h(ν(ψ)) for
all formulas ψ that use propositional variables from PROP and nominals from NOM. Since
d ≤ D and d ≤ ν(¬ϕ),

νD(¬ϕ) = h(ν(¬ϕ)) = ν(¬ϕ) ∧D ≥ d > ⊥,

which gives νD(ϕ) 6= D = νD(>). Finally, we also know that 3DD = 3D ∧D ≥ D ∧D = D,
so, since AD is well-connected, AD is piecewise well-connected.

Case 2: x � D for some x ∈ XA but not all. In this case, we also work with products like
we did in the completeness theorem of H⊕ Σ. We want to show that (AD)0 |= HS4Σ≈. So
let h: A → AD be the map defined by h(a) = a ∧ D. As before we can show that h is a
surjective homomorphism from A onto AD in a similar way as in Lemma 3.1.4. To show that
h is surjective from XA onto XD ∪ {⊥}, let x ∈ XD ∪ {⊥}. The case where x ∈ XD is the
same as for Case 1, so assume x = ⊥. We know there is an x0 ∈ XA such that x0 � D, which
means that h(x) = x ∧D = ⊥. Hence, x0 is the pre-image of ⊥. We therefore now have that
(AD)0 |= HS4Σ≈, and hence that AD × AD |= HS4Σ≈ by Proposition 2.1.16. To see that
(AD)0 6|= ϕ ≈ >, let νD: PROP ∪ NOM → AD be defined as before. Then νD(ϕ) 6= νD(>).
Now, let ν ′: PROP ∪ NOM→ AD ×AD be defined by ν ′(p) = (νD(p), νD(p)) and

ν ′(j) =

{
(νD(j),⊥) if νD(j) 6= ⊥
(⊥, x1) if νD(j) = ⊥

for some x1 ∈ XD. As before, using structural induction on ψ, we can show that ν ′(ψ) =
(νD(ψ), aψ) for some aψ ∈ AD. Thus, ν ′(ϕ) = (νD(ϕ), aϕ) 6= (νD(>), D) = ν ′(>).

Finally, we must just show that AD × AD is piecewise well-connected. First, we have
(D,⊥) ∧ (⊥, D) = (⊥,⊥) and (⊥, D) ∨ (D,⊥) = (D,D). Furthermore,

3(D,⊥) = (3DD,3D⊥) = (D,⊥)

and
3(⊥, D) = (3D⊥,3DD) = (⊥, D).
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Now, let (a, b), (a′, b′) ∈ AD ×AD such that (a, b) ≤ (D,⊥) and (a′, b′) ≤ (D,⊥). Then b = ⊥
and b′ = ⊥. Assume 3(a, b) ∧3(a′, b′) = (⊥,⊥). Then (3a ∧3a′,⊥) = (⊥,⊥), and so, since
AD is well-connected, a = ⊥ or a′ = ⊥. Hence, (a, b) = (⊥,⊥) or (a′, b′) = (⊥,⊥). Similarly
for (⊥, D).

Case 3: x � D for all x ∈ XA. As in Case 2, (AD)0 |= HS4Σ≈. Furthermore, (AD)0, νD 6|=
ϕ ≈ >, where νD is defined as before. However, since XD = ∅, we are not done. Now, we
know that XA 6= ∅, so choose some x0 ∈ XA and denote it by d′. Then define

D′ = 3−1d′,

and let AD′ = (AD′ ,∧D
′
,∨D′ ,¬D′ ,⊥D′ ,>D′ ,3D′), where AD′ ,∧D

′
,∨D′ ,¬D′ ,>D′ ,⊥D′ , and

3D′ are defined as before. Set

XD′ = {x ∈ XA | x ≤ D′},

and then let AD′ = (AD′ , XD′). In the same way as in Lemma 5.1.7, we can show that AD′ is
well-connected. Now, if x ≤ D′ for all x ∈ XA, we let h: A→ AD′ be defined by h(a) = a∧D′.
As before, we can show that h is a surjective homomorphism from A onto AD′ and that h
is surjective from XA onto XD′ . Therefore, AD′ |= HS4Σ≈, and so AD × AD′ |= HS4Σ≈

by Proposition 2.1.19. On the other hand, if x � D′ for some x ∈ XA, let h: A → AD′

be defined by h(a) = a ∧D′. Then h is a surjective homomorphism from A onto AD′ , and
furthermore, h is surjective from XA onto XD′∪{⊥}. Hence, (AD′)0 |= HS4Σ≈, which means
that AD × AD′ |= HS4Σ≈ by Proposition 2.1.16. Now, in both cases, define νD′ in the same
way as we defined νD. Note that we do not know if AD′ , νD′ 6|= ϕ ≈ >. This is not a problem,
as we will now show. Consider the assignment ν ′′: PROP ∪ NOM → AD × AD′ defined by
ν ′′(p) = (νD(p), νD′(p)) and

ν ′′(j) =

{
(⊥, νD′(j)) if νD′(j) 6= ⊥
(⊥, x0) if νD′(j) = ⊥.

Using structural induction on ψ, we can show that ν ′′(ψ) = (νD(ψ), aψ) for some aψ ∈ AD′ .
Thus, ν ′′(ϕ) = (νD(ϕ), aϕ) 6= (νD(>), D′) = ν ′′(>).

All that is left to check is that AD × AD′ is piecewise well-connected. First,

(D,⊥) ∧ (⊥, D′) = (⊥,⊥)

and
(⊥, D′) ∨ (D,⊥) = (D,D′).

Furthermore,
3(D,⊥) = (3DD,3D′⊥) = (D,⊥)

and
3(⊥, D′) = (3D⊥,3D′D′) = (⊥, D′).

Finally, since both AD and AD′ are both well-connected, we can show in the same way as in
Case 2 that AD × AD′ is piecewise well-connected.
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Lemma 5.1.6. Let A be a hybrid closure algebra, and let a be an element of the canonical
extension of A. Then

(i) a ≤ 3−1a, and

(ii) 3−13−1a ≤ 3−1a.

Proof. (i) Note that since all axioms of S4 are Sahlqvist, it follows from the canonicity of
Sahlqvist equations that the validity of the axioms of S4 is preserved in passing from A to
its canonical extension. Hence, for all b in the canonical extension of A, ¬b ≤ 3¬b by (refl).
This means that ¬3¬b ≤ ¬¬b for all b in the canonical extension of A, and so 2b ≤ b for all
b in the canonical extension of A. We therefore have that 23−1a ≤ 3−1a. But 2 and 3−1

are adjoint, so a ≤ 23−1a, which gives a ≤ 3−1a.
(ii) First, for all b in the canonical extension of A, 33¬b ≤ 3¬b by (trans), so we

have ¬3¬b ≤ ¬33¬b. Hence, 2b ≤ 22b for all b in the canonical extension of A, and so
23−1a ≤ 223−1a. This means that a ≤ 223−1a, and therefore, 3−13−1a ≤ 3−1a.

For the lemma that follows, AD will be the hybrid algebra constructed in the proof of
Theorem 5.1.5. The proof of this lemma establishes our earlier claim that well-connectedness
corresponds, in the dual relational semantics, to the ability to take generated submodels.

Lemma 5.1.7. AD is well-connected.

Proof. It is easy to see that a = ⊥ or b = ⊥ implies 3a∧3b = ⊥. For the converse direction,
let a, b ∈ AD such that a, b 6= ⊥. Then a = a′ ∧ D and b = b′ ∧ D for some a′, b′ ∈ A, and
so a′ ∧D 6= ⊥ and b′ ∧D 6= ⊥. Hence, a′ ∧3−1d 6= ⊥ and b′ ∧3−1d 6= ⊥. This means that
d ≤ 3a′ and d ≤ 3b′ by Lemma 3.4.3. Now, since d ≤ D, d ≤ 3a′ ∧D and d ≤ 3b′ ∧D. We
also know that D ≤ 2D, so d ≤ 3a′ ∧ 2D and d ≤ 3b′ ∧ 2D, and therefore, d ≤ 3(a′ ∧D)
and d ≤ 3(b′ ∧D). We thus have that d ≤ 3(a′ ∧D) ∧3(b′ ∧D) ∧D = 3Da ∧3Db, which
means that 3Da ∧3Db 6= ⊥.

Of course Bull proved that normal extensions of S4.3 have the finite model property, so
we are interested in the hybrid logics extending HS4.3 (defined below).

Definition 5.1.8. The logic HS4.3 is the smallest set of formulas containing all propositional
tautologies, the axioms in Table 5.1, and which is closed under the inference rules in Table
5.1.

Note that by Theorem 5.1.5, HS4.3⊕ Σ is sound and complete with respect to the class
of piecewise well-connected hybrid algebras. This means that frame-theoretically, any HS4.3
frame will consist of at most two chains of clusters.

Definition 5.1.9. An HS4.3-algebra is a hybrid closure algebra satisfying in addition

(.3) 3a ∧3b ≤ 3(a ∧3b) ∨3(b ∧3a) ∨3(a ∧ b).

We also need the following lemmas about HS4.3-algebras:

Lemma 5.1.10. Let A be an HS4.3-algebra, and let a and b be elements of A. Then
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(i) 3(2a ∧ ¬2b) ∧3(2b ∧ ¬2a) = ⊥, and

(ii) 3(2a ∧ ¬2b) ∧3(2(¬2a ∨2b) ∧ ¬2b) = ⊥.

Proof. (i) Let a and b be elements of A. By (.3),

3(2a ∧ ¬2b) ∧3(2b ∧ ¬2a) ≤ 3(2a ∧ ¬2b ∧3(2b ∧ ¬2a)) ∨3(2b ∧ ¬2a ∧3(2a ∧ ¬2b)),

and so, by the monotonicity of 3 and (refl),

3(2a ∧ ¬2b) ∧3(2b ∧ ¬2a) ≤ 3(2a ∧3¬2a) ∨3(2b ∧3¬2b).

Hence, by the definition of 2,

3(2a ∧ ¬2b) ∧3(2b ∧ ¬2a) ≤ 3(2a ∧33¬a) ∨3(2b ∧33¬b).

Therefore, using (trans), we get

3(2a ∧ ¬2b) ∧3(2b ∧ ¬2a) ≤ 3(2a ∧3¬a) ∨3(2b ∧3¬b),

and so

3(2a ∧ ¬2b) ∧3(2b ∧ ¬2a)

≤ 3(2a ∧ ¬2a) ∨3(2b ∧ ¬2b)
= 3⊥ ∨3⊥
= ⊥ ∨⊥
= ⊥.

We thus have 3(2a ∧ ¬2b) ∧3(2b ∨ ¬2a) = ⊥.
(ii) Let a and b be elements of A, and furthermore, for simplicity, let c = 2a ∧ ¬2b and

d = 2(¬2a ∨2b) ∧ ¬2b. Now, by (.3), we have

3c ∧3d ≤ 3(c ∧3d) ∨3(c ∧ d) ∨3(3a ∧ d).

Using (refl) and (trans), and simplifying, we get

3c ∧3d ≤ 3(c ∧3(2(¬2a ∨2b) ∧33¬b)) ∨3(c ∧ (¬22a ∨22b)) ∨33(c ∧ (¬2a ∨2b)),

which means

3c ∧3d ≤ 3(c ∧33((¬2a ∨2b) ∧3¬b)) ∨3(c ∧ (¬2a ∨2b)) ∨3(c ∧ (¬2a ∨2b)).

But then
3c ∧3d ≤ 3(2a ∧ ¬2b ∧ ¬22a ∧ ¬22b),

and so, by (refl) and (trans),

3c ∧3d ≤ 3(2a ∧ ¬2b ∧ ¬2a ∧ ¬2b) = 3⊥ = ⊥.

Hence, 3(2a ∧ ¬2b) ∧3(2(¬2a ∨2b) ∧ ¬2b) = ⊥, as required.
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We can prove a similar result as Lemma 2 in [20] for our piecewise well-connected hybrid
algebras. This lemma will enable us to label the atoms in each ‘piece’ of the piecewise well-
connected hybrid algebra in the same way Bull labeled the atoms in his finite algebra. We
will also fall back later to this lemma to prove that our map used to show that the finite
hybrid algebra is embeddable into the original hybrid algebra preserves the diamond.

Lemma 5.1.11. Let a1, a2, . . . , am be the pieces of a piecewise well-connected HS4.3-algebra
A, and let a and b be elements of A such that a ≤ ai and b ≤ ai, i = 1, . . . ,m. Then

(i) 3a ≤ 3b or 3b ≤ 3a,

(ii) 3(a ∧ ¬3b) = 3(3a ∧ ¬3b), and

(iii) 3b < 3a implies 3(a ∧ ¬3b) = 3a.

Proof. (i) We have 3(¬3a ∧ 3b) ∧ 3(¬3b ∧ 3a) = ⊥ by Lemma 5.1.10, and so, by (refl),
3(¬3a ∧ b) ∧ 3(¬3b ∧ a) = ⊥. But since a ≤ ai and b ≤ ai, we have a ∧ ¬3b ≤ a ≤ ai
and b ∧ ¬3a ≤ b ≤ ai. Hence, by the definition of a piecewise connected hybrid algebra,
b ∧ ¬3a = ⊥ or a ∧ ¬3b = ⊥. Thus, b ≤ 3a or a ≤ 3b, and so 3b ≤ 33a = 3a or
3a ≤ 33b = 3b.

(ii) By (refl), a ≤ 3a, so a ∧ ¬3b ≤ 3a ∧ ¬3b. Hence, by the monotonicity of 3,
3(a ∧ ¬3b) ≤ 3(3a ∧ ¬3b). Conversely, by (trans), 33b = 3b, so

3a ∧ ¬3b = 3a ∧ ¬33b

= 3a ∧2¬3b
≤ 3(a ∧ ¬3b).

Therefore, by the monotonicity of 3 and (trans), 3(3a∧¬3b) ≤ 33(a∧¬3b) = 3(a∧¬3b).
(iii) First, by (ii), 3(a∧¬3b) = 3(3a∧¬3b). But by the monotonicity of 3 and (trans),

3(3a ∧ ¬3b) ≤ 33a = 3a, so if we can show that 3a ≤ 3(3a ∧ ¬3b), we are done. Now,

3(3a ∧ ¬3b) ∧3(3a ∧ ¬3(3a ∧ ¬3b)) = ⊥.

by Lemma 5.1.10, and hence, 3(a∧¬3b)∧3(a∧¬3(3a∧¬3b)) = ⊥ by (refl). Since a ≤ ai
and b ≤ ai, a ∧ ¬3b ≤ a ≤ ai and a ∧ ¬3(3a ∧ ¬3b) ≤ a ≤ ai, so, by the definition of a
piecewise well-connected hybrid algebra, a∧¬3b = ⊥ or a∧¬3(3a∧¬3b) = ⊥. We thus have
a ≤ 3b or a ≤ 3(3a∧¬3b), and so 3a ≤ 33b = 3b or 3a ≤ 33(3a∧¬3b) = 3(3a∧¬3b).
But 3b < 3a, which means that 3a ≤ 3(3a ∧ ¬3b), as required.

We now give the main result of this section.

Theorem 5.1.12. Every normal hybrid logic HS4.3⊕Σ has the strong finite hybrid algebra
property.

Proof. Suppose ϕ /∈ HS4.3⊕Σ. By Theorem 5.1.5, there is a piecewise well-connected closure
hybrid algebra A = (A, XA) and an assignment ι such that A |= Σ≈ but A, ι 6|= ϕ ≈ >. We
also know that there are a1 and a2 in A that satisfy the conditions of Definition 5.1.4 (possibly
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a1 = a2 = >). Now, let S0 be the set of elements of A used in the evaluation of ϕ and > under
ι. Then let S1 = S0 ∪ {x0} ∪ {a1, a2}, where x0 is an arbitrary atom in XA. Furthermore, let
XS = XA∩S1, and finally, let S = S1∪{3x | x ∈ XS}. Define BS as the Boolean subalgebra
of A generated by S. Since S is a finite subset of A, BS is finite. Also, BS clearly preserves
all Boolean operations. Further, define a relation R on AtBS by

∀x∀y ∈ AtBS(xRy ⇐⇒ 3x ≤ 3y),

and let

3Sb =
∨
{x ∈ AtBS | ∃y ∈ AtBS(y ≤ b and xRy)}.(5.1)

Then consider the structure BS = (BS ,3
S , XS). Note that XS 6= ∅ since x0 ∈ XS . If we

can now show that R satisfies condition (R), we know that 3S is a normal operator extending
3, and hence that BS 6|= ϕ ≈ >. So let S be the subset of S satisfying 3b ∈ S whenever
b ∈ S, and let b ∈ S and x ∈ AtBS . For the left-to-right direction, assume x ≤ 3b. But since
b ∈ BS , we have

x ≤ 3b = 3
∨
{y ∈ AtBS | y ≤ b} =

∨
{3y | y ∈ AtBS and y ≤ b}.

Hence, x ≤ 3y0 for some y0 ≤ b. But 3x ≤ 33y0 = 3y0, so xRy0. For the converse, assume
y0 ≤ b and 3x ≤ 3y0. From the first inequality we get 3y0 ≤ 3b, while from the second
inequality we have x ≤ 3y0 by (refl). Therefore, x ≤ 3b, as required, and so BS 6|= ϕ ≈ >.
Finally, by Lemma 5.1.13 below, BS can be embedded into A, so BS |= HS4.3Σ≈.

We conclude this proof with a calculation of an upper bound for the number of elements
in the algebra BS . First, let us calculate an upper bound for the number of elements in S.
Let l(ϕ) be the sum of the number of different propositional variables and different nominals
in ϕ. From here on we will refer to this as the length of ϕ. Then S0 contains at most l(ϕ) + 1
elements. This means that S1 has at most l(ϕ) + 1 + 2 + 1 = l(ϕ) + 4 elements. Now, we
also know that X ∩ S1 contains at most l(ϕ) + 1 atoms, so {3x | x ∈ XB} contains at most
l(ϕ) + 1 elements. Therefore,

|S| ≤ l(ϕ) + 4 + l(ϕ) + 1 = 2l(ϕ) + 5.

We can thus conclude that BS contains at most 22l(ϕ)+5 atoms, and hence, at most 222l(ϕ)+5

elements.

For the lemma below, let A and BS be the hybrid algebras in the proof of Theorem 5.1.12.
In this lemma, we borrow Bull’s map in his Lemma 4 in [20]. However, we have to modify this
map to accommodate the designated atoms and ‘pieces’ of our hybrid algebra, which in turn
means that we have to do a lot more work to show that this map is indeed an embedding, as
we will soon see.

