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Neural Mechanisms Underlying Compensatory and
Noncompensatory Strategies in Risky Choice

Anna C. K. Van Duijvenvoorde1,2,3, Bernd Figner4, Wouter D. Weeda2,3,
Maurits W. Van der Molen1, Brenda R. J. Jansen1,4,5, and Hilde M. Huizenga1,4,5

Abstract

■ Individuals may differ systematically in their applied decision
strategies, which has critical implications for decision neurosci-
ence but is yet scarcely studied. Our study’s main focus was
therefore to investigate the neural mechanisms underlying
compensatory versus noncompensatory strategies in risky
choice. Here, we compared people using a compensatory ex-
pected value maximization with people using a simplified non-
compensatory loss-minimizing choice strategy. To this end, we
used a two-choice paradigm including a set of “simple” items
(e.g., simple condition), in which one option was superior on
all attributes, and a set of “conflict” items, in which one option
was superior on one attribute but inferior on other attributes. A
binomial mixture analysis of the decisions elicited by these
items differentiated between decision-makers using either a
compensatory or a noncompensatory strategy. Behavioral

differences were particularly pronounced in the conflict con-
dition, and these were paralleled by neural results. That is, we
expected compensatory decision-makers to use an integrated
value comparison during choice in the conflict condition. Ac-
cordingly, the compensatory group tracked the difference in ex-
pected value between choice options reflected in neural
activation in the parietal cortex. Furthermore, we expected non-
compensatory, compared with compensatory, decision-makers to
experience increased conflict when attributes provided conflict-
ing information. Accordingly, the noncompensatory group
showed greater dorsomedial PFC activation only in the conflict
condition. These pronounced behavioral and neural differences
indicate the need for decision neuroscience to account for individ-
ual differences in risky choice strategies and to broaden its scope to
noncompensatory risky choice strategies. ■

INTRODUCTION

An important goal of decision neuroscience is to identify
the neural mechanisms underlying individuals’ choices
(Smith & Huettel, 2010; Sanfey, 2004, 2007). The domi-
nant view in this field (Vlaev, Chater, Stewart, & Brown,
2011; Trepel, Fox, & Poldrack, 2005) is that of compen-
satory decision strategies (Tversky & Kahneman, 1974;
Von Neumann & Morgenstern, 1944). Using these strate-
gies, the decision-maker integrates attributes of options,
namely gains, losses, and their probabilities into an over-
all index of value (often referred to as utility) and chooses
the option with the highest integrated value. These deci-
sion strategies are “compensatory,” because an option’s
weaknesses on one attribute can be compensated by
strengths on other attributes. Behavioral decision re-
search, however, has highlighted the role of individual
differences in decision strategies and has shown that peo-
ple may resort to a variety of noncompensatory strategies
to simplify the decision process (Gigerenzer & Goldstein,
1996; Russo & Dosher, 1983; Tversky & Kahneman,
1974). Using a noncompensatory decision strategy, the
decision-maker does not compare options on their inte-
grated value but makes attribute-wise comparisons on a

limited set of attributes. These strategies are “noncom-
pensatory,” because they do not necessarily allow weak-
nesses on one attribute to be compensated by strengths
on other attributes. Individuals may differ systematically
in the propensity to use compensatory versus noncom-
pensatory decision strategies (Scheibehenne, Rieskamp,
& Wagenmakers, 2013; Jansen, van Duijvenvoorde, &
Huizenga, 2012; Huizenga, Crone, & Jansen, 2007). These
individual differences in decision strategies have critical
implications for decision neuroscience and are therefore
the main focus of the current study.
As decision neuroscience has focused on compensatory

decision-making, it has identified neural substrates repre-
senting decision-making based on integrated value. Repre-
sentations of such integrated value signals in risky choice
are, for instance, expected value (EV), that is, an objective
integration of probability and amount, and expected utility
(EU), that is, a subjective integration of probability and
amount. Classic decision theories predicted and explained
choice behavior as aimed toward maximizing EV or EU.
Consistently, neuroimaging studies have observed neural
correlates of EV and EU in cortical and subcortical brain
regions, including regions innervated by mesolimbic dopa-
mine projections, such as the ventral striatum (VStr; Rolls,
McCabe, & Redoute, 2008; Knutson, Taylor, Kaufman,
Peterson, & Glover, 2005) and the ventromedial PFC
(vmPFC), but also in regions such as the posterior cingulate
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cortex (PCC; Mc Kell Carter, Meyer, & Huettel, 2010;
Kable & Glimcher, 2007; Tom, Fox, Trepel, & Poldrack,
2007; Blair et al., 2006; see for a recent meta-analysis
Bartra, McGuire, & Kable, 2013). Additionally, the lateral
prefrontal and the parietal cortex have been implicated in
value coding in macaques (Sugrue, Corrado, & Newsome,
2004; Platt & Glimcher, 1999), in value comparisons in
humans (Hunt et al., 2012), and in numerical computations
(Arsalidou & Taylor, 2011). However, it is unknown whether
such integrated value representations are also present
when people use noncompensatory decision strategies.
An integrated value signal may not be apparent in indi-