Lemma 5.1.13. BS can be embedded into A.
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Proof. Let b1, b2, . . . , bn be the atoms of BS . We have to make sure that the pieces a1 and a2

form a partition of the atoms of BS , so let bj ∈ AtBS such that bj ≤ a1 and bj ≤ a2. Then
bj ≤ a1∧a2 = ⊥, contradicting the fact that bj is an atom. Now, let b11, b

1
2, . . . , b

1
n1
, b21, . . . , b

2
n2

be the atoms of BS such that b11, b
1
2, . . . , b

1
n1
≤ a1 and b21, . . . , b

2
n2
≤ a2. Appealing to Lemma

5.1.11, we choose to index the atoms in such a way that in their indexed order

3bik(1) = · · · = 3bik(2)−1 < 3bik(2) = · · · = 3bik(3)−1 < · · · < 3bik(mi)
= · · · = 3bik(mi+1)−1

for i = 1, 2 and 1 = k(1) < k(2) < · · · < k(mi+ 1) = ni+ 1. For convenience, define bik(0) = ⊥
for i = 1, 2. Furthermore, let Xi

j =
{
bk(j), bk(j)+1, . . . , bk(j+1)−1

}
∩XS and Y i

j = XS\Xi
j for

i = 1, 2. Consider the map θ: BS → A defined as follows:

(i) θ(⊥) = ⊥

(ii) For each i = 1, 2 and 1 ≤ j ≤ mi,

θ
(
bik(j)

)
=

{
bik(j) if bik(j) ∈ XS

3bik(j) ∧ ¬
(
bik(j)+1 ∨ b

i
k(j)+2 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1) otherwise.

(iii) For i = 1, 2 and k(j) + 1 ≤ k(j) + l ≤ k(j + 1)− 1,

θ
(
bik(j)+l

)
=

{
bik(j)+l if bik(j)+l ∈ XS

bik(j)+l ∧ ¬3b
i
k(j−1) otherwise.

(iv) For any b ∈ BS ,

θ(b) =
∨
bj≤b

θ(bj).

First, θ obviously respects ⊥, and furthermore, it maps designated atoms of XS to designated
atoms of XA. We break the rest of the proof up into claims.

Claim 1. For all i = 1, 2 and 1 ≤ j ≤ mi,

3Sbik(j) =
∨{

bik(1), b
i
k(1)+1, . . . , b

i
k(2)−1, b

i
k(2), . . . , b

i
k(j), b

i
k(j)+1, . . . , b

i
k(j+1)−1

}
.

Proof of claim. Since 3Sbik(j) =
∨{

bl ∈ AtBS | 3bl ≤ 3bik(j)

}
, we have to prove that{

bl ∈ AtBS | 3bl ≤ 3bik(j)

}
=
{
bik(1), b

i
k(1)+1, . . . , b

i
k(2)−1, b

i
k(2), . . . , b

i
k(j), b

i
k(j)+1, . . . , b

i
k(j+1)−1

}
for each i = 1, 2 and 1 ≤ j ≤ mi. To prove the right-to-left inclusion, note that for each
k(1) ≤ k(j) + l ≤ k(j + 1) − 1, 3bik(j)+l ≤ 3bik(j) by our ordering on the atoms, so we have

bik(j)+l ∈
{
bl ∈ AtBS | 3bl ≤ 3bik(j)

}
. For the converse, let bl0 ∈

{
bl ∈ AtBS | 3bl ≤ 3bik(j)

}
.

First, we show that bl0 ≤ ai. Now, we claim that 3bik(j) ≤ ai. To see this, note that
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bik(j) ≤ ai, so 3bik(j) ≤ 3ai by the monotonicity of 3. But by the definition of piecewise

well-connectedness, 3ai = ai, so 3bik(j) ≤ ai. Since bl0 ∈
{
bl ∈ AtBS | 3bl ≤ 3bik(j)

}
, we

have 3bl0 ≤ 3bik(j). Hence, by (refl), bl0 ≤ ai. To show that l0 = k(j) + l for some

k(1) ≤ k(j) + l ≤ k(j + 1) − 1, suppose l0 ≥ k(j + 1). Then 3bl0 > 3bik(j) by our ordering.

But we also have that 3bl0 ≤ 3bik(j), so we have a contradiction.

Claim 2. For each i = 1, 2, 1 ≤ j ≤ mi and k(j)+1 ≤ k(j)+l ≤ k(j+1)−1, bik(j)+l � 3bik(j−1).

Proof of claim. For the sake of a contradiction, suppose that bik(j)+l ≤ 3bik(j−1). Then

3bik(j)+l ≤ 33bik(j−1) = 3bik(j−1) by the monotonicity of 3 and (trans). However, this
contradicts our ordering.

Claim 3. For each i = 1, 2 and 1 ≤ j ≤ mi,

θ
(
bik(j)

)
∨ θ
(
bik(j)+1

)
∨ · · · ∨ θ

(
bik(j+1)−1

)
= 3bik(j) ∧ ¬3b

i
k(j−1).

Proof of claim. We consider the following cases:

Case 1: bik(j), b
i
k(j)+1, . . . , b

i
k(j+1)−1 are all non-designated. Then

θ
(
bik(j)

)
∨ θ
(
bik(j)+1

)
∨ · · · ∨ θ

(
bik(j+1)−1

)
=

(
3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

)
∨
(
bik(j)+1 ∧ ¬3b

i
k(j−1)

)
∨ · · · ∨(

bik(j+1)−1 ∧ ¬3b
i
k(j−1)

)
=

((
3bik(j) ∧ ¬(bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1)

)
∨ (bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1)

)
∧ ¬3bik(j−1)

=
(
3bik(j) ∨ b

i
k(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bk(j−1)

= 3bik(j) ∧ ¬3bk(j−1),

where the last equality follows from the fact that for all k(j) + 1 ≤ k(j) + l ≤ k(j + 1) − 1,
bik(j)+l ≤ 3bik(j).

Case 2: bik(j), b
i
k(j)+1, . . . , b

i
k(j+1)−1 is a mixture of designated and non-designated atoms. We

may assume without loss of generality that bik(j) is non-designated (just modify the indexes).

We now show that we get θ
(
bik(j)+l

)
= bik(j)+l ∧ ¬3b

i
k(j−1) for all i = 1, 2, 1 ≤ j ≤ mi and

k(j) + 1 ≤ k(j) + l ≤ k(j + 1) − 1. We know from Claim 2 that bik(j)+l � 3bik(j−1). So if

bik(j)+l ∈ XS , bik(j)+l ∈ AtA, which means that bik(j)+l ≤ ¬3b
i
k(j−1). Hence, for all i = 1, 2,

1 ≤ j ≤ mi and k(j) + 1 ≤ k(j) + l ≤ k(j + 1)− 1 such that bik(j)+l ∈ XS ,

θ
(
bik(j)+l

)
= bik(j)+l = bk(j)+l ∧ ¬3bk(j−1).
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On the other hand, if bik(j)+l /∈ XS , we know from the definition of θ that

θ
(
bik(j)+l

)
= bik(j)+l ∧ ¬3b

i
k(j−1)

Now, as in Case 1,

θ
(
bik(j)

)
∨ θ
(
bik(j)+1

)
∨ · · · ∨ θ

(
bik(j+1)−1

)
= 3bik(j) ∧ ¬3bk(j−1),

Case 3: bik(j), b
i
k(j)+1, . . . , b

i
k(j+1)−1 are all designated. By the definition of S, 3bik(j) ∈ B,

so 3Sbik(j) = 3bik(j), which means that

3bik(j) =
∨{

bl ∈ AtBS | 3bl ≤ 3bik(j)

}
.

Hence, by Claim 1,

3bik(j) =
∨{

bik(1), b
i
k(1)+1, . . . , b

i
k(2)−1, b

i
k(2), . . . , b

i
k(i−1), . . . , b

i
k(j), b

i
k(j)+1, . . . , b

i
k(j+1)−1

}
,

and so, since∨{
bik(1), b

i
k(1)+1, . . . , b

i
k(2), . . . , b

i
k(j), b

i
k(j)+1, . . . , b

i
k(j+1)−1

}
≤ 3bik(j−1)∨ b

i
k(j)∨ · · · ∨ b

i
k(j+1)−1,

3bik(j) ≤ 3bik(j−1)∨ b
i
k(j)∨· · ·∨ b

i
k(j+1)−1. But 3bik(j−1)∨ b

i
k(j)∨· · ·∨ b

i
k(j+1)−1 ≤ 3bik(j), which

gives 3bik(j) = 3bik(j−1) ∨ b
i
k(j) ∨ · · · ∨ b

i
k(j+1)−1. Hence,

3bik(j) ∧ ¬3b
i
k(j−1) =

(
3bik(j−1) ∨ b

i
k(j) ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

=
(
bik(j) ∧ ¬3b

i
k(j−1)

)
∨ · · · ∨

(
bik(j+1)−1 ∧ ¬3b

i
k(j−1)

)
.

But by Claim 2, bik(j)+l � 3bik(j−1), so since bik(j)+l ∈ AtA, bik(j)+l ≤ ¬3b
i
k(j−1). We therefore

get
bik(j) ∨ · · · ∨ b

i
k(j+1)−1 = 3bik(j) ∧ ¬3b

i
k(j−1).

Thus,

θ
(
bik(j)

)
∨ θ
(
bik(j)+1

)
∨ · · · ∨ θ

(
bik(j+1)−1

)
= bik(j) ∨ b

i
k(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

= 3bk(i) ∧ ¬3bk(i−1).

Claim 4. For each i = 1, 2, ∨
1≤j≤mi

(
3bik(j) ∧ ¬3b

i
k(j−1)

)
= 3bik(mi)

.
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Proof of claim. Let i = 1, 2. Then we have∨
1≤j≤mi

(
3bik(j) ∧ ¬3b

i
k(j−1)

)
=

∨
1≤j≤mi

3bik(j)

= 3bik(mi)
,

where the last step follows from our ordering.

Claim 5. θ(b1), θ(b2), . . . , θ(bn) cover A.

Proof of claim. Since the elements bi1, b
i
2, . . . , b

i
ni cover ai (i.e.

∨
1≤j≤ni b

i
j = ai), and, for every

1 ≤ j ≤ ni, 3bij ≤ 3bik(mi)
by the choice of indexing,

3bik(mi)
≥

∨
1≤j≤ni

3bij

= 3
∨

1≤j≤ni

bij

= 3ai

≥ ai

But we also have bik(mi)
≤ ai, so 3bik(mi)

≤ 3ai = ai, which means that 3bik(mi)
= ai. Hence,

by Claim 4, ∨
1≤j≤mi

(
3bik(j) ∧ ¬3b

i
k(j−1)

)
= 3bik(mi)

= ai,

and so
θ(b1) ∨ θ(b2) ∨ · · · ∨ θ(bn) =

∨
i=1,2

ai = >.

Claim 6. For each i = 1, 2, if bik(j) /∈ XS , then

θ(bik(j)) = 3bik(j) ∧ ¬
(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1) ∧

 ∧
x∈Y ij

¬x

 .

Proof of claim. First, assume x ∈ Xi
1 ∪ · · · ∪ Xi

j−1. Then 3x ≤ 3bik(j−1) by the ordering,

so ¬3bik(j−1) ≤ ¬x. On the other hand, if x ∈ Xi
j+1 ∪ · · · ∪ Xi

mi , then 3bik(j) ∧ x = ⊥. To

see this, suppose 3bik(j) ∧ x > ⊥. But since x ∈ AtA, x ≤ 3bik(j), which means that 3x ≤
33bik(j) = 3bik(j), contradicting our ordering. Hence, 3bik(j) ≤ ¬x. Finally, if x ∈ Xi′

j′ , i 6= i′,
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3bik(j) ∧ x ≤ ai ∧ ai′ = ⊥. This means we also get 3bik(j) ≤ ¬x. We therefore have

θ
(
bik(j)

)
= 3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

= 3bik(j) ∧ ¬
(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1) ∧

 ∧
x∈Y ij

¬x

 .

Claim 7. θ(b1), θ(b2), . . . , θ(bn) are pairwise disjoint.

Proof of claim. Let bil, b
i′
l′ ∈ AtBS . We break the proof of this claim into cases. But first note

that for each k(j) ≤ k(j) + l ≤ k(j + 1)− 1, bik(j)+l ≤ 3bik(j)+l ≤ ai, so since ai ∧ ai′ = ⊥ for

i 6= i′, we need only to consider the cases where i = i′.

Case 1: bil, b
i
l′ ∈ XS , bil = bik(j) and bil′ = bik(j′). Then

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)

)
∧ θ
(
bik(j′)

)
= bik(j) ∧ b

i
k(j′)

= ⊥.

Case 2: bil′ ∈ XS , b
i
l /∈ XS , b

i
l = bik(j) and bil′ = bik(j′). We then have that bik(j′) ∈ Y

i
j , so

θ(bil′) ∧ θ(bil)

= θ
(
bi
′

k(j′)

)
∧ θ
(
bik(j)

)
= bik(j′) ∧3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1) ∧

 ∧
x∈Y ij

¬x


≤ bik(j′) ∧ ¬b

i
k(j′)

= ⊥,

where the first equality follows from Claim 6.

Case 3: bil, b
i
l′ ∈ XS , bil = bik(j) and bil′ = bik(j′)+r′ . Then

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)

)
∧ θ
(
bik(j′)+r′

)
= bik(j) ∧ b

i
k(j′)+r′

= ⊥.
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Case 4: bil′ ∈ XS , b
i
l /∈ XS , b

i
l = bik(j)+r and bil′ = bik(j′). We then have

θ(bil′) ∧ θ(bil)

= θ
(
bik(j′)

)
∧ θ
(
bik(j)+r

)
= bik(j′) ∧ b

i
k(j)+r ∧ ¬3b

i
k(j−1)

= ⊥

Case 5: bil, b
i
l′ /∈ XS , b

i
l = bik(j) and bil′ = bik(j′). First, if we have 3bik(j′) < 3bik(j), then

3bik(j′) ≤ 3bik(j−1). Hence,

θ(bil) ∧ θ(bil′)

= θ
(

(bik(j)

)
∧ θ
(
bik(j′)

)
=

(
3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

)
∧(

3bik(j′) ∧ ¬
(
bik(j′)+1 ∨ · · · ∨ b

i
k(j′+1)−1

)
∧ ¬3bik(j′−1)

)
≤ ¬3bik(j−1) ∧3bik(j−1)

= ⊥.

On the other hand, if 3bik(j) < 3bik(j′), then 3bik(j) ≤ 3bik(j′−1). So

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)

)
∧ θ
(
bik(j′)

)
=

(
3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

)
∧(

3bik(j′) ∧ ¬
(
bik(j′)+1 ∨ · · · ∨ b

i
k(j′+1)−1

)
∧ ¬3bik(j′−1)

)
≤ 3bik(j′−1) ∧ ¬3b

i
k(j′−1)

= ⊥.

Case 6: bil /∈ XS , b
i
l′ ∈ XS , b

i
l = bik(j) and bil′ = bik(j′)+r′ . We know that bik(j′)+r′ ∈ Y

i
j , so

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)

)
∧ θ
(
bik(j′)

)
= 3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1) ∧

 ∧
x∈Y ij

¬x

 ∧ bik(j′)+r′

≤ ¬bik(j′)+r′ ∧ b
i
k(j′)+r′

= ⊥
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Case 7: bil, b
i
l′ /∈ XS , b

i
l = bik(j) and bil′ = bik(j′)+r′ . If we have 3bik(j′) < 3bik(j), then

3bik(j′) ≤ 3bik(j−1). Hence,

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)

)
∧ θ
(
bik(j′)+r′

)
=

(
3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

)
∧
(
bik(j′)+r′ ∧ ¬3b

i
k(j′−1)

)
≤ ¬3bik(j−1) ∧3bik(j′)+r′

= ¬3bik(j−1) ∧3bik(j′)

≤ ¬3bik(j−1) ∧3bik(j−1)

= ⊥.

On the other hand, if 3bik(j) < 3bik(j′), then 3bik(j) ≤ 3bik(j′−1). So

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)

)
∧ θ
(
bik(j′)+r′

)
=

(
3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

)
∧
(
bik(j′)+r′ ∧ ¬3b

i
k(j′−1)

)
≤ 3bik(j′−1) ∧ ¬3b

i
k(j′−1)

= ⊥.

Case 8: bil, b
i
l′ ∈ XS , b

i
l = bik(j)+r and bil′ = bik(j′)+r′ . Then we have

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)+r

)
∧ θ
(
bik(j′)+r′

)
= bik(j)+r ∧ b

i
k(j′)+r′

= ⊥.

Case 9: bil ∈ XS , b
i
l′ /∈ XS , b

i
l = bik(j)+r and bil′ = bik(j′)+r′ . Then

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)+r

)
∧ θ
(
bik(j′)+r′

)
= bik(j)+r ∧

(
bik(j′)+r′ ∧ ¬3b

i
k(j′)+r′

)
= ⊥.
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Case 10: bil, b
i
l′ /∈ XS , b

i
l = bik(j)+r and bil′ = bik(j′)+r′ . Here we have

θ(bil) ∧ θ(bil′)

= θ
(
bik(j)+r

)
∧ θ
(
bik(j′)+r′

)
=

(
bik(j)+r ∧ ¬3b

i
k(j)+r

)
∧
(
bik(j′)+r′ ∧ ¬3b

i
k(j′)+r′

)
= ⊥.

Claim 8. For any b ∈ BS , θ(¬b) = ¬θ(b).

Proof of claim.

¬θ(b) = ¬

∨
bj≤b

θ(bj)


= > ∧ ¬

∨
bj≤b

θ(bj)


=

∨
1≤i≤n

θ(bi) ∧ ¬

∨
bj≤b

θ(bj)


=

∨
1≤i≤n

θ(bi) ∧
∧
bj≤b
¬θ(bj)

=
∨
bj≤b

(θ(bj) ∧ ¬θ(bj)) ∨
∨
bi�b

θ(bi) ∧ ∧
bj≤b
¬θ(bj)


= ⊥ ∨

∨
bi�b

θ(bi)

=
∨
bi�b

θ(bi)

=
∨
bi≤¬b

θ(bi)

= θ(¬b)

Here the first part of the fifth equality and the second part of the sixth equality follow from
the fact that for i 6= j, θ(bi) ∧ θ(bj) = ⊥, and hence that θ(bi) ≤ ¬θ(bj). The second-to-last
equality follows from the fact that bi is an atom of BS .

Claim 9. For any a, b ∈ BS , θ(a ∨ b) = θ(a) ∨ θ(b).

Proof of claim. We first show that

{θ(bi) | bi ∈ AtBS & bi ≤ a∨b} = {θ(bi) | bi ∈ AtBS & bi ≤ a}∪{θ(bi) | bi ∈ AtBS & bi ≤ b} :
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x ∈ {θ(bi) | bi ∈ AtBS & bi ≤ a ∨ b}
⇐⇒ ∃bi0 ∈ AtBS(x = θ(bi0) and bi0 ≤ a ∨ b)
⇐⇒ ∃bi0 ∈ AtBS(x = θ(bi0) and (bi0 ≤ a or bi0 ≤ b))
⇐⇒ ∃bi0 ∈ AtBS((x = θ(bi0) and bi0 ≤ a) or (x = θ(bi0) and bi0 ≤ b))
⇐⇒ ∃bi0 ∈ AtBS(x = θ(bi0) and bi0 ≤ a) or ∃bi0 ∈ AtBS(x = θ(bi0) and bi0 ≤ b)
⇐⇒ x ∈ {θ(bi) | bi ∈ AtBS & bi ≤ a} or x ∈ {θ(bi) | bi ∈ AtBS & bi ≤ b}
⇐⇒ x ∈ {θ(bi) | bi ∈ AtBS & bi ≤ a} ∪ {θ(bi) | bi ∈ AtBS & bi ≤ b}.

But then

θ(a ∨ b)
=

∨
{θ(bi) | bi ∈ AtBS & bi ≤ a ∨ b}

=
∨

({θ(bi) | bi ∈ AtBS & bi ≤ a} ∪ {θ(bi) | bi ∈ AtBS & bi ≤ b})

=
∨
{θ(bi) | bi ∈ AtBS & bi ≤ a} ∨

∨
{θ(bi) | bi ∈ AtBS & bi ≤ b}

= θ(a) ∨ θ(b).

Claim 10. For each i = 1, 2, 1 ≤ j ≤ mi and k(j) ≤ k(j) + l ≤ k(j + 1)− 1,

3θ
(
bik(j)+l

)
= 3

(
bik(j)+l ∧ ¬3b

i
k(j−1)

)
.

Proof of claim. Consider the following two cases:

Case 1: bik(j) is not designated. We first prove the left-to-right inequality:

θ
(
bik(j)

)
= 3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

≤ 3bik(j) ∧ ¬3b
i
k(j−1).

For the right-to-left inequality, note that we have bik(j) ∧ b
i
k(j)+l = ⊥ for each k(j) + 1 ≤

k(j) + l ≤ k(j + 1)− 1), so bik(j) ≤ ¬b
i
k(j)+l. Hence,

θ
(
bik(j)

)
= 3bik(j) ∧ ¬

(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

≥ bik(j) ∧ ¬
(
bik(j)+1 ∨ · · · ∨ b

i
k(j+1)−1

)
∧ ¬3bik(j−1)

= bik(j) ∧ ¬3b
i
k(j−1).

We thus have

3

(
bik(j) ∧ ¬3b

i
k(j−1)

)
≤ 3θ

(
bik(j)

)
≤ 3

(
3bik(j) ∧ ¬3b

i
k(j−1)

)
= 3

(
bik(j) ∧ ¬3b

i
k(j−1)

)
,

where the equality follows from Lemma 5.1.11. Therefore,

3θ
(
bk(i)

)
= 3

(
bk(i) ∧ ¬3bk(i−1)

)
.
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Case 2: bik(j) is designated. Since bik(j), b
i
k(j−1) ≤ ai and 3bik(j−1) < 3bik(j), we have

3θ
(
bik(j)

)
= 3bjk(j) = 3

(
bik(j) ∧ ¬3b

i
k(j−1)

)
by Lemma 5.1.11.

Case 3: bik(j)+l is not designated. Here we have 3θ
(
bik(j)+l

)
= 3

(
bik(j)+l ∧ ¬3b

i
k(j−1)

)
by

the definition of θ.

Case 4: bik(j)+l is designated. Since 3bik(j)+l = 3bik(j) and 3bik(j−1) < 3bik(j), we have

3bik(j−1) < 3bik(j)+l. Hence,

3θ
(
bik(j)+l

)
= 3bik(j)+l = 3

(
bik(j)+l ∧ ¬3b

i
k(j−1)

)
by Lemma 5.1.11.

Claim 11. For each i = 1, 2, 1 ≤ j ≤ mi and k(j) ≤ k(j) + l ≤ k(j + 1)− 1,

3θ
(
bik(j)+l

)
= θ

(
3Sbik(j)+l

)
.

Proof of claim.

3θ(bik(j)+l) = 3

(
bik(j)+l ∧ ¬3b

i
k(j−1)

)
(by Claim 10)

= 3bik(j)+l (by Lemma 5.1.11)

= 3bik(j) (by our choice of indexing)

=
∨

1≤r≤j

(
3bk(r) ∧ ¬3bk(r−1)

)
(by Claim 4)

=
∨

1≤r≤j

(
θ
(
bik(r)

)
∨ θ
(
bik(r)+1

)
∨ · · · ∨ θ

(
bik(r+1)−1

))
(by Claim 3)

= θ

 ∨
1≤r≤j

(
bik(r) ∨ b

i
k(r)+1 ∨ · · · ∨ b

i
k(r+1)−1

) (by Claim 9)

= θ
(
3Sbik(j)+l

)
(by Claim 1)

Claim 12. For any b ∈ BS , 3θ(b) = θ(3Sb).

Proof of claim. First, for b = ⊥,

θ(3S(⊥)) = θ(⊥) = ⊥ = 3⊥ = 3θ(⊥).
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Now, assume b > ⊥. Then

3θ(b) = 3
∨
bj≤b

θ(bj) (by the definition of θ)

=
∨
bj≤b

3θ(bj) (since 3 is a normal modal operator)

=
∨
bj≤b

θ(3Sbj) (by Claim 11)

= θ(
∨
bj≤b

3Sbj) (by Claim 9)

= θ(3S
∨
bj≤b

bj) (since 3S is a normal modal operator)

= θ(3Sb) (since BS is atomic).

Claim 13. θ is injective.

Proof of claim. First, let bi, bj ∈ AtBS such that bi 6= bj . But we know that θ(bi)∧θ(bj) = ⊥,
so θ(bi) ≤ ¬θ(bj). Hence, θ(bi) � θ(bj), which means that θ(bi) 6= θ(bj). Now, let a and b be
any elements of BS such that a 6= b. Then∨

bi≤a
bi �

∨
bj≤b

bj or
∨
bj≤b

bj �
∨
bi≤a

ba.

In the first case, there is a bk ≤ a such that

bk �
∨
bj≤b

bj ,

and so bk � bj for all bj ≤ b. Hence, θ(bk) 6= θ(bj) for all bj ≤ b, and so θ(bk) ∈ {θ(bi) | bi ≤ a}
but θ(bk) /∈ {θ(bj) | bj ≤ b}. This means that {θ(bi) | bi ≤ a} 6= {θ(bj) | bj ≤ b}, which gives∨{

θ(bi) | bi ≤ a} 6=
∨
{θ(bj) | bj ≤ b

}
.

Thus, θ(a) 6= θ(b), as required. The proof of the other case is the same.

Theorem 5.1.12 yields decision procedures for a large number of extensions of HS4.3
through the following corollary.

Corollary 5.1.14. If Σ is finite, then HS4.3⊕ Σ is decidable.

To conclude this subsection, recall that for modal logics, a finite algebra is always complete
and atomic, which means it is dual to a Kripke frame. However, for hybrid logics, although a
finite hybrid algebra is also complete and atomic, not all atoms are designated, which means
it is not dual to a Kripke frame. So unlike for model logics, the fact that a hybrid logic has
the finite hybrid algebra property does not imply that it also have the finite model property
with respect to relational models.
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5.1.2 An analogue of Bull’s Theorem for H(@)

To what extent does Bull’s theorem hold for extensions of the logic obtained by adding the
axioms (T ), (4) and (.3) to H(@)? We will denote this logic by H(@)S4.3. It turns out that
this generalization is not straightforward.

Recall that well-connectedness plays a crucial role in Bull’s proof that all normal extensions
of S4.3 have the finite model property. Well-connectedness is closely related, in the dual
relational semantics, to the ability to take point-generated submodels. Luckily, we have a way
of simulating the process of taking generated submodels algebraically. However, as we showed
on page 85, the truth of H(@)-formulas is in general not transferred from the supermodel to
the submodel when taking point-generated submodels. To ensure that the truth of a formula
is transferred, we have to generate not only from the state where this formula is true, but
also all states named by nominals in this formula. Unfortunately, the algebra obtained by
simulating this idea algebraically need not be well-connected.

Frame-theoretically, what does this mean? Recall that any S4.3-frame can be turned into
a rooted, transitive and connected frame by taking a point-generated subframe. However,
since we cannot take point-generated subframes in this case, we do not have connectedness.
So the question now is: can we enforce connectedness axiomatically? Unfortunately, it is not
clear at this stage if this is indeed possible. However, the formula @i3j ∨ @j3i defines the
class of two-sorted general frames g = (W,R,A,B) in which R is connected on B. First,
assume g 1 @i3j∨@j3i. Then there is some admissible valuation V and a state u such that
(g, V ), u 1 @i3j and (g, V ), u 1 @j3i. But this means that (g, V ), v 1 3j and (g, V ), w 1 3i,
where V (i) = {v} and V (j) = {w}. Now, since V is admissible, both v and w are in B.
Furthermore, both vRw and wRv do not hold, for otherwise we have a contradiction. For
the converse, suppose R is not connected on B. then there are two states v and w in B such
that both vRw and wRv do not hold. Define V (i) = {v} and V (j) = {w}. Clearly, V is
admissible, and furthermore, (g, V ), v 1 @i3j and (g, V ), v 1 @j3i.

The above result tells us that the elements in B can be seen as a chain of clusters or a
linear order of pre-orders. For this reason, we will denote the axiom @i3j ∨ @j3i by (lpa),
which is short for linear pre-order axiom. Furthermore, we will denote the logic obtained by
adding this formula as an axiom to H(@)S4.3 by LP(@). More precisely:

Definition 5.1.15. The minimal hybrid logic LP(@) is the smallest set of formulas containing
all propositional tautologies, the axioms in Table 5.2, and which is closed under the inference
rules in Table 5.2.

Sadly, we have more bad news. Recall that to transfer the truth of a H(@)-formula, we
have to generate from the state where the formula is true, as well as all the states named
by a nominal in this formula. So what happens if the state where the formula is true does
not belong to B? Of course our axiom then cannot get a grip on this state, which means we
are back to square one. We therefore have to make sure that this state is in B. One way to
ensure this is to add the rules (Name@) and (BG@) and work with strongly descriptive general
frames, or algebraically, permeated hybrid @-algebras. However, as we will show at the end
of this section, the natural way of constructing a finite hybrid @-algebra from a permeated
hybrid @-algebra that is also permeated fails. As a last possibility, note that if the formula
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Axioms:

(Taut) ` ϕ for all propositional tautologies ϕ.
(K) ` 2(p→ q)→ (2p→ 2q)
(Dual) ` 3p↔ ¬2¬p
(K@) ` @j(p→ q)→ (@jp→ @jq)
(Selfdual) ` ¬@jp↔ @j¬p
(Ref) ` @jj
(Intro) ` j ∧ p→ @jp
(Back) ` 3@jp→ @jp
(Agree) ` @i@jp→ @jp
(4) ` 33p→ 3p
(T ) ` p→ 3p
(.3) ` 3p ∧3q → 3(p ∧3q) ∨3(p ∧ q) ∨3(q ∧3p)
(lpa) ` @i3j ∨@j3i

Rules of inference:

(Modus ponens) If ` ϕ→ ψ and ` ϕ, then ` ψ
(Sorted substitution) ` ϕ′ whenever ` ϕ, where ϕ′ is obtained from ϕ

by sorted substitution.
(Nec) If ` ϕ, then ` 2ϕ.
(Nec@) If ` ϕ, then ` @jϕ.

Table 5.2: Axioms and inference rules of H(@)S4.3 and LP(@)

of which we want to transfer the truth has the form @iϕ, we are where we want to be. So for
now, will show that the fragment of LP(@) that contains only formulas of this form has the
finite hybrid algebra property.

Definition 5.1.16. The named fragment of LP(@), denoted Name(LP(@)), is the subset
of formulas from LP(@)Σ of the form @jψ.

The named fragment of the logic LP(@)Σ is characterized by the class of well-connected
LP(@)-algebras (defined below).

Definition 5.1.17. A hybrid closure @-algebra is a hybrid @-algebra satisfying the following
conditions:

(refl) a ≤ 3a, and

(trans) 33a ≤ 3a.

Definition 5.1.18. An LP(@)-algebra is a hybrid closure @-algebra satisfying in addition
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(.3) 3a ∧3b ≤ 3(a ∧3b) ∨3(b ∧3a) ∨3(a ∧ b) and

(lin) @x3y ∨@y3x = >.

We prove the lemmas needed for this theorem after the proof.

Theorem 5.1.19. The named fragment of every normal hybrid logic LP(@)Σ is sound and
complete with respect to the class of all well-connected hybrid closure @-algebras validating Σ.

Proof. Suppose @iϕ /∈ Name(LP(@)). Then @jϕ /∈ LP(@)Σ. By Theorem 3.2.1, there is an
LP(@)-algebra A = (A, XA) and an assignment ν such that A |= Σ but A, ν 6|= @iϕ ≈ >.
Now, consider the canonical extension Aδ of A. Let

D =
∨

x∈XA

3−1x,

and then let AD = {a ∧D | a ∈ A} and XD = XA. Define

AD = (AD,∧D,∨D,¬D,⊥D,>D,3D,@D),

where ∧D and ∨D are the restriction of ∧ and ∨ to AD,

¬Da = ¬a ∧D 3Da = 3a ∧D
⊥D = ⊥ >D = D

and, for x ∈ XD,

@D
x a =

{
D x ≤ a
⊥ otherwise.

Finally, let AD = (AD, XD). Note that since XA 6= ∅, XD 6= ∅. Using Lemma 5.1.20, we can
prove in the same way as in Lemma 3.2.3 that AD is closed under the operations ∧D, ∨D, ¬D,
3D, and @D. We also have that AD is well-connected by Lemma 5.1.23, and furthermore,
by Lemma 5.1.24, AD |= LP(@)Σ≈. Finally, AD 6|= @iϕ ≈ >. To see this, consider the
assignment νD: PROP ∪ NOM→ AD defined by νD(p) = h(ν(p)) and νD(j) = h(ν(j)). Now,
we know that ν(¬@iϕ) 6= ⊥ in A, so ν(@i¬ϕ) 6= ⊥. But then @ν(i)ν(¬ϕ) 6= ⊥, which means
that ν(i) ≤ ν(¬ϕ) by Proposition 2.2.5. Hence,

νD(¬ϕ) = h(ν(¬ϕ)) = ν(¬ϕ) ∧D ≥ ν(i) ∧D = ν(i) > ⊥

which gives νD(ϕ) 6= D = νD(>).

We have to show that the algebra AD constructed in the above proof is well-connected.
But first we need the following lemmas. For the lemma below, let D be defined as in the
proof of Theorem 5.1.19.

Lemma 5.1.20. D ≤ 2D
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Proof.

2D = 2

 ∨
x∈XA

3−1x

 (by the definition of D)

≥
∨

x∈XA

(
23−1x

)
(by the monotonicity of 2)

≥
∨

x∈XA

(
23−13−1x

)
(by Lemma 5.1.6)

≥
∨

x∈XA

3−1x (since 3−1 and 2 are adjoint)

= D (by the definition of D)

Lemma 5.1.21. Let A = (A, XA) be an LP(@)-algebra, and let x ∈ XA and a ∈ A. Then
a ∧3−1x 6= ⊥ iff x ≤ 3a.

Proof. For the left-to-right direction, assume x � 3a. But then x ≤ ¬3a = 2¬a since x is
an atom. Now, by the monotonicity of 3−1, 3−1x ≤ 3−12¬a, and so, since 3−1 and 2 are
ajoint, 3−1x ≤ ¬a. Hence, a ∧3−1 = ⊥.

For the converse, assume a ∧3−1x = ⊥. Then 3−1x ≤ ¬a, and so, by the monotonicity
of 2, 23−1x ≤ 2¬a = ¬3a. But 3−1 and 2 are adjoint, so x ≤ ¬3a. Hence, x � 3a.

Lemma 5.1.22. Let A = (A, XA) be an LP(@)-algebra, and let x, y ∈ XA. Then x ≤ 3y or
y ≤ 3x.

Proof. Assume x � 3y and y � 3x. Then x ≤ ¬3y and y ≤ ¬3x, and so @xx ≤ @x¬3y =
¬@x3y and @yy ≤ @y¬3x = ¬@y3x. But @xx = > and @yy = >, so ¬@x3y = > and
¬@y3x = >. Hence,

¬@x3y ∧ ¬@y3x = ¬(@x3y ∨@y3x) = >,

and so, since (@x3y ∨@y3x) = > by (lin), > = ¬> = ⊥, which is a contradiction.

For the following two lemmas, A and AD will be the algebras used in the proof of Theorem
5.1.19.

Lemma 5.1.23. AD is well-connected.

Proof. Let a, b ∈ AD and assume a 6= ⊥ and b 6= ⊥. Then a′ ∧D = a and b′ ∧D = b for some
a′, b′ ∈ A, and so a′ ∧D 6= ⊥ and b′ ∧D 6= ⊥. Hence,

a′ ∧
∨

x∈XA

3−1x =
∨

x∈XA

(a′ ∧3−1x) 6= ⊥

and
b′ ∧

∨
x∈XA

3−1x =
∨

x∈XA

(b′ ∧3−1x) 6= ⊥,
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which means that a′ ∧ 3−1x′ 6= ⊥ and b′ ∧ 3−1x′′ 6= ⊥ for some x′, x′′ ∈ XA. We therefore
have that x′ ≤ 3a′ and x′′ ≤ 3b′ by Lemma 5.1.21. But then 3x′ ≤ 33a′ = 3a′ and
3x′′ ≤ 33b′ = 3b′ by the monotonicity of 3, (refl) and (trans). Now, using Lemma 5.1.22,
we get x′ ≤ 3x′′ or x′′ ≤ 3x′. In the first case, we thus have x′ ≤ 3a′ and x′ ≤ 3b′. But
x′ ≤ D by definition, so, since D ≤ 2D by Lemma 5.1.20,

x′ ≤ 3a′ ∧D ≤ 3a′ ∧2D ≤ 3(a′ ∧D)

and
x′ ≤ 3b′ ∧D ≤ 3b′ ∧2D ≤ 3(b′ ∧D),

which gives
x′ ≤ 3(a′ ∧D) ∧3(b′ ∧D) ∧D = 3Da ∧3Db.

The proof of the other case is similar. We therefore get 3Da ∧3Db > ⊥ in both cases.

Finally, to show that AD |= LP(@)Σ≈, we show that AD is a homomorphic image of A.

Lemma 5.1.24. The map h: A→ AD defined by h(a) = a∧D is a surjective homomorphism
from A onto AD, and, furthermore, h is surjective from XA onto XD.

Proof. It is clear that h is surjective from A onto AD. To see that h is surjective from XA

onto XD, let x ∈ XD. Then x ∈ XA by definition. But we know that 3−1x ≤ D by the
definition of D, so x ≤ 3−1x ≤ D by Lemma 5.1.6. Hence, x = x ∧D = h(x), which means
that x is its own pre-image. To show that h maps elements of XA to elements of XD, let
x ∈ XA. Then x ∈ XD. But we know that x ≤ D, so h(x) = x, which means that h(x) ∈ XD.
We also have to show that h is a homomorphism. The cases for ∧, ∨, ¬ and 3 are proven in
the same way as in Lemma 3.1.4, so we only need to check @. Let x ∈ XA and a ∈ A. Assume
x ≤ a. Then h(@xa) = h(>) = D, and, since x ≤ a and x ≤ D implies that x ≤ a ∧D,

@D
h(x)h(a) = @D

x∧D(a ∧D) = @D
x (a ∧D) = D.

Now, assume x � a. Here h(@xa) = h(⊥) = ⊥. But x � a ∧ D, for otherwise, x ≤ a, a
contradiction. Hence,

@D
h(x)h(a) = @D

x∧D(a ∧D) = @D
x (a ∧D) = ⊥.

Before we give the main result, we give a lemma similar to Lemma 5.1.11.

Lemma 5.1.25. Let a and b be elements of a well-connected LP(@)-algebra A. Then

(i) 3a ≤ 3b or 3b ≤ 3a,

(ii) 3(a ∧ ¬3b) = 3(3a ∧ ¬3b), and

(iii) 3b < 3a implies 3(a ∧ ¬3b) = 3a.

Proof. The proof of this is similar to that of Lemma 5.1.11.



Chapter 5. Hybrid logics with the finite model property 167

Now, for the main result of this section. We prove the lemmas needed after the proof of
this theorem.

Theorem 5.1.26. The named fragment of any hybrid logic LP(@)Σ has the strong finite
hybrid algebra property.

Proof. Suppose @iϕ /∈ Name(LP(@)Σ). By Theorem, 5.1.19, there is a well-connected
LP(@)-algebra A = (A, XA) and an assignment ι such that A |= Σ≈ but A, ι 6|= @iϕ ≈ >.
We now let S0 be the set of elements of A used in the evaluation of @iϕ and > under ι. Then
let S1 = S0 ∪ {x0} for some arbitrary x0 ∈ XA. Furthermore, let XS = XA ∩ S1, and finally,
let S = S1 ∪ {3x | x ∈ XS}. Define BS as the Boolean subalgebra of A generated by S.
Since S is a finite subset of A, BS is finite. Also, BS clearly preserves all Boolean operations.
Further, define 3S as in (5.1) in Section 5.1.1, and, for x ∈ XS , let

@S
xb =

{
> x ≤ b
⊥ otherwise.

Finally, we let BS = (BS ,3
S ,@S , XS). Since x0 ∈ XS , we know that XS 6= ∅. To show that

BS 6|= @iϕ ≈ >, we have to show that 3S extends 3, and that @S extends @. Well we know
that R satisfies (R), so 3S extends 3. Furthermore, by Lemma 5.1.27, for any x ∈ XS and
b ∈ BS , @S

xb = @xb. Finally, by Lemma 5.1.28, BS |= LP(@)Σ≈.
To conclude this proof, we calculate an upper bound for the number of elements in the

algebra BS . First, let us calculate an upper bound for the number of elements in S. Let l(ϕ)
be the length of the formula ϕ. Then the length of @iϕ is at most l(ϕ) + 1. So S0 contains
at most l(ϕ) + 2 elements, which means that S1 has at most l(ϕ) + 2 + 1 = l(ϕ) + 3 elements.
Now, we also know that XA ∩S1 contains at most l(ϕ) + 1 atoms, so {3x | x ∈ XS} contains
at most l(ϕ) + 1 elements. Hence,

|S| ≤ l(ϕ) + 3 + l(ϕ) + 1 = 2l(ϕ) + 4.

Therefore, BS contains at most 22l(ϕ)+4 atoms, and hence, at most 222l(ϕ)+4
elements.

For the lemma below, let A and BS be the algebras in the proof of Theorem 5.1.26.

Lemma 5.1.27. If x is an element of XS and b an element of BS, then we have @S
xb = @xb,

and therefore, @S is a normal modal operator.

Proof. Let x ∈ XS and b ∈ BS , and assume x ≤ b. Then x ∈ XA and b ∈ A, and so @xb = >
by Proposition 2.2.5. But we also know that @S

xb = >. Similarly, if x � b, @xb = ⊥ = @S
xb.

To show that @S is a normal modal operator, first not that it is clear that @S is normal.
For the additivity, let x ∈ XS and a, b ∈ BS . We know that BS is closed under the Boolean
operators, so a ∨ b ∈ BS , so @S

x (a ∨ b) = @x(a ∨ b). Now, since @ is a modal operator,
@x(a ∨ b) = @xa ∨@xb. But @xa ∨@xb = @S

xa ∨@S
xb, so @S

x (a ∨ b) = @S
xa ∨@S

xb.

Lemma 5.1.28. BS can be embedded into A.
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Proof. Let b1, . . . , bn be the atoms of BS . Now, appealing to Lemma 5.1.25, order the atoms
of BS in the same way as in Lemma 5.1.13. Note that in this case we have a1 = a2 = >. Let
θ: BS → A be defined in the same way as in Lemma 5.1.13. From here the proof is similar to
that of Lemma 5.1.13, all we have to check is that θ respects @. For simplicity, we will drop
all the i’s denoting the ‘piece’ we are working in. Now, let x ∈ XS and b ∈ BS , and assume
b = ⊥. Then

θ(@S
x⊥) = θ(⊥) = ⊥

and
@θ(x)θ(⊥) = @x⊥ = ⊥.

Next, assume b is an atom of B. Then we have the following cases:

Case 1: b = bk(i)+j , 1 ≤ i ≤ m and k(i) ≤ k(i) + j ≤ k(i + 1) − 1 such that bk(i)+j ∈ XS

and x ≤ bk(i)+j . Then

θ(@S
xbk(i)+j) = θ(>) = >

and

@θ(x)θ(bk(i)+j) = @xbk(i)+j = >.

Case 2: b = bk(i)+j , 1 ≤ i ≤ m and k(i) ≤ k(i) + j ≤ k(i+ 1)− 1 such that bk(i)+j /∈ XS or
bk(i)+j ∈ XS , and x � bk(i)+j . Since x � bk(i)+j , x ∧ bk(i)+j = ⊥. But θ respects the Boolean
operators, so

θ(x) ∧ θ(bk(i)+j) = θ(x ∧ bk(i)+j) = θ(⊥) = ⊥.

This means that

@θ(x)θ(x) ∧@θ(x)θ(bk(i)+j) = @θ(x)(θ(x) ∧ θ(bk(i)+j)) = @θ(x)⊥ = ⊥.

Hence, since @θ(x)θ(x) = @xx = >, @θ(x)θ(bk(i)+j) = ⊥. Conversely,

θ(@S
xbk(i)+j) = θ(⊥) = ⊥.

Note that the case bk(i)+j /∈ XS and x ≤ bk(i)+j , 1 ≤ i ≤ m and k(i) ≤ k(i)+j ≤ k(i+1)−1,
does not occur since x ≤ bk(i)+j implies that x and bk(i)+j are the same atom but x ∈ XS .



Chapter 5. Hybrid logics with the finite model property 169

Now, finally, for any x ∈ XS and b ∈ BS ,

@θ(x)θ(b) = @θ(x)

∨
bj≤b

θ(bj) (by the definition of θ)

=
∨
bj≤b

@θ(x)θ(bj) (since @ is a normal operator)

=
∨
bj≤b

θ(@S
xbj) (by Case 1 and Case 2 above)

= θ

∨
bj≤b

@S
xbj

 (as in Claim 9 in the proof of Lemma 5.1.13)

= θ

@S
x

∨
bj≤b

bj

 (by Lemma 5.1.27)

= θ(@S
xb) (since BS is atomic)

Corollary 5.1.29. If Σ is finite, then the named fragment of any hybrid logic LP(@)Σ is
decidable.

Earlier we made the claim that the natural way of constructing a finite hybrid @-algebra
from a permeated hybrid @-algebra that is also permeated fails. Let us now explain why this
is the case. Let A = (A, XA) be a permeated hybrid algebra, and let S be a finite subset
of elements of A. Consider the Boolean subalgebra AS generated by S. Furthermore, let
XS = {x0}, where x0 ∈ S ∩ XA, and then define AS = (AS ,3

S , XS). We know that if
S = {a1, . . . , an} and a0

i and a1
i denotes ¬ai and ai, respectively, then

AtAS = {af(1)
1 ∧ · · · af(n)

n | f : {1, . . . , n} → {0, 1}} − {⊥}.

But
¬x0 ∧

∧(
{af(i)

i | f : {1, . . . , n} → {0, 1}} − {x0,¬x0}
)
6= ⊥,

so for AS to be permeated, we have to find a designated atom y ∈ XS such that

y ≤ ¬x0 ∧
∧(
{af(i)

i | f : {1, . . . , n} → {0, 1}} − {x0,¬x0}
)
.

However, x0 � ¬x0 ∧
∧(
{af(i)

i | f : {1, . . . , n} → {0, 1}} − {x0,¬x0}
)

. But we know that A

is permeated, so there is some x1 ∈ X such that

x1 ≤ ¬x0 ∧
∧(
{af(i)

i | f : {1, . . . , n} → {0, 1}} − {x0,¬x0}
)
.

So add x1 to S, and denote this set by S′. Further, add x1 to XS , and denote this set of
designated atoms by XS′ . Now, consider the subalgebra A′S generated by S′. Then we have

¬x0 ∧ ¬x1 ∧
∧(
{af(i)

i | f : {1, . . . , n} → {0, 1}} − {x0,¬x0, x1,¬x1}
)
6= ⊥,
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But both

x0 � ¬x0 ∧ ¬x1 ∧
∧(
{af(i)

i | f : {1, . . . , n} → {0, 1}} − {x0,¬x0, x1,¬x1}
)

and

x1 � ¬x0 ∧ ¬x1 ∧
∧(
{af(i)

i | f : {1, . . . , n} → {0, 1}} − {x0,¬x0, x1,¬x1}
)
,

so to fix this, we add another designated atom from XA to S′ and XS′ and repeat the whole
process again. We then see that this results in a snow ball effect, and the only way to make
AS permeated is to add all the designated atoms from XA to S. However, then we need not
get a finite algebra, as required.

5.1.3 An analogue of Bull’s Theorem for H(E)

In this subsection, we want to know to what extent Bull’s Theorem holds for extensions of
the logic obtained by adding the axioms (T ), (4) and (.3) to H(E) (denoted by HS4.3). Once
again this generalization is not straighforward. As for H(@), the truth of H(E)-formulas is not
transferred from the supermodel to the submodel when taking point-generated submodels.
The good news here is that we can enforce well-connectedness axiomatically. But first, we
claim that the frame property that every two states have a common predecessor implies well-
connectedness. To see this, let g = (W,R,A,B) be a two sorted general frame such that every
two states in W have a common predecessor. We will show that g∗ = (A,∩,∪,−,∅,W, 〈R〉)
is well-connected. So let a, b ∈ A such that a 6= ∅ and b 6= ∅. Then there are v and w in
W such that v ∈ a and w ∈ b. But since every two states in W have a common predecessor,
there is a state u such that uRv and uRw. Hence, since v ∈ a and w ∈ b, u ∈ 〈R〉a and
u ∈ 〈R〉b, which means that u ∈ 〈R〉a ∩ 〈R〉b. Thus, 〈R〉a ∩ 〈R〉b 6= ∅.

Now, it turns out that the formula Ep∧Eq → E(3p∧3q) defines the class of frames with
this frame property. To prove this, we have to show that F is a frame in which any two states
have a common predecessor iff F 
 Ep ∧ Eq → E(3p ∧ 3q). For the left-to-right direction,
let F = (W,R) be a frame in which any two states have a common predecessor, and assume
that F 1 Ep ∧ Eq → E(3p ∧ 3q). Then there is some valuation V and some state s ∈ W
such that (F, V ), s 
 Ep ∧ Eq but (F, V ), s 1 E(3p ∧3q). From (F, V ), s 
 Ep ∧ Eq we know
that there are states t and u in W such that t 
 p and u 
 q. But we know that t and
u have a common predecessor v, i.e., vRt and vRu. This means that (F, V ), u 
 3p ∧ 3q,
and so (F, V ), s 
 E(3p ∧ 3q), a contradiction. For the converse, let F be a frame such
that the states s and t have no common predecessor. Now, let V (p) = {s} and V (q) = {t}.
Then we have (F, V ), s 
 Ep ∧ Eq, however, since s and t have no common predecessor,
(F, V ), s 1 E(3p ∧3q).

So instead of working with extensions of H(E)S4.3, we will work with extensions of the
logic H(E)S4.3 together with the axiom Ep ∧ Eq → E(3p ∧ 3q). We will denote this axiom
by (cpa), which stands for common predecessor axiom. We can show that the common
predecessor axiom together with (T ), (4) and (.3) defines the class of transitive and connected
frames, so we can also view the frames of this logic as chains of clusters. For this reason we
will denote this logic by LP(E), where the LP is short for linear order of pre-orders.
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Definition 5.1.30. The logic LP(E) is the smallest set of formulas containing all proposi-
tional tautologies, the axioms in Table 5.3 and which is closed under the inference rules in
Table 5.3.

Axioms:

(Taut) ` ϕ for all classical propositional tautologies.
(K) ` 2(p→ q)→ (2p→ 2q)
(Dual) ` 3p↔ ¬2¬p
(KA) ` A(p→ q)→ (Ap→ Aq)
(DualA) ` Ep↔ ¬A¬p
(Inclj) ` Ej
(NomE) ` E(i ∧ p)→ A(i→ p)
(TE) ` p→ Ep
(4E) ` EEp→ Ep
(BE) ` p→ AEp
(Incl3) ` 3p→ Ep
(T ) ` p→ 3p
(4) ` 33p→ 3p
(.3) ` 3p ∧3q → 3(p ∧3q) ∨3(p ∧ q) ∨3(q ∧3p)
(cpa) ` Ep ∧ Eq → E(3p ∧3q)

Rules of inference:

(Modus ponens) If ` ϕ→ ψ and ` ϕ, then ` ψ.
(Sorted substitution) ` ϕ′ whenever ` ϕ, where ϕ′ is obtained

from ϕ by sorted substitution.
(Nec) If ` ϕ, then ` 2ϕ.
(NecA) If ` ϕ, then ` Aϕ.

Table 5.3: Axioms and inference rules of LP(E)

Let us now give the algebras we will be working with in this section.

Definition 5.1.31. A hybrid closure E-algebra is a hybrid E-algebra satisfying the following
conditions:

(refl) a ≤ 3a, and

(trans) 33a ≤ 3a.

Definition 5.1.32. A H(E)S4.3-algebra is a hybrid closure E-algebra satisfying in addition

(.3) 3a ∧3b ≤ 3(a ∧3b) ∨3(b ∧3b) ∨3(a ∧ b).
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The logic LP(E) ⊕ Σ is characterized by the class of well-connected H(E)S4.3-algebras.
But before we prove this, we first prove the following lemma:

Lemma 5.1.33. Let A be a hybrid E-algebra. Then A is well-connected iff A validates

Ea ∧ Eb ≤ E(3a ∧3b).

Proof. For the left-to-right direction, assume A is well-connected. Consider the following
cases:

Case 1: a = ⊥ and b = ⊥. Then Ea = ⊥ and Eb = ⊥, which means that Ea ∧ Eb ≤
E(3a ∧3b).

Case 2: a = ⊥ and b > ⊥, or vice versa. We then clearly have Ea ∧ Eb = ⊥, and so
Ea ∧ Eb ≤ E(3a ∧3b).

Case 3: a > ⊥ and b > ⊥. But A is well-connected, so 3a ∧ 3b > ⊥. This means that
E(3a ∧3b) = >, and hence, Ea ∧ Eb ≤ E(3a ∧3b).

For the other direction, suppose A validates Ea∧Eb ≤ E(3a∧3b). Now, let a, b ∈ A, and
assume a 6= ⊥ and b 6= ⊥. Then Ea = > and Eb = >, so > = Ea ∧ Eb ≤ E(3a ∧3b). Hence,
E(3a ∧3b) = >, which gives 3a ∧3b 6= ⊥ by definition.

Theorem 5.1.34. Every normal hybrid logic LP(E)⊕Σ is sound and complete with respect
to the class of all well-connected H(E)S4.3-algebras validating Σ.

Proof. This result follows immediately from Theorem 3.3.1 and Lemma 5.1.33.

As in the previous two sections, we have the following lemma for H(E)S4.3-algebras:

Lemma 5.1.35. Let a and b be elements of a well-connected H(E)S4.3-algebra A. Then

(i) 3a ≤ 3b or 3b ≤ 3a,

(ii) 3(a ∧ ¬3b) = 3(3a ∧ ¬3b), and

(iii) 3b < 3a implies 3(a ∧ ¬3b) = 3a.

Proof. Similar to that of Lemma 5.1.11.

Now for the main result. The lemmas needed to prove this theorem follow afterwards.

Theorem 5.1.36. Every normal hybrid logic LP(E)⊕Σ has the strong finite hybrid algebra
property.
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Proof. Suppose ϕ /∈ LP(E) ⊕ Σ. By Theorem, 5.1.34, there is a well-connected H(E)S4.3-
algebra A = (A, XA) and an assignment ι such that A |= Σ≈ but A, ι 6|= ϕ ≈ >. We now
let S0 be the set of elements of A used in the evaluation of ϕ and > under ι. Then let
S1 = S0 ∪ {x0} for some arbitrary x0 ∈ XA. Furthermore, let XS = XA ∩ S1, and finally, let
S = S1 ∪ {3x | x ∈ XS}. Define BS as the Boolean subalgebra of A generated by S. Since
S is a finite subset of A, BS is finite. Also, BS preserves all Boolean operations. Further,
define 3Sb as in (5.1) in Section 5.1.1, and for b ∈ B, let

ESb =

{
> b > ⊥
⊥ otherwise.

Now, we let BS = (BS ,3
S ,ES , XS). We have to make sure that BS is the right algebra.

First, XS 6= ∅, since x0 ∈ XS . Next, we know that 3S extends 3, and furthermore, by
Lemma 5.1.37, ES extends E, so BS 6|= ϕ ≈ >. Finally, by Lemma 5.1.38, BS |= LP(E)Σ≈.
We therefore also have that BS is well-connected by Lemma 5.1.33.

Let us now calculate an upper bound for the number of elements in the algebra BS . First,
we calculate an upper bound for the number of elements in S. Let l(ϕ) be the length of the
formula ϕ. Then S0 contains at most l(ϕ) + 1 elements. This means that S1 has at most
l(ϕ) + 1 + 1 = l(ϕ) + 2 elements. Now, we also know that XA ∩ S1 contains at most l(ϕ) + 1
atoms, so {3x | x ∈ XS} contains at most l(ϕ) + 1 elements. Hence,

|S| ≤ l(ϕ) + 2 + l(ϕ) + 1 = 2l(ϕ) + 3.

We can thus conclude that BS contains at most 22l(ϕ)+3 atoms, and hence, at most 222l(ϕ)+3

elements.

For the remainder of this section, let A and BS be the hybrid algebras in the proof of
Theorem 5.1.36. We now show that ES is a normal modal operator extending E.

Lemma 5.1.37. If b ∈ BS, then ESb = Eb, and therefore, ES is a normal modal operator.

Proof. Let b ∈ BS , and assume b > ⊥. Then b ∈ A, and so Eb = > by the definition of
a hybrid E-algebra. But we also know that ESb = >. Similarly, if b = ⊥, Eb = ⊥ = ESb.
Clearly, ES is normal. To show that ES is additive, let a, b ∈ BS . But we know that BS is
closed under the Boolean operators, so a ∨ b ∈ BS . This means that ES(a ∨ b) = E(a ∨ b).
Now, since E is a modal operator, E(a ∨ b) = Ea ∨ Eb. Hence, since Ea ∨ Eb = ESa ∨ ESb,
ES(a ∨ b) = ESa ∨ ESb.

Lemma 5.1.38. BS can be embedded into A.

Proof. Let b1, . . . , bn be the atoms of BS . Now, appealing to Lemma 5.1.35, order the atoms
of BS in the same way as in Lemma 5.1.13. In this case, we have a1 = a2 = >. Let
θ: BS → A be defined in the same way as in Lemma 5.1.13. From here the proof is the
same as the proof of Lemma 5.1.13, so all we have to check is that θ respects E. If b = ⊥,
then θ(ESb) = θ(⊥) = ⊥ and Eθ(b) = E⊥ = ⊥. Next, assume b is an atom of BS . We then
consider the following cases:
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Case 1: b ∈ XS and b = bk(j) for some 1 ≤ j ≤ m and k(j) ≤ k(j) + l ≤ k(j + 1)− 1. Since

bk(j) > ⊥, θ(ESbk(j)) = θ(>) = > and Eθ(bk(j)) = Ebk(j) = >.

Case 2: b /∈ XS and b = bk(j) for some 1 ≤ j ≤ m. As in the previous case, since bk(j) > ⊥,

θ(ESb) = θ(>) = >. On the other hand, since bk(j) is not designated,

Eθ(bk(j)) = E
(
3bk(j) ∧ ¬

(
bk(j)+1 ∨ · · · bk(j+1)−1

)
∧ ¬3bk(j−1)

)
≥ E

(
bk(j) ∧ ¬

(
bk(j)+1 ∨ · · · bk(j+1)−1

)
∧ ¬3bk(j−1)

)
= E(bk(j) ∧ ¬3bk(j−1)).

We now claim that bk(j) ∧ ¬3bk(j−1) > ⊥. To see this, suppose otherwise, then
bk(j) ≤ 3bk(j−1), which means that 3bk(j) ≤ 33bk(j−1) = 3bk(j−1), contradicting our or-
dering. Hence, E(bk(j) ∧ ¬3bk(j−1)) = >, which means that Eθ(bk(j)) ≥ >. We thus have
Eθ(bk(j)) = >, as required.

Case 3: b /∈ XS and b = bk(j)+l for some 1 ≤ j ≤ m and k(j) + 1 ≤ k(j) + l ≤ k(j + 1)− 1.

As in Case 1, θ(ESbk(j)+l) = θ(>) = >. Now, we know that bk(j)+j ∧ 3bk(j−1) = ⊥, for
if not, bk(j)+l ≤ 3bk(j−1), which means 3bk(j) = 3bk(j)+l ≤ 33bk(j−1) = 3bk(j−1), again
contradicting our ordering. Hence,

Eθ(bk(j)+l) = E(bk(j)+1 ∧ ¬3bk(j−1)) = >.

Finally, for any b > ⊥,

Eθ(b) = E
∨
bj≤b

θ(bj) (by the definition of θ)

=
∨
bj≤b

Eθ(bj) (since E is a normal modal operator)

=
∨
bj≤b

θ(ESbj) (by Cases 1, 2 and 3 above)

= θ(
∨
bj≤b

ESbj) (as in Claim 9 in the proof of Lemma 5.1.13)

= θ(ES
∨
bj≤b

bj) (by Lemma 5.1.37)

= θ(ESb) (since BS is atomic)

Corollary 5.1.39. If Σ is finite, then LP(E)⊕ Σ is decidable.

5.2 Hybrid extensions of S4 with the finite model property

In [18], Bull characterized a class of axiomatic extensions of the normal modal logic S4 with
the finite model property. This result takes the form of a syntactic characterization of a class
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of formulas that may be added as axioms to S4, somewhat in the spirit of Sahlqvist’s theorem
in modal correspondence theory. As for his result in [20], he was able to restrict his attention
to well-connected closure algebras. He then constructed a finite Boolean subalgebra from
such a well-connected closure algebra in the usual way, and defined a modal operator that
preserves all existing operators. The syntactically defined class of formulas is so defined that
the finite algebra obtained by the construction validates all the formulas that are validated
by the original algebra.

In this section, we extend this result to our hybrid languages H,H(@) and H(E).

5.2.1 Hybrid extensions of S4 in the language H with the finite model
property

Here we show how to extend Bull’s result in [18] to the language H. First, we define the
formulas we will work with, which will be called Γ-formulas.

Γ-formulas are recursively defined by the following inductive rules:

α ::= ⊥ | > | 2mp | 2ni | α1 ∧ α2 | α1 ∨ α2 (m,n > 0)

β ::= α | β1 ∧ β2 | β1 ∨ β2 | 2(α→ β) | 2¬α
γ ::= 2¬i | α | 2(β → α) | 2¬β | γ1 ∧ γ2 | γ1 ∨ γ2 | 2γ

Note that this definition extends Bull’s definition in [18] with the clauses 2ni and 2¬i for
nominals.

Let us give some examples of Γ-formulas that are important in the study of modal and
hybrid logic.

Example 5.2.1. The following formulas are Γ-formulas:

(i) the formula 32p → 2p ≡ 2¬2p ∨ 2p defining the class of euclidean frames (i.e., the
class of frames in which the accessibility relation satisfies ∀x∀y∀z(xRy ∧ xRz → yRz)),

(ii) the formula 33i→ ¬3i ≡ 22¬i ∨2¬i defining intransitivity, and

(iii) the formula 3i→ 2i ≡ 2¬i∨2i defining determinism (i.e., the class of frames in which
the accessibility relation satisfies ∀x∀y∀z(xRy ∧ xRz → y = z)).

We now give the main result of this section. The lemmas needed to prove this result follow
afterwards.

Theorem 5.2.2. Let Σ be a set of Γ-formulas. Then every normal hybrid logic HS4⊕Σ has
the strong finite hybrid algebra property.

Proof. Suppose ϕ /∈ S4H⊕ Σ. By Theorem 5.1.5, there is a piecewise well-connected hybrid
closure algebra A = (A, XA) and an assignment ν such that A |= Σ≈ but A, ν 6|= ϕ ≈ >.
We also know that there are D1 and D2 in A that satisfy the conditions of Definition 5.1.4
(possibly D1 = D2 = >). Now, let S0 be the set of elements of A used in the evaluation of
ϕ and > under ν. Then let S1 = S0 ∪ {x0} ∪ {D1, D2}, for some arbitrary atom x0 ∈ XA.
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Finally, let S = S1∪{2x | x ∈ XA∩S1}. Define BS as the Boolean subalgebra of A generated
by S. Since S is a finite subset of A, BS is finite. Also, BS clearly preserves all Boolean
operations. Further, for b ∈ BS , let (b ↑)C = {a ∈ BS | a = 3a and b ≤ a} and define

3Sb :=
∧

(b ↑)C .

Finally, let BS = (BS ,3
S , XS), where XS = XA ∩ S1. Now, by Lemma 5.2.4, 3S extends

3, so BS 6|= ϕ ≈ >. Furthermore, by Proposition 5.2.5, BS is a hybrid closure algebra, and
finally, by Lemma 5.2.8, BS |= Σ≈.

To calculate an upper bound for BS , first note that |S| ≤ 2l(ϕ) + 5, so BS contains at

most 2l(ϕ)+5 atoms, and hence, at most 22l(ϕ)+5
elements.

Unless stated otherwise, in what follows, A and BS will be the algebras in the proof of
Theorem 5.2.2. We need the following lemma to show that 3S extends 3 and that BS is a
hybrid closure algebra.

Lemma 5.2.3. 3b ≤ 3Sb = 33Sb for all b ∈ BS, and therefore, 22Sb = 2Sb ≤ 2b for all
b ∈ BS.

Proof. First, we prove that 3b ≤ 3Sb. By the definition of 3S , b ≤ a and a = 3a for all
a ∈ (b ↑)C . Hence, 3b ≤ 3a, which means 3b ≤ a for all a ∈ (b ↑)C . This gives

3b ≤
∧

(b ↑)C ,

and so 3b ≤ 3Sb. For the equality 3Sb = 33Sb, note that the left-to-right inequality follows
from (refl). Conversely, (b ↑)C is finite, so

33Sb = 3
∧

(b ↑)C

≤
∧
{3a | b ≤ a ∈ BS and a = 3a}

=
∧

(b ↑)C
= 3Sb,

where the third step follows from the fact that 3a = a. Thus, since b ∈ BS implies ¬b ∈ BS ,
we have 3¬b ≤ 3S¬b = 33S¬b. Hence, ¬33S¬b = ¬3S¬b ≤ ¬3¬b, and so 22Sb = 2Sb ≤
2b.

We now show that 3S extends 3.

Lemma 5.2.4. Let b be an element in BS. If 3b ∈ BS, then 3Sb = 3b, and therefore, if
2b ∈ BS, then 2Sb = 2b.

Proof. First, 3b ≤ 3Sb by Lemma 5.2.3. For the converse inequality, note that 3b ∈ BS ,
b ≤ 3b and 33b = 3b, so 3b ∈ (b ↑)C . But then∧

(b ↑)C ≤ 3b,
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which means that 3Sb ≤ 3b. Hence, 3Sb = 3b. For the second part, assume 2b ∈ BS . Then
¬3¬b ∈ BS , and so, since BS is closed under the Boolean operators, 3¬b ∈ BS . Now, by the
first part, 3S¬b = 3¬b. Hence, ¬3S¬b = ¬3¬b, and so 2Sb = 2b.

The second part of Lemma 5.2.4 tells us that 2Sx = 2x for x ∈ XS . To see this, note
that if x ∈ XS , x ∈ XA ∩ S1, and so, by the definition of S, 2x ∈ S. But this means that
2x ∈ BS , and the result follows.

The next proposition shows that BS is a hybrid closure algebra.

Proposition 5.2.5. BS is a finite hybrid closure algebra.

Proof. First, XS 6= ∅ since x0 ∈ XS . For (refl), note that 3b ≤ 3Sb by Lemma 5.2.3. But
we know that b ≤ 3b, so b ≤ 3Sb.

To prove (trans), first note that 33Sb = 3Sb by Lemma 5.2.3, so 33Sb ∈ BS . Hence,
by Lemma 5.2.4, 33Sb = 3S3Sb, which means that 3S3Sb = 3Sb.

Next, we show that 3S is a normal modal operator. We know that ⊥ ∈ BS , ⊥ ≤ ⊥ and
3⊥ = ⊥, so ⊥ ∈ (⊥ ↑)C . But then 3S⊥ ≤ ⊥, which means that 3S⊥ = ⊥.

For the additivity, first let a ∈ (b ∨ b′ ↑)C . Then a = 3a and b ∨ b′ ≤ a. But b ∨ b′ ≤ a
implies b ≤ a and b′ ≤ a. Hence, since 3a = a, we have a ∈ (b ↑)C and a ∈ (b′ ↑)C , and
therefore, (b ∨ b′ ↑)C ⊆ (b ↑)C and (b ∨ b′ ↑)C ⊆ (b′ ↑)C . This means that 3Sb ≤ 3S(b ∨ b′)
and 3Sb′ ≤ 3S(b ∨ b′), so 3Sb ∨3Sb′ ≤ 3S(b ∨ b′). For the converse inequality, note that

3Sb ∨3Sb′ =
∧

(b ↑)C ∨
∧

(b′ ↑)C =
∧
{a ∨ a′ | a ∈ (b ↑)C and a′ ∈ (b′ ↑)C}.

Now, let c ∈ {a ∨ a′ | a ∈ (b ↑)C and a′ ∈ (b′ ↑)C}. Then c = a0 ∨ a′0 for some a0 ∈ (b ↑)C
and a′0 ∈ (b′ ↑)C . We thus have that 3a0 = a0 and b ≤ a0, as well as 3a′0 = a′0 and b′ ≤ a′0.
Hence, b ∨ b′ ≤ a0 ∨ a′0 = c and 3c = 3(a0 ∨ a′0) = 3a0 ∨ 3a′0 = a0 ∨ a′0 = c, which means
that c ∈ (b ∨ b′ ↑)C . Therefore, {a ∨ a′ | a ∈ (b ↑)C and a′ ∈ (b′ ↑)C} ⊆ (b ∨ b ↑)C , so

3S(b ∨ b′) ≤
∧
{a ∨ a′ | a ∈ (b ↑)C and a′ ∈ (b′ ↑)C} = 3Sb ∨3Sb′.

Before we prove the final lemma, which forms the crux of this subsection, we need two
lemmas. But first we introduce the following terminology: an element a of a BAO is called
closed, if 3a = a; similarly a is called open, if 2a = a. The following lemma tells us that for
any assignment ν on a hybrid closure algebra and any Γ-formula γ, ν(γ) is an open element
of the hybrid algebra.

Lemma 5.2.6. Let A be a hybrid closure algebra, let ν be an assignment on A, and let γ be
a Γ-formula. Then 2ν̃(γ) = ν̃(γ).

Proof. The proof is by structural induction on the α, β and γ-formulas. We first consider the
α-formulas. The base steps are (i) – (iv) and the inductive steps (v) – (vi).

(i) Assume α is ⊥. By (refl), we have that 2⊥ = ⊥, so

2ν̃(⊥) = 2⊥ = ⊥ = ν̃(⊥).
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(ii) Assume α is >. Then we have

2ν̃(>) = 2> = > = ν̃(>).

(iii) Assume α has the form 2mp (m > 0). Then

2ν̃(2mp) = 22mν̃(p) (by Definition 2.1.8)

= 2mν̃(p) (from the fact that m > 0 and by (refl) and (trans))

= ν̃(2mp) (by Definition 2.1.8)

(iv) Assume α has the form 2ni (n > 0). Then

2ν̃(2ni) = 22nν̃(i) (by Definition 2.1.8)

= 2nν̃(i) (from the fact that n > 0 and by (refl) and (trans))

= ν̃(2ni) (by Definition 2.1.8)

(v) Assume α has the form α1 ∧ α2. Then we have

2ν̃(α1 ∧ α2) = 2(ν̃(α1) ∧ ν̃(α2))

= 2ν̃(α1) ∧2ν̃(α2) (since 2 distributes over finite meets)

= ν̃(α1) ∧ ν̃(α2) (by the inductive hypothesis)

= ν̃(α1 ∧ α2)

(vi) Assume α has the form α1 ∨α2. First, by (refl), 2ν̃(α1 ∨α2) ≤ ν̃(α1 ∨α2). Conversely,

2ν̃(α1 ∨ α2) = 2(ν̃(α1) ∨ ν̃(α2))

≥ 2ν̃(α1) ∨2ν̃(α2) (by the monotonicity of 2)

= ν̃(α1) ∨ ν̃(α2) (by the inductive hypothesis)

= ν̃(α1 ∨ α2)

For the β-formulas, the base steps are (i) – (ii) and the inductive steps (iii) – (iv).

(i) Assume β is α. Then 2ν̃(α) = ν̃(α) by the first part for the α-formulas.

(ii) If β has the form 2¬α, then

2ν̃(2(¬α)) = 22ν̃(¬α) (by Definition 2.1.8)

= 2ν̃(¬α) (by (refl) and (trans))

= ν̃(2¬α) (by Definition 2.1.8)

(iii) The Boolean cases are the same as for the α-formulas.
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(iv) Assume β has the form 2(α→ β). Then

2ν̃(2(α→ β)) = 22ν̃(α→ β) (by Definition 2.1.8)

= 2ν̃(α→ β) (by (refl) and (trans))

= ν̃(2(α→ β)) (by Definition 2.1.8)

Finally, we consider the γ-formulas. The base steps are (i) – (iv) and the inductive steps
(v) – (vi).

(i) If α has the form 2¬i, then

2ν̃(2¬i) = 22ν̃(¬i) (by Definition 2.1.8)

= 2ν̃(¬i) (by (refl) and (trans))

= ν̃(2¬i) (by Definition 2.1.8)

(ii) Assume γ is α. Then 2ν̃(α) = ν̃(α) by the first part for the α-formulas.

(iii) Assume γ has the form 2(β → α). Then

2ν̃(2(β → α)) = 22ν̃(β → α) (by Definition 2.1.8)

= 2ν̃(β → α) (by (refl) and (trans))

= ν̃(2(β → α)) (by Definition 2.1.8)

(iv) If γ has the form 2¬β, then we have

2ν̃(2(¬β)) = 22ν̃(¬β) (by Definition 2.1.8)

= 2ν̃(¬β) (by (refl) and (trans))

= ν̃(2¬β) (by Definition 2.1.8)

(v) The Boolean cases are the same as for the α-formulas.

(vi) If γ has the form 2γ, then

2ν̃(2(γ)) = 22ν̃(γ) (by Definition 2.1.8)

= 2ν̃(γ) (by (refl) and (trans))

= ν̃(2γ) (by Definition 2.1.8)

We can also show that the Di’s in A are open:

Lemma 5.2.7. 2Di = Di for each i = 1, 2.
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Proof. First, recall from the definition of a piecewise well-connected hybrid algebra that for
each j = 1, 2, 3Dj = Dj . Hence, 2¬Dj = ¬Dj . But we know that D1 ∧ D2 = ⊥ and
D1 ∨D2 = >, so Di ≤ ¬Dj and ¬Dj ≤ Di, i, j = 1, 2 and i 6= j. This means that ¬Dj = Di,
i, j = 1, 2 and i 6= j, which gives 2Di = Di.

Lemma 5.2.8. Let γ be a Γ-formula. If A |= γ ≈ >, then BS |= γ ≈ >.

Proof. We have two cases, namely (i) D1 and D2 are disjoint ‘pieces’, or (ii) D1 = D2 = >.
We will only prove the lemma for the first case as the proof of the second case is similar. Let θ
be an assignment on BS , and define an assignment ρ: PROP∪NOM→ A by ρ(p) = 2Sθ(p) for
all p ∈ PROP and ρ(i) = θ(i) for all i ∈ NOM. Now, for each i = 1, 2, define θi(p) = θ(p)∧Di

and θi(i) = θ(i)∧Di. Similarly, for each i = 1, 2, define ρi(p) = ρ(p)∧Di and ρi(i) = ρ(i)∧Di.
We now prove the following claims:

Claim 1. For each i = 1, 2 and any α-formula α, ρ̃i(α) = θ̃i(α).

Proof of claim. The proof of this claim is by structural induction on α. The base steps are
(i) – (iv) and the inductive steps (v) – (vi).

(i) Assume α is ⊥. Then ρ̃i(⊥) = ⊥ = θ̃i(⊥).

(ii) If α has the form >, then ρ̃i(>) = > = θ̃i(>).

(iii) Assume α has the form 2mp (m > 0). Then we have

ρ̃i(2
mp) = 2mρi(p) (by Definition 2.1.8)

= 2ρi(p) (by (refl) and (trans))

= 2(ρ(p) ∧Di) (by the definition of ρi)

= 2ρ(p) ∧2Di (since 2 distributes over finite meets)

= 22Sθ(p) ∧2Di (by the definition of ρ)

= 2Sθ(p) ∧2SDi (by Lemmas 5.2.3 and 5.2.4)

= 2S(θ(p) ∧Di) (since 2S distributes over finite meets)

= 2Sθi(p) (by the definition of θ1)

= (2S)mθi(p) (by the fact that BS validates (refl) and (trans))

= θ̃i(2
np) (by Definition 2.1.8)
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(iv) If α has the form 2ni (n > 0), then

ρ̃i(2
ni) = 2nρi(i)

= 2ρi(i) (by (refl) and (trans))

= 2(ρ(i) ∧Di) (by the definition of ρi)

= 2ρ(i) ∧2Di (since 2 distributes over finite meets)

= 2θ(i) ∧2Di (by the definition of ρ)

= 2Sθ(i) ∧2SDi (θ(i) ∈ XS and Lemma 5.2.4)

= 2S(θ(i) ∧Di) (since 2S distributes over finite meets)

= 2Sθi(i) (by the definition of θi)

= (2S)nθi(i) (by (refl) and (trans))

= θ̃i(2
ni)

(v) Assume α has the form α1 ∧ α2. Then

ρ̃i(α1 ∧ α2) = ρ̃i(α1) ∧ ρ̃i(α2) (by Definition 2.1.8)

= θ̃i(α1) ∧ θ̃i(α2) (by the inductive hypothesis)

= θ̃i(α1 ∧ α2) (by Definition 2.1.8)

(vi) If α is of the form α1 ∨ α2, then

ρ̃i(α1 ∨ α2) = ρ̃i(α1) ∨ ρ̃i(α2) (by Definition 2.1.8)

= θ̃i(α1) ∨ θ̃i(α2) (by the inductive hypothesis)

= θ̃i(α1 ∨ α2) (by Definition 2.1.8)

Claim 2. ρ̃(α) = θ̃(α) for any α-formula α.

Proof of claim.

ρ̃(α) = ρ̃(α) ∧ >
= ρ̃(α) ∧ (D1 ∨D2) (by definition of a piecewise well-connected algebra)

= (ρ̃(α) ∧D1) ∨ (ρ̃(α) ∧D2) (by distributivity)

= ρ̃1(α) ∨ ρ̃2(α) (by the definitions of ρ1 and ρ2)

= θ̃1(α) ∨ θ̃2(α) (by Claim 1)

= (θ̃(α) ∧D1) ∨ (θ̃(α) ∧D2) (by the definitions of θ1 and θ2)

= θ̃(α) ∧ (D1 ∨D2) (by distributivity)

= θ̃(α) ∧ > (by definition of a piecewise well-connected algebra)

= θ̃(α)
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Claim 3. For each i = 1, 2 and any β-formula β, θ̃i(β) ≤ ρ̃i(β) for any β-formula β.

Proof of claim. The proof of this claim is also by structural induction. The base step are (i)
– (ii) and the inductive steps (iii) – (iv).

(i) The case where β is α follows from Claim 1.

(ii) If β is of the form 2¬α, then

ρ̃i(2¬α) = 2¬ρ̃i(α)

= 2¬θ̃i(α) (by Claim 1)

≥ 2S¬θ̃i(α) (by Lemma 5.2.3)

= θ̃i(2¬α)

(iii) The Boolean case are similar to that of the α-formulas.

(iv) Assume β is of the form 2(α→ β). Here

ρ̃i(2(α→ β)) = 2ρ̃i(α→ β)

= 2ρ̃i(¬α ∨ β)

= 2(¬ρ̃i(α) ∨ ρ̃i(β))

≥ 2(¬θ̃i(α) ∨ θ̃i(β)) (by Claim 1 and the inductive hypothesis)

= 2(θ̃i(¬α ∨ β))

= 2θ̃i(α→ β)

≥ 2S θ̃i(α→ β) (by Lemma 5.2.3)

= θ̃i(2(α→ β))

Claim 4. θ̃(β) ≤ ρ̃(β) for any β-formula β.

Proof of claim.

θ̃(β) = θ̃(β) ∧ >

= θ̃(β) ∧ (D1 ∨D2) (by definition of a piecewise well-connected algebra)

= (θ̃(β) ∧D1) ∨ (θ̃(β) ∧D2) (by distributivity)

= θ̃1(β) ∨ θ̃2(β) (by the definitions of θ1 and θ2)

≤ ρ̃1(β) ∨ ρ̃2(β) (by Claim 3)

= (ρ̃(β) ∧D1) ∨ (ρ̃(β) ∧D2) (by the definitions of ρ1 and ρ2)

= ρ̃(β) ∧ (D1 ∨D2) (by distributivity)

= ρ̃(β) ∧ > (by definition of a piecewise well-connected algebra)

= ρ̃(β)
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Claim 5. For each i = 1, 2 and any Γ-formula γ, ρ̃i(γ) = Di implies θ̃i(γ) = Di.

Proof of claim. Note that we only need to show that ρ̃i(γ) ≥ Di implies θ̃i(γ) ≥ Di since
both ρ̃i(γ) ≤ Di and θ̃i(γ) ≤ Di. We use structural induction on γ. The base steps are (i) –
(iv) and the inductive steps (v) – (vii).

(i) If γ has the form 2¬i, then

ρ̃i(2¬i) ≥ Di

=⇒ 2ρ̃i(¬i) ≥ Di

=⇒ ρ̃i(¬i) ≥ Di (by (refl))

=⇒ ¬ρ̃i(i) ≥ Di

=⇒ ¬(ρ̃(i) ∧Di) ≥ Di (by the definition of ρi)

=⇒ ¬(θ̃(i) ∧Di) ≥ Di (by the definition of ρ)

=⇒ ¬θ̃i(i) ≥ Di (by the definition of θi)

=⇒ θ̃i(¬i) ≥ Di

=⇒ 2S θ̃i(¬i) ≥ Di (by monotonicity of 2S and Lemmas 5.2.7 and 5.2.4)

=⇒ θ̃i(2¬i) ≥ Di

(ii) If γ is α, the claim immediately follows from Claim 1.

(iii) Assume that γ has the form 2(β → α). Then

ρ̃i(2(β → α)) ≥ Di

=⇒ 2ρ̃i(β → α) ≥ Di

=⇒ ρ̃i(β → α) ≥ Di (by (refl))

=⇒ ρ̃i(¬β ∨ α) ≥ Di

=⇒ ¬ρ̃i(β) ∨ ρ̃(α) ≥ Di

=⇒ ¬θ̃i(β) ∨ θ̃i(α) ≥ Di (by Claims 1 and 3)

=⇒ θ̃i(¬β ∨ α) ≥ Di

=⇒ θ̃i(β → α) ≥ Di

=⇒ 2S θ̃i(β → α) ≥ Di (by monotonicity of 2S and Lemmas 5.2.7 and 5.2.4)

=⇒ θ̃i(2(β → α) ≥ Di
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(iv) If γ has the form 2¬β, then

ρ̃i(2¬β) ≥ Di

=⇒ 2ρ̃i(¬β) ≥ Di

=⇒ ρ̃i(¬β) ≥ Di (by (refl))

=⇒ ¬ρ̃i(β) ≥ Di (by Definition 2.1.8)

=⇒ ¬θ̃i(β) ≥ Di (by Claim 3)

=⇒ θ̃i(¬β) ≥ Di (by Definition 2.1.8)

=⇒ 2S θ̃i(¬β) ≥ Di (by monotonicity of 2S and Lemmas 5.2.7 and 5.2.4)

=⇒ θ̃i(2¬β) ≥ Di

(v) Assume γ has the form γ1 ∧ γ2. Then we have

ρ̃i(γ1 ∧ γ2) ≥ Di

=⇒ ρ̃i(γ1) ∧ ρ̃i(γ2) ≥ Di

=⇒ ρ̃i(γ1) ≥ Di and ρ̃i(γ2) ≥ Di

=⇒ θ̃i(γ1) ≥ Di and θ̃i(γ2) ≥ Di (by the inductive hypothesis)

=⇒ θ̃i(γ1) ∧ θ(γ2) ≥ Di

=⇒ θ̃i(γ1 ∧ γ2) ≥ Di

(vi) Assume γ has the form γ1∨γ2, and suppose ρ̃i(γ1∨γ2) = Di. Then ρ̃i(γ1)∨ ρ̃i(γ2) = Di.
But we know that 2ρ̃(γ1) = ρ̃(γ1) by Lemma 5.2.6. We also know from Lemma 5.2.7
that for each i = 1, 2, 2Di = Di. We therefore have

2ρ̃i(γ1) = 2(ρ̃(γ1) ∧Di) = 2ρ̃(γ1) ∧2Di = ρ̃(γ1) ∧Di = ρ̃i(γ1)

Similarly, 2ρ̃i(γ2) = ρ̃i(γ2). Hence, 2ρ̃i(γ1) ∨2ρ̃i(γ2) = Di, and so, for j 6= i,

3¬ρ̃i(γ1) ∧3¬ρ̃i(γ2) = Dj .

But then 3¬ρ̃i(γ1) ∧3¬ρ̃i(γ2) ∧Di = ⊥, which means that

3¬ρ̃i(γ1) ∧3Di ∧3¬ρ̃i(γ2) ∧3Di = ⊥.

Hence, by the monotonicity of 3, 3(¬ρ̃i(γ1)∧Di)∧3(¬ρ̃i(γ2)∧Di) = ⊥, and so, since
¬ρ̃i(γ1)∧Di ≤ Di and ¬ρ̃i(γ2)∧Di ≤ Di, by the definition of a piecewise well-connected
hybrid algebra, ¬ρ̃i(γ1) ∧ Di = ⊥ or ¬ρ̃i(γ2) ∧ Di = ⊥. We then get Di ≤ ρ̃i(γ1) or
Di ≤ ρ̃i(γ2). But ρ̃i(γ1) ≤ Di and ρ̃i(γ2) ≤ Di, so ρ̃i(γ1) = Di or ρ̃i(γ2) = Di. Now, by
the inductive hypothesis, θ̃i(γ1) = Di or θ̃i(γ2) = Di, which gives θ̃i(γ1) ∨ θ̃i(γ2) = Di.
Therefore, θ̃i(γ1 ∨ γ2) = Di.
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(vii) If γ has the form 2γ1, then

ρ̃i(2γ1) ≥ Di

=⇒ 2ρ̃i(γ1) ≥ Di

=⇒ ρ̃i(γ1) ≥ Di (by (refl))

=⇒ θ̃i(γ1) ≥ Di (by the inductive hypothesis)

=⇒ 2S θ̃i(γ1) ≥ Di (by the monotonicity of 2S and Lemmas 5.2.7 and 5.2.4)

=⇒ θ̃i(2γ1) ≥ Di

Claim 6. For any Γ-formula γ, ρ̃(γ) = > implies θ̃(γ) = >.

Proof of claim.

ρ̃(γ) = >
=⇒ ρ̃(γ) ∧D1 = D1 and ρ̃(γ) ∧D2 = D2

=⇒ ρ̃1(γ) = D1 and ρ̃2(γ) = D2 (by the definitions of ρ1 and ρ2)

=⇒ θ̃1(γ) = D1 and θ̃2(γ) = D2 (by Claim 5)

=⇒ θ̃(γ) ∧D1 = D1 and θ̃(γ) ∧D2 = D2 (by the definitions of θ1 and θ2)

=⇒ (θ̃(γ) ∧D1) ∨ (θ̃(γ) ∧D2) = D1 ∨D2 = >

=⇒ θ̃(γ) ∧ (D1 ∨D2) = >

=⇒ θ̃(γ) = >

Now, since A |= γ ≈ >, we have BS |= γ ≈ > by Claim 6.

Corollary 5.2.9. Let Σ be a finite set of Γ-formulas. Then HS4⊕ Σ is decidable.

5.2.2 Hybrid extensions of S4 in the language H(@) with the finite model
property

In this section, we prove a result analogous to Bull’s result in [18] for the logic obtained by
adding the axioms (4) and (T ) to the logic H(@) (denoted H(@)S4). But first we define the
inductive class of formulas we will work in this subsection.

We define Γ(@)-formulas by the following inductive rules:

α ::= ⊥ | > | i | 2mp | 2ni | ¬α | α1 ∧ α2 | α1 ∨ α2 | @iα (m,n > 0)

β ::= α | β1 ∧ β2 | β1 ∨ β2 | α→ β | 2β | @iβ

γ ::= α | 3α | ¬β | 3¬β | β → α | γ1 ∧ γ2 | 2γ

In comparing this to the definition of α, β and γ-formulas in Subsection 5.2.1, notice
the absence of the clause γ1 ∨ γ2 in the above definition. Recall that in Subsection 5.2.1,
we used well-connectedness for the inductive step in Lemma 5.2.8 where γ is of the form
γ1 ∨ γ2. So if we add this clause to the above definition, we need well-connectedness. Like
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in Subsection 5.1.2, we would have to add the axiom @i3j ∨ @j3i to the logic H(@)S4 to
get well-connectedness. However, as in Subsection 5.1.2, we would still only be able to prove
a finite hybrid algebra property for the named fragment of the logic H(@)S4 extended with
@i3j ∨@j3i and Γ(@)-formulas. So instead we drop the clause γ1 ∨ γ2, which in turn allows
us to add all nominals and all formulas of the form ¬α to the set of α-formulas, as well as all
formulas of the form 3α and 3¬β to the set of γ-formulas. Also notice the absence of boxes
in some of the clauses. The reason we can do this is that we dropped the clause γ1 ∨ γ2, and
therefore don’t need a lemma similar to Lemma 5.2.6 here.

Before we give the main results of this section, we give some examples of Γ(@)-formulas
important in the study of hybrid logic.

Example 5.2.10. The following are Γ(@)-formulas:

(i) the formula 2p→ 22p defining transitivity,

(ii) the formula 22p→ 2p defining density,

(iii) the formula i→ 3i ≡ 2¬i→ ¬i defining reflexivity,

(iv) the formula 3i defining universality, and

(v) the formula @i(¬j ∧ ¬k)→ @jk defining the class of frames with at most two states.

Recall that Bull used the fact that every normal extension of S4 is sound and complete
with respect to the corresponding class of closure algebras validating its axioms to obtain his
result. We have a similar result for the normal hybrid logic H(@)S4:

Theorem 5.2.11. The logic H(@)S4⊕ Σ is sound and complete with respect to the class of
all hybrid closure @-algebras validating Σ.

Proof. This result follows immediately from Theorem 3.2.1.

We now give the main result, and subsequently prove the results needed in the proof.

Theorem 5.2.12. Let Σ be a set of Γ(@)-formulas. Then the logic H(@)S4 ⊕ Σ has the
strong finite hybrid algebra property.

Proof. Suppose ϕ /∈ H(@)S4 ⊕ Σ. By Theorem 5.2.11, there is a hybrid closure @-algebra
A = (A, XA) and an assignment ν such that A |= Σ≈ but A, ν 6|= ϕ ≈ >. Now, let S0 be the
set of elements of A used in the evaluation of ϕ and > under ν. Then let S1 = S0 ∪ {x0},
where x0 is an arbitrary atom in XA, and let XS = XA ∩ S1. We then let S = S1 ∪ {2x |
x ∈ XS}. Define BS as the Boolean subalgebra of A generated by S. Next, for b ∈ BS , let
(b ↑)C = {a ∈ BS | a = 3a and b ≤ a} and define

3Sb :=
∧

(b ↑)C .

Furthermore, for any x ∈ XS and b ∈ BS , let

@S
xb =

{
> x ≤ b
⊥ otherwise.
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Finally, let BS = (BS ,3
S ,@S , XS). We have to show that BS is the right kind of algebra.

First, by Proposition 5.2.16, BS is a hybrid closure @-algebra. By Lemma 5.2.4, 3S extends
3. Furthermore, by Lemma 5.2.15, @S

xb = @xb for all x ∈ XS and b ∈ BS . Hence, BS 6|= ϕ ≈
>. Finally, for all Γ(@)-formulas γ in Σ, BS |= γ ≈ > by Lemma 5.2.17.

To conclude this proof, note that |S| ≤ 2l(ϕ) + 3, so BS contains at most 2l(ϕ)+3 atoms,

and hence, at most 22l(ϕ)+3
elements.

For the remainder of this section, A and BS will be the algebras in the proof of Theorem
5.2.12.

Lemma 5.2.13. 3b ≤ 3Sb = 33Sb for all b ∈ BS, and therefore, 22Sb = 2Sb ≤ 2b for all
b ∈ BS.

Proof. The proof is the same as that of Lemma 5.2.3.

Lemma 5.2.14. Let b be an element in BS. If 3b ∈ BS, then 3Sb = 3b, and therefore, if
2b ∈ BS, then 2Sb = 2b.

Proof. The proof is the same as that of Lemma 5.2.4

Our next lemma shows that @S is a normal modal operator extending @.

Lemma 5.2.15. If x is an element of XS and b an element of BS, then we have @S
xb = @xb.

Proof. The proof is similar to that of Lemma 5.1.27.

Proposition 5.2.16. BS is a hybrid closure @-algebra.

Proof. First, x0 ∈ XS , so XS 6= ∅. Proving that 3S is a normal modal operator satisfying
(refl) and (trans) is done in the same way as in Proposition 5.2.5. Finally, the fact that @S

satisfies (K@), (self -dual), (agree), (ref ), (introduction), and (back) follows from Proposition
2.2.5.

Lemma 5.2.17. Let γ be a Γ(@)-formula. If A |= γ ≈ >, then BS |= γ ≈ >.

Proof. Let θ be an assignment on BS , and define an assignment ρ: PROP ∪ NOM → A by
ρ(p) = 2Sθ(p) for all p ∈ PROP and ρ(i) = θ(i) for all i ∈ NOM. We now prove the following
claims:

Claim 1. θ̃(α) = ρ̃(α) for any α-formula α.

Proof of claim. The proof of this claim is by structural induction on α. The base steps are
(i) – (v) and the inductive steps (vi) – (ix).

(i) Assume α is ⊥. Then ρ̃(⊥) = ⊥ = θ̃(⊥).

(ii) If α has the form >, then ρ̃(>) = > = θ̃(>).



Chapter 5. Hybrid logics with the finite model property 188

(iii) Assume α has the form i. Then we have

ρ̃(i) = ρ(i) (by Definition 2.2.10)

= θ(i) (by the definition of ρ)

= θ̃(i) (by Definition 2.2.10)

(iv) Assume α has the form 2mp (m > 0). Then

ρ̃(2mp) = 2mρ(p)

= 2m2Sθ(p) (by the definition of ρ)

= 22Sθ(p) (from the fact that m > 0 and by (refl) and (trans))

= 2Sθ(p) (by Lemma 5.2.13)

= (2S)mθ(p) (from the fact that m > 0 and by (refl) and (trans))

= θ̃(2mp)

(v) If α has the form 2ni, then we have

ρ̃(2ni) = 2nρ(i)

= 2nθ(i) (by the definition of ρ)

= 2θ(i) (from the fact that n > 0 and by (refl) and (trans))

= 2Sθ(i) (θ(i) ∈ XS and Lemma 5.2.14)

= (2S)nθ(i) (from the fact that n > 0 and by (refl) and (trans))

= θ̃(2ni)

(vi) Assume α has the form ¬α1. Then

ρ̃(¬α1) = ¬ρ̃(α1) (by Definition 2.2.10)

= ¬θ̃(α1) (by the inductive hypothesis)

= θ̃(¬α1) (by Definition 2.2.10)

(vii) Assume α has the form α1 ∧ α2. Then

ρ̃(α1 ∧ α2) = ρ̃(α1) ∧ ρ̃(α2) (by Definition 2.2.10)

= θ̃(α1) ∧ θ̃(α2) (by the inductive hypothesis)

= θ̃(α1 ∧ α2) (by Definition 2.2.10)

(viii) If α is of the form α1 ∨ α2, then

ρ̃(α1 ∨ α2) = ρ̃(α1) ∨ ρ̃(α2) (by Definition 2.2.10)

= θ̃(α1) ∨ θ̃(α2) (by the inductive hypothesis)

= θ̃(α1 ∨ α2) (by Definition 2.2.10)
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(ix) Assume α has the form @iα. Then we have

ρ̃(@iα) = @ρ(i)ρ̃(α)

= @θ(i)θ̃(α) (by the inductive hypothesis and the definition of ρ)

= @S
θ(i)θ̃(α) (by Lemma 5.2.15)

= θ̃(@iα)

Claim 2. θ̃(β) ≤ ρ̃(β) for any β-formula β.

Proof of claim. The proof of this claim is also by structural induction. The base step are (i)
– (ii) and the inductive steps (iii) – (v).

(i) The case where β is α follows from Claim 1.

(ii) The Boolean case are similar to that of the α-formulas.

(iii) Assume β is of the form α→ β. Here

ρ̃(α→ β) = ρ̃(¬α ∨ β)

= ¬ρ̃(α) ∨ ρ̃(β) (by Definition 2.2.10)

≥ ¬θ̃(α) ∨ θ̃(β) (by Claim 1 and the inductive hypothesis)

= θ̃(¬α ∨ β) (by Definition 2.2.10)

= θ̃(α→ β)

(iv) Assume β has the form 2β. Then

ρ̃(2β) = 2ρ̃(β)

≥ 2θ̃(β) (by the inductive hypothesis and the monotonicity of 2)

≥ 2S θ̃(β) (by Lemma 5.2.13)

= θ̃(2β)

(v) If β is of the form @iβ, then

ρ̃(@iβ) = @ρ(i)ρ̃(β)

≥ @θ(i)θ̃(β) (definition of ρ, monotonicity of @, and inductive hypothesis)

= @S
θ(i)θ̃(β) (by Lemma 5.2.15)

= θ̃(@iβ)

Claim 3. For any Γ-formula γ, ρ̃(γ) = > implies θ̃(γ) = >.
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Proof of claim. We use structural induction on γ. The base steps are (i) – (v) and the
inductive steps (vi) – (vii).

(i) If γ is α, the claim immediately follows from Claim 1.

(ii) Assume γ has the form 3α. Then

ρ̃(3α) = > =⇒ 3ρ̃(α) = >

=⇒ 3θ̃(α) = > (by Claim 2)

=⇒ 3S θ̃(α) = > (by Lemma 5.2.13)

=⇒ θ̃(3α) = >

(iii) If γ has the form ¬β, then

ρ̃(¬β) = > =⇒ ¬ρ̃(β) = >

=⇒ ¬θ̃(β) = > (by Claim 2)

=⇒ θ̃(¬β) = >

(iv) Assume γ has the form 3¬β. We then have

ρ̃(3¬β) = > =⇒ 3¬ρ̃(β) = >

=⇒ 3¬θ̃(β) = > (by Claim 2 and the monotonicity of 3)

=⇒ 3θ̃(¬β) = >

=⇒ 3S θ̃(¬β) = > (by Lemma 5.2.13)

=⇒ θ̃(3¬β) = >

(v) If γ has the form β → α, then

ρ̃(β → α) = > =⇒ ρ̃(¬β ∨ α) = >
=⇒ ¬ρ̃(β) ∨ ρ̃(α) = >

=⇒ ¬θ̃(β) ∨ θ̃(α) = > (by Claims 1 and 2)

=⇒ θ̃(¬β ∨ α) = >

=⇒ θ̃(β → α) = >

(vi) Assume γ has the form γ1 ∧ γ2. Then we have

ρ̃(γ1 ∧ γ2) = > =⇒ ρ̃(γ1) ∧ ρ̃(γ2) = >
=⇒ ρ̃(γ1) = > and ρ̃(γ2) = >

=⇒ θ̃(γ1) = > and θ̃(γ2) = > (by the inductive hypothesis)

=⇒ θ̃(γ1) ∧ θ(γ2) = >

=⇒ θ̃(γ1 ∧ γ2) = >



Chapter 5. Hybrid logics with the finite model property 191

(vii) If γ has the form 2γ1, then

ρ̃(2γ1) = > =⇒ 2ρ̃(γ1) = >
=⇒ ρ̃(γ1) = > (by (refl))

=⇒ θ̃(γ1) = > (by the inductive hypothesis)

=⇒ 2S θ̃(γ1) = 2S>

=⇒ 2S θ̃(γ1) = > (Lemma 5.2.14)

=⇒ θ̃(2γ1) = >

Now, since A |= γ ≈ >, we have BS |= γ ≈ > by Claim 3.

Corollary 5.2.18. Let Σ be a finite set of Γ(@)-formulas. Then H(@)S4⊕ Σ is decidable.

5.2.3 Hybrid extensions of S4 in the language H(E) with the finite model
property

Here we show how to extend Bull’s result in [18] to the logic obtained by adding the axioms
(4) and (T ) to the hybrid logic H(E) denoted H(E)S4. As in Section 5.1.3, we have to enforce
well-connectedness axiomatically. However, not having well-connectedness is not the end of
the world. As we stated in Section 5.2.2, if we remove the clause γ1 ∨ γ2, we do not need
well-connectedness. But more on this at the end of the section. For now we will work with
the collection of Γ(E)-formulas defined below.

Γ(E)-formulas are recursively defined by the following inductive rules:

α ::= ⊥ | > | 2mp | 2ni | Ap | Ai | α1 ∧ α2 | α1 ∨ α2 | Aα (m,n > 0)

β ::= α | 2¬α | β1 ∧ β2 | β1 ∨ β2 | 2(α→ β) | Aβ
γ ::= 2¬i | A¬i | α | 2(β → α) | 2¬β | A¬β | A(β → α) | γ1 ∧ γ2 | γ1 ∨ γ2 | 2γ | Aγ

The above definition clearly extends the definition of the Γ-formulas, and therefore also
extends Bull’s definition in [18].

Example 5.2.19. The following formulas are Γ(E)-formulas:

(i) the formula 32p→ 2p ≡ 2¬2p ∨2p defining the class of euclidean frames,

(ii) the formula 33i→ ¬3i ≡ 22¬i ∨2¬i defining intransitivity,

(iii) the formula 3i→ 2i ≡ 2¬i ∨2i defining determinism,

(iv) the formula A3> ≡ A¬2¬> defining the class of frames in which every state has a
successor,

(v) the formula ¬E3> ≡ A2⊥ defining the class of frames in which no state has a successor,

(vi) the formula ¬E3i ≡ A2¬i defining the class of frames in which no state has a named
successor, and
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(vii) the formula A(3i→ 2i) ≡ A(2¬i∨2i) defining the class of frames in which every state
has at most one successor.

Before we give the main result, recall that the logic S4 is characterized by well-connected
closure algebras. We have a similar result for the logic H(E)S4⊕ Σ.

Theorem 5.2.20. Let Σ be a set of H(E)-formulas containing the common predecessor axiom.
Then the logic H(E)S4⊕Σ is sound and complete with respect to the class of all well-connected
hybrid closure E-algebras validating Σ.

Proof. This result follows from Theorem 3.3.1 and Lemma 5.1.33.

For the remainder of this section Σ will be a set of Γ(E)-formulas together with the common
predecessor axiom Ep ∧ Eq → E(3p ∧3q).

We now give the main result. Once again we will prove the lemmas needed for the proof
of this theorem afterwards.

Theorem 5.2.21. The logic H(E)S4⊕ Σ has the strong finite hybrid algebra property.

Proof. Suppose ϕ /∈ H(E)S4⊕Σ. By Theorem 5.2.20, there is a well-connected hybrid closure
E-algebra A = (A, XA) and an assignment ν such that A, ν 6|= ϕ ≈ >. Now, let S0 be the
set of elements of A used in the evaluation of ϕ and > under ν. Then let S1 = S0 ∪ {x0},
where x0 is an arbitrary atom in XA, and let S = S1 ∪ {2x | x ∈ XA ∩ S1}. Define
BS as the Boolean subalgebra of A generated by S. Since S is a finite subset of A, BS

is finite. Furthermore, BS clearly preserves all Boolean operations. Next, for b ∈ BS , let
(b ↑)C = {a ∈ BS | a = 3a and b ≤ a} and define

3Sb :=
∧

(b ↑)C .

Also, for any b ∈ BS , let

ESb =

{
> b > ⊥
⊥ otherwise.

Finally, let BS = (BS ,3
S ,ES , XS), where XS = XA ∩ S1. We have to show that BS is the

right kind of hybrid algebra. First, XS 6= ∅ since x0 ∈ XS . By Lemma 5.2.23, 3S extends
3. Furthermore, by Lemma 5.2.24, ESb = Eb for all b ∈ BS . Hence, BS 6|= ϕ ≈ >. Proving
that 3S is a normal modal operator satisfying (refl) and (trans) is done in the same way
as in Proposition 5.2.5. From this and the definition of ES , we can conclude that BS is a
hybrid closure E-algebra. To show that ESa ∧ ESb ≤ ES(3Sa ∧ 3Sb), let a, b ∈ BS . Then
ESa∧ESb = Ea∧Eb by Lemma 5.2.24. But since A validates the common predecessor axiom,
ESa ∧ ESb = Ea ∧ Eb ≤ E(3a ∧ 3b). Now, by Lemma 5.2.22, ESa ∧ ESb ≤ E(3Sa ∧ 3Sb),
and so, by Lemma 5.2.24, ESa∧ESb ≤ ES(3Sa∧3Sb). We therefore also know from Lemma
5.1.33 that BS is well-connected. Finally, for all Γ-formulas γ in Σ, BS |= γ ≈ > by Lemma
5.2.26.

In conclusion, |S| ≤ 2l(ϕ) + 3, which means that BS contains at most 2l(ϕ)+3 atoms, and

hence, at most 22l(ϕ)+3
elements.
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Unless stated otherwise, for the remainder of this section, A and BS will be the algebras
in the proof of Theorem 5.2.21.

Lemma 5.2.22. 3b ≤ 3Sb = 33Sb for all b ∈ BS, and therefore, 22Sb = 2Sb ≤ 2b for all
b ∈ BS.

Proof. The proof is the same as that of Lemma 5.2.3.

Lemma 5.2.23. Let b be an element of BS. If 3b ∈ BS, then 3Sb = 3b, and therefore, if
2b ∈ BS, then 2Sb = 2b.

Proof. The same as that of Lemma 5.2.4

Lemma 5.2.24. If b ∈ BS, then ESb = Eb, and therefore, if b ∈ BS, ASb = Ab.

Proof. The first part of this proof is the same as that of Lemma 5.1.37. For the second part,
let b ∈ BS . But we know that BS is closed under the Boolean operators, so ¬b ∈ BS . Hence,
by the first part of this lemma, ES¬b = E¬b, and so ¬ES¬b = ¬E¬b. We therefore have
ASb = Ab.

We now show that for any assignment ν on a hybrid closure E-algebra and any Γ-formula
γ, ν(γ) is an open element of the hybrid E-algebra.

Lemma 5.2.25. Let A be a hybrid closure E-algebra, let ν be an assignment on A, and let γ
be a Γ(E)-formula. Then 2ν̃(γ) = ν̃(γ).

Proof. As for Lemma 5.2.6, the proof is by structural induction on the α, β and γ-formulas.
We only consider the case where α has the form Ai as the other cases not involving A can be
proved in the same way as in the proof of Lemma 5.2.6, and the cases involving A are similar
to this case. So assume α has the form Ai. First, 2ν̃(Ai) ≤ ν̃(Ai) by (refl). Conversely,

2ν̃(Ai) = 2Aν̃(i) (by Definition 2.3.7)

≥ AAν̃(i) (by (incl3) of Proposition 2.3.4)

= Aν̃(i) (by (reflE) and (transE) of Proposition 2.3.4)

= ν̃(Ai) (by Definition 2.3.7)

Lemma 5.2.26. Let γ be a Γ(E)-formula. If A |= γ ≈ >, then BS |= γ ≈ >.

Proof. Let θ be an assignment on BS , and define an assignment ρ: PROP ∪ NOM → A by
ρ(p) = 2Sθ(p) for all p ∈ PROP and ρ(i) = θ(i) for all i ∈ NOM. We now prove the following
claims:

Claim 1. θ̃(α) = ρ̃(α) for any α-formula α.

Proof of claim. The proof of this claim is by structural induction on α. The base steps are
(i) – (v) and the inductive steps (vi) – (viii).

(i) Assume α is ⊥. Then ρ̃(⊥) = ⊥ = θ̃(⊥).
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(ii) If α has the form >, then ρ̃(>) = > = θ̃(>).

(iii) Assume α has the form 2mp (m > 0). Then

ρ̃(2mp) = 2mρ(p)

= 2m2Sθ(p) (by the definition of ρ)

= 22Sθ(p) (by (refl) and (trans))

= 2Sθ(p) (by Lemma 5.2.22)

= (2S)mθ(p) (by (refl) and (trans))

= θ̃(2mp)

(iv) If α has the form 2ni (n > 0), then we have

ρ̃(2ni) = 2nρ(i)

= 2nθ(i) (by the definition of ρ)

= 2θ(i) (by (refl) and (trans))

= 2Sθ(i) (θ(i) ∈ XS and Lemma 5.2.23)

= (2S)nθ(i) (by (refl) and (trans))

= θ̃(2ni)

(v) Assume α has the form Ai. Then we have

ρ̃(Ai) = Aρ̃(i)

= Aθ(i) (by the definition of ρ)

= ASθ(i) ((by Lemma 5.2.24)

= θ̃(Ai)

(vi) Assume α has the form α1 ∧ α2. Then

ρ̃(α1 ∧ α2) = ρ̃(α1) ∧ ρ̃(α2)

= θ̃(α1 ∧ α2)

(vii) If α is of the form α1 ∨ α2, then

ρ̃(α1 ∨ α2) = ρ̃(α1) ∨ ρ̃(α2)

= θ̃(α1) ∨ θ̃(α2) (by the inductive hypothesis)

= θ̃(α1 ∨ α2)



Chapter 5. Hybrid logics with the finite model property 195

(viii) Assume α has the form Aα. Then we have

ρ̃(Aα) = Aρ̃(α)

= Aθ(α) (by the inductive hypothesis)

= ASθ(α) (by Lemma 5.2.24)

= θ̃(Aα)

Claim 2. θ̃(β) ≤ ρ̃(β) for any β-formula β.

Proof of claim. The proof of this claim is also by structural induction. The base step are (i)
– (ii) and the inductive steps (iii) – (v).

(i) The case where β is α follows from Claim 1.

(ii) If β is of the form 2¬α, then

ρ̃(2¬α) = 2¬ρ̃(α)

= 2¬θ̃(α) (by Claim 1)

≥ 2S¬θ̃(α) (by Lemma 5.2.22)

= θ̃(2¬α)

(iii) The Boolean cases are similar to that of the α-words.

(iv) Assume β is of the form 2(α→ β). Here

ρ̃(2(α→ β)) = 2ρ̃(α→ β)

= 2ρ̃(¬α ∨ β)

= 2(¬ρ̃(α) ∨ ρ̃(β))

≥ 2(¬θ̃(α) ∨ θ̃(β)) (by Claim 1 and the inductive hypothesis)

= 2θ̃(¬α ∨ β)

= 2θ̃(α→ β)

≥ 2S θ̃(α→ β) (by Lemma 5.2.22)

= θ̃(2(α→ β))

(v) If β is of the form Aβ, then

ρ̃(Aβ) = Aρ̃(β)

≥ Aθ̃(β) (by the inductive hypothesis and monotonicity of A)

= AS θ̃(β) (by Lemma 5.2.24)

= θ̃(Aβ)
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Claim 3. For any Γ-formula γ, ρ̃(γ) = > implies θ̃(γ) = >.

Proof of claim. We use structural induction on γ. The base steps are (i) – (vi) and the
inductive steps (vii) – (ix).

(i) If γ has the form 2¬i, then

ρ̃(2¬i) = > =⇒ 2ρ̃(¬i) = >
=⇒ ρ̃(¬i) = > (by (refl))

=⇒ ¬ρ̃(i) = >

=⇒ ¬θ̃(i) = > (by the definition of ρ)

=⇒ θ̃(¬i) = >

=⇒ 2S θ̃(¬i) = 2S>

=⇒ 2S θ̃(¬i) = > (by Lemma 5.2.23)

=⇒ θ̃(2¬i) = >

(ii) Assume γ has the form A¬i. Then we have

ρ̃(A¬i) = > =⇒ Aρ̃(¬i) = > (by Definition 2.3.7)

=⇒ ρ̃(¬i) = > (by (reflE) of Proposition 2.3.4)

=⇒ ¬ρ̃(i) = >

=⇒ ¬θ̃(i) = > (by the definition of ρ)

=⇒ θ̃(¬i) = >

=⇒ AS θ̃(¬i) = AS>

=⇒ AS θ̃(¬i) = > (by Proposition 2.3.3)

=⇒ θ̃(A¬i) = >

(iii) If γ is α, the claim immediately follows from Claim 1.
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(iv) Assume that γ has the form 2(β → α). Then

ρ̃(2(β → α)) = > =⇒ 2ρ̃(β → α) = >
=⇒ ρ̃(β → α) = > (by (refl))

=⇒ ρ̃(¬β ∨ α) = >
=⇒ ¬ρ̃(β) ∨ ρ̃(α) = >

=⇒ ¬θ̃(β) ∨ θ̃(α) = > (by Claims 1 and 2)

=⇒ θ̃(¬β ∨ α) = >

=⇒ θ̃(β → α) = >

=⇒ 2S θ̃(β → α) = 2S>

=⇒ 2S θ̃(β → α) = > (by Lemma 5.2.23)

=⇒ θ̃(2(β → α)) = >

(v) If γ has the form 2¬β, then

ρ̃(2¬β) = > =⇒ 2ρ̃(¬β) = >
=⇒ ρ̃(¬β) = > (by (refl))

=⇒ ¬ρ̃(β) = >

=⇒ ¬θ̃(β) = > (by Claim 2)

=⇒ θ̃(¬β) = >

=⇒ 2S θ̃(¬β) = 2S>

=⇒ 2S θ̃(¬β) = > (by Lemma 5.2.23)

=⇒ θ̃(2¬β) = >

(vi) Assume γ has the form A¬β. We then have

ρ̃(A¬β) = > =⇒ Aρ̃(¬β) = > (by Definition 2.3.7)

=⇒ ρ̃(¬β) = > (by (refl) of Proposition 2.3.4)

=⇒ ¬ρ̃(β) = >

=⇒ ¬θ̃(β) = > (by Claim 2)

=⇒ θ̃(¬β) = >

=⇒ AS θ̃(¬β) = AS>

=⇒ AS θ̃(¬β) = > (by Proposition 2.3.3)

=⇒ θ̃(A¬β) = >
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(vii) Assume γ has the form γ1 ∧ γ2. Then we have

ρ̃(γ1 ∧ γ2) = > =⇒ ρ̃(γ1) ∧ ρ̃(γ2) = >
=⇒ ρ̃(γ1) = > and ρ̃(γ2) = >

=⇒ θ̃(γ1) = > and θ̃(γ2) = > (by the inductive hypothesis)

=⇒ θ̃(γ1) ∧ θ(γ2) = >

=⇒ θ̃(γ1 ∧ γ2) = >

(viii) Assume γ has the form γ1 ∨ γ2, and suppose ρ̃(γ1 ∨ γ2) = >. Then ρ̃(γ1) ∨ ρ̃(γ2) = >.
But we know that 2ρ̃(γ1) = ρ̃(γ1) and 2ρ̃(γ2) = ρ̃(γ2) by Lemma 5.2.25, so

2ρ̃(γ1) ∨2ρ̃(γ2) = >.

Hence, 3¬ρ̃(γ1) ∧ 3¬ρ̃(γ2) = ⊥, and so, by the well-connectedness of A, ¬ρ̃(γ1) = ⊥
or ¬ρ̃(γ2) = ⊥. This gives ρ̃(γ1) = > or ρ̃(γ2) = >. Therefore, by the inductive
hypothesis, θ̃(γ1) = > or θ̃(γ2) = >, which means that θ̃(γ1)∨ θ̃(γ2) = >. We thus have
θ̃(γ1 ∨ γ2) = >.

(ix) If γ has the form 2γ1, then

ρ̃(2γ1) = > =⇒ 2ρ̃(γ1) = >
=⇒ ρ̃(γ1) = > (by (refl))

=⇒ θ̃(γ1) = > (by the inductive hypothesis)

=⇒ 2S θ̃(γ1) = 2S>

=⇒ 2S θ̃(γ1) = > (Lemma 5.2.23)

=⇒ θ̃(2γ1) = >

Now, since A |= γ ≈ >, we have BS |= γ ≈ > by Claim 3.

Corollary 5.2.27. If Σ is finite, then H(E)S4⊕ Σ is decidable.

To conclude, as we stated at the beginning of the section, not having well-connectedness
is not the end of the world. Even if we do not have well-connectedness, we can still obtain a
positive result. However, we would then have to make our definition of Γ-formulas smaller.
To see this, recall that in induction step (vi) of Claim 3 in the proof of Theorem 5.2.8, we
use the fact that the algebra we started with is well-connected. But the well-connectedness
follows from the common predecessor axiom, so if we remove this axiom, we have to remove
all Γ-formulas of the form γ1 ∨ γ2 from our definition of Γ-formulas. In this case, we have
the following: if Σ is a set of Γ-formulas, the logic H(E)S4 ⊕ Σ is sound and complete with
respect to the class of all finite hybrid closure E-algebras validating Σ. Note, however, that
this would exclude formulas like 32p→ 2p, 33i→ ¬3i and 3i→ 2i in Example 5.2.19.



Conclusion

In this thesis, we approach hybrid logic with algebraic methods — methods using tools and
techniques from universal algebra. The idea is to associate, with any logic, a class of algebras
such that logical properties of the logic correspond to algebraic properties of the class of
algebras. In the case of hybrid logics, we found that there are two possible algebraic semantics
for hybrid logics. The first, called orthodox interpretations, is the class of Boolean algebras
with operators in which the nominals are interpreted as constants. The second, called hybrid
algebras, consists of a Boolean algebra with operators together with a non-empty subset of the
atoms of the BAO over which the nominals range. However, we prefer to work with hybrid
algebras for the following reasons:

(i) The orthodox interpretations are not dual to the intended relational semantics for hybrid
languages in the appropriate way.

(ii) The rule (Sorted substitution) is not sound in orthodox interpretations.

(iii) The @ operator does not completely behave like it should in orthodox interpretations
of H(@).

Hybrid algebras do not suffer from the same shortcomings.
As for the modal counterpart of hybrid logic, adding these new algebraic tools to the

hybrid logic toolbox proved to be very useful in solving open problems in the field of hybrid
logic, as well as confirming existing results. In particular, we made the following contributions
to the field of hybrid logic:

(i) We obtained general completeness results with respect to hybrid algebras for the bet-
ter known hybrid logics. These results also coincide with the informal definition of
algebraizability in the literature.

(ii) We developed a hybrid Sahlqvist theory. More specifically, we extended the definition of
inductive formulas in the literature to the hybrid language with satisfaction operators
and showed that every formula in this class has a first-order frame correspondent. We
also showed that certain subclasses of the hybrid inductive formulas are respectively
preserved under canonical extensions and Dedekind MacNeille completions of certain
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hybrid algebras, which ensures that these formulas axiomatize relationally complete
hybrid logics.

(iii) We proved analogues of Bull’s Theorem for some of the well-known hybrid logics. In par-
ticular, the finite algebra property is transferred from the modal logic S4.3 to its hybrid
companion obtained by adding nominals to S4.3 and to all its axiomatic extensions. It
is not clear at this stage if this is also true when we add satisfaction operators or the
global modality in addition to nominals. However, the finite algebra property is trans-
ferred from S4.3 and all its axiomatic extensions to the hybrid logic obtained by adding
nominals and the global modality as well as an axiom enforcing well-connectedness.

(iv) We provide sufficient conditions for a class of axiomatic extensions of the modal logic
S4 to have the finite model property. This result takes the form of a syntactic charac-
terization of a class of formulas that may be added as axioms to S4.

Although hybrid logics have been researched since the nineties, many questions about them
still remain unanswered. The research done in this thesis is expected to have an impact in the
field of hybrid logic by providing new insights for research communities focusing on hybrid
logics. It is possible that this research might have further impact through the applications of
hybrid logics to areas like knowledge representation, artificial intelligence, as well as formal
specification and verification of hardware and software.

We conclude with a list of open questions as well as some directions on what the way
forward could hold:

(i) What does Blok and Pigozzi’s definition of algebraizability in [16] look like for hybrid
logics, and in particular, where exactly do the hybrid logics investigated in this thesis
lie in the Leibniz hierarchy?

(ii) It is a well-known fact that the global consequence relation of the basic normal modal
logic is algebraizable. Is this the case for the global consequence relation of the logics
investigated in this thesis?

(iii) Unlike for model logics, the finite hybrid algebra property investigated in Chapter 5 is
not enough to give us a finite relational model, so the question naturally arises: can we
get finite relational models for the hybrid logics investigated in this thesis?

(iv) Is the finite model property transferred from S4.3 and all its axiomatic extensions to
its hybrid companion obtained by adding nominals and satisfaction operators to it?

(v) The intuitionistic versions of the hybrid logics investigated in this thesis. In particular:

(a) What do the axiomatizations of these intuitionistic hybrid logics look like?

(b) What does the relational semantics look like?

(c) Can the results obtained in this thesis be generalized to these intuitionistic hybrid
logics?
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A+, 19, 56
a ↑, 18
â, 19
(B), 10
B0, 51
B, 10
(D), 10
D(S), 133
D(ϕ), 133
E, 28, 71
E−1, 93
ε, 109
ε∂ , 109
F, 6
FΛ, 25
F+, 17
F], 19
FX , 14
Form(PROP), 11
Form(PROP), 11
g, 7
g], 19
g∗, 22, 54, 69, 75
g∗, 47
g∗, 19
H, 29
H, 35
H+, 35
HA, 46
H(E), 29
H(E), 38
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H+(E), 38
HEA, 71
HS4, 143
HS4.3, 147
h∗, 22, 56, 69, 75
i, 28
j, 28
k, 28
K, 9
K(B), 26
K⊕ Γ, 9
L0, 8
L1, 8
L′1, 30
L(ϕ), 35
l(ϕ), 150
LΛ(PROP), 12
M, 6
MΛ, 25
M(ϕ), 35
Λ-MCS, 25
NOM, 28
O(B), 26
PHA, 52
PHEA, 74
PROP, 5
Qf , 18
R, 6
RΛ, 25
[R], 7
〈R〉, 7
S, 141
S, 141
S4, 10
S4.3, 10
S5, 10
STx, 9, 30
(T ), 10
T, 10
Uf (W ), 14
ueF, 14
V , 6
VAR, 8
V Λ, 25

VΣ, 12
WΛ, 25
XA, 46, 65, 71
X̂A, 56
XA ↑, 56

Ackermann lemma
left handed, 127
right handed, 127
safe

left-handed, 132
right-handed, 132

topological
left-handed, 132
right-handed, 131

Ackermann rules, 118
additivity, 8
adjoint pair, 61
adjunction rules, 117
admissible subsets, 7
admissible validity, 108
algebraic completeness, 79
algebraic filtration, 142
algebraic methods, 199
algebraic semantics, 1
algebraizability, 200
antisymmetry, 31
approximation rules, 117
assignment, 8, 48, 67, 72

admissible, 108
asymmetry, 31
atom

boxed, 15
designated, 46

axiom
K, 9
dual, 9

axiomatized, 9
axioms, 9

BAO, 1, 7
Beth definability, 43
bi-polar, 109
bisimulation, 33
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total, 33
bisimulation system, 33
Boolean addition, 46
Boolean algebra with operators, 7

underlying, 19
Boolean complementation, 46
Boolean multiplication, 46
bounded morphic image, 14
bounded morphism, 14, 22

canonical extension of a BAO, 26
canonical extension of a hybrid algebra, 62
canonicity, 25, 27, 133
Church-Rosser property, 16
clopen elements, 26
closed elements, 26, 177
closure algebra, 140
cluster, 140
compactness, 26
completeness

strong, 10
weak, 10

completion, 26
complex algebra, 17
complexity, 41
conforming branch, 111
correspondence, 121
critical branch, 110
critical node, 110

decidability, 42
Dedekind MacNeille completion of a BAO, 107
Dedekind MacNeille completion of a hybrid

algebra, 108
deducibility, 10
definability, 33
density, 26, 186
dependency digraph, 133
determinism, 191
disjoint union, 14, 22, 53
distributive modal logic, 136
DML, 136
domain, 6
dual, 22, 54, 69, 75

elementary frame class, 13
embeddable, 49
embedding, 22, 53
epistemic logic, 5
equation

canonical, 27
equivalence

local, 17
semantic, 16

Esakia’s lemma, 129
expressivity, 31
extensiveness, 140

filter, 17
proper, 18

finite hybrid algebra property, 139
finite intersection property, 7
finite meet property, 18
finite model property, 139

strong, 139
first approximation rule, 116
FMP, 3, 139
formula

syntactically pre-closed, 128
canonical, 25
diamond-link, 133
flat-link, 133
forest-like, 133
Löb, 13
negative, 15, 109
nominal-link, 133

compound, 133
positive, 15, 109
pure, 29
Sahlqvist, 16
Sahlqvist–van Benthem, 16
skeletal, 111

nominally, 112
syntactically closed, 128
syntactically open, 128
syntactically pre-open, 128

formula algebra, 11
frame, 6

canonical, 25
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connected, 140
deterministic, 175
euclidean, 175
full, 19, 63
general, 7

compact, 7
descriptive, 7
differentiated, 7
discrete, 7
refined, 7
tight, 7
two-sorted, 29

general ultrafilter, 19
two-sorted, 56

Kripke, 6
ultrafilter, 18
underlying, 6, 19

frame definability, 31

global modality, 28
globally true, 6
Goldblatt-Thomason Theorem, 14

homomorphic image, 49, 67, 73
homomorphism, 49, 67, 73

surjective, 49, 67, 73
HS4.3-algebra, 147
hybrid algebra, 46

atomic, 46, 108
complete, 46
degenerate, 51

grounded, 51
grounded, 50
permeated, 52
underlying, 47
well-connected

piecewise, 144
hybrid closure algebra, 143
hybrid E-algebra, 71

permeated, 74
hybrid-ALBA, 115

idempotency, 140
inductive formula, 111
inequality

diamond-link, 133
flat-link, 133
skeletal, 111

nominally, 112
interpolation, 42
intransitivity, 31, 191
irreflexivity, 31
isomorphic, 49, 67, 73
isomorphism, 49, 67, 73
isotoness, 140

join-dense, 26

language
basic modal, 5
correspondence, 8, 30
expanded, 106
hybrid, 28

left adjoint, 61
left residual, 62
length of a formula, 150
Lindenbaum-Tarski algebra, 12
local frame correspondent, 107
logic

canonical, 25
normal modal, 9

meaning of a term, 8, 48, 67, 72
meet-dense, 26
modally definable, 13
model, 6

canonical, 25
named, 37

modus ponens, 9
monotonicity, 8

named fragment, 163
named maximal consistent set, 37
natural deduction, 43
natural map, 12
necessitation, 9
necessity form, 34
negation normal form, 16
nodes

negative, 109
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PIA, 110
positive, 109
skeleton, 110
SLR, 110
SRA, 110
SRR, 110

nominal, 28
non-orthodox rules, 35
normality, 8

open elements, 26, 177
operator, 7

closure, 140
satisfaction, 28

order-type, 109
orthodox interpretation, 46, 63, 71

persistence, 27
d-, 27
di-, 27
r-, 27

point-generated, 14
polarity, 15
possibility form, 35
preprocessing, 116
preservation, 121
product of hybrid algebras, 50
projection map, 51
proof systems, 43

quasi-inequality, 106
quotient algebra, 11

reflects, 14
reflexivity, 16, 186
refutable, 6
relation

accesssibility, 6
congruence, 11

residual pair, 62
residuation rules, 117
resolution calculus, 43
right adjoint, 61
right residual, 62
root, 14

rooted, 14

safe reduction, 119
Sahlqvist antecedent, 15
Sahlqvist implication, 16
Sahlqvist theory, 105
satisfiable, 6
semantic consequence, 8, 48, 73

local, 10
sequent calculus, 43
seriality, 16
set

consistent, 10
maximal, 25

inconsistent, 10
signed generation tree, 109

inductive, 111
skeletal, 111

nominally, 112
singular nominally skeletal formula, 112
singular nominally skeletal inequality, 112
skeletal branch, 111
soundness, 10, 124
splitting rules, 116
standard translation, 9, 30, 107
subalgebra

hybrid, 108
subframe

generated, 14
substitution, 9

sorted, 35, 46
supremum, 26
SvB, 16
symmetry, 16
syntactic classes, 110

tableau calculus, 43
temporal logic, 5
theorem, 9
topological reduction, 119
topological run, 119
transitivity, 16, 186
trichotomy, 31

ultrafilter, 18
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ultrafilter extension, 14
ultrapowers, 15
universality, 31, 186

valid
groundedly, 59

valuation, 6
admissible, 7, 29
liberal, 58

well-connectedness, 141
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