viduals using a noncompensatory strategy, because such a
strategy does not entail the compensatory process of
weighing and summing but instead may include an attribute-
wise comparison. During the evaluation of options, the
decision-maker may notice that some attributes make
one option more attractive, whereas other attributes make
the other option more attractive; thus, the different attri-
butes may provide conflicting information (Rao et al.,
2011; De Neys, Vartanian, & Goel, 2008; Tversky, Sattath,
& Slovic, 1988). More specifically, as highlighted by Tversky
and colleagues, a first step for a decision-maker is to exam-
ine whether one option dominates the other (i.e., is supe-
rior on all attributes). If dominance emerges, the decision-
maker easily chooses the dominant alternative. However, if
attributes provide conflicting information (e.g., an option is
favorable on one attribute but is unfavorable on another), a
common procedure for resolving the apparent decision
conflict is to select the option that is most favorable on
themost important attribute. Alternatively, onemight argue
that in a noncompensatory decision strategy the decision-
maker always only focuses on the most important decision
attribute, experiencing no decision conflict at all. These
interpretations generate opposing hypotheses. That is, in
one interpretation, a noncompensatory strategy results in
experienced decision conflict when there is no dominant
option (e.g., conflict condition). The second interpretation,
however, predicts no experienced decision conflict irre-
spective of whether there is, or is not, a dominating option.
Experienced decision conflict has been linked to neural

activation in the dorsomedial prefrontal cortex (dmPFC).
That is, the dmPFC is one of the key regions that has been
related to conflict detection (Pochon, Riis, Sanfey,
Nystrom, & Cohen, 2008; Liston, Matalon, Hare, Davidson,
& Casey, 2006; Badre &Wagner, 2004) and to the selection
between mutually incompatible responses (Botvinick,
Braver, Barch, Carter, & Cohen, 2001; Carter et al., 1998).
Indeed, a study of De Neys et al. (2008) using a reasoning
problem showed that heuristic (i.e., stereotypical) re-
sponses led to greater activation in the dmPFC. This was
interpreted as a signal of experienced decision conflict, in-
dicating that people detect their heuristic biases. More-
over, Venkatraman, Rosati, Taren, and Huettel (2009)
showed that activation in the dmPFC presented an anteri-
or-to-posterior topography based on varying control de-
mands. That is, particularly a middle dmPFC region was

associated with decision-related control and was shown to
exhibit activation increasing with the difficulty in making de-
cisions. Taken together, neural activation in the dmPFC
seems a prominent candidate for tracking decision conflict.
Here, we expect that if decision conflict occurs, this will be
particularly present in the conflict condition and in partici-
pants using a noncompensatory decision strategy.

The current study explicitly aims to test the neural cor-
relates underlying individual differences in decision strat-
egy. That is, even when two individuals make ultimately
identical choices, the strategies used to arrive at these de-
cisions may differ. To identify and investigate individuals’
decision strategies and the underlying neural correlates,
we used the Gambling Machine Task (GMT). In the GMT,
participants have to choose between two options, each
characterized by a sure gain amount, a loss amount,
and a loss probability. An advantage of the GMT is that
it, in combination with a binomial mixture analysis of
the choice data, allows for classification of individuals
into groups characterized by distinct decision strategies
(Jansen et al., 2012; Van Duijvenvoorde, Jansen, Visser,
& Huizenga, 2010).

We investigated strategies located at quite opposite
ends of the possible range of compensatory versus non-
compensatory risky choice strategies: a compensatory
strategy that maximizes EV (EV-maximizing) versus a non-
compensatory strategy in which loss amount is minimized.
In EV-maximizing, decision-makers weigh the amount of
gains and losses with their respective probabilities, sum
the weighted outcomes within an option, and choose the
option with the higher EV. In a noncompensatory strategy
of attribute-wise comparisons, decision-makers compare
the two options on each attribute (gain amount, loss amount,
loss probability) separately. If no dominance emerges, choice
is based on the most important attribute (Tversky et al.,
1988). If attributes are indeed compared, choices in which
attributes present conflicting information may result in ex-
perienced decision conflict. Here, we will focus particularly
on individuals using a noncompensatory strategy that min-
imizes loss amounts.

The GMT consists of two main types of choice con-
ditions: In the simple condition, the two choice options
differ only on one attribute, resulting in one option domi-
nating the other. In the conflict condition, attributes pro-
vide conflicting information, meaning that in these choices
one option is better on at least one attribute and the alter-
native is superior on at least one other attribute. Decision-
makers may adapt their strategies depending on the
requirements and choices at hand, for example, use a sim-
ple noncompensatory strategy if this suffices in a certain
context (Tversky & Kahneman, 1974). Therefore, we expect
the participants to use their predominant strategies in the
conflict but not necessarily in the simple condition.

In summary, we expect no group differences in behav-
ior or neural activation in the simple condition, given that
such decision contexts elicit simple choice strategies in
all participants. In contrast, in the conflict condition, we
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expect individual differences in the use of decision strat-
egies to emerge. More specifically, we expect that the
compensatory, but not the noncompensatory group,
shows EV coding in a network involving the VStr, vmPFC,
PCC, and parietal cortex. In contrast, the noncompensa-
tory, compared with the compensatory group, is expected
to show increased dmPFC activation.

METHODS

Prestudy

Participants

To recruit participants for the fMRI study in which we
aimed to compare distinct strategy groups, we first ran a
prestudy with a total of 77 participants (ages 18–30 years,

23 men) who were recruited through a university recruit-
ment system and received payment or student credit for
their participation. Our goal was to select a subset of par-
ticipants that used either compensatory or noncompen-
satory decision strategies. Participants gave written
informed consent, and all procedures for the behavioral
prestudy were approved by the local ethics committee.

Gambling Machine Task

We used a risky choice task (the GMT) in which partici-
pants chose between two gambling machines, each char-
acterized by a gain amount, a loss probability, and a loss
amount. The current format of the task has been used in
a set of studies to investigate distinct decision strategies
(Bexkens, Jansen, Van der Molen, & Huizenga, 2016;

Figure 1. Task design of the
fMRI-GMT (top): Each trial
started with a fixation cross
(1000–2500 msec; jittered in
steps of 500 msec), followed by
the presentation of a choice
item, which was response
terminated (max 16 sec). By
means of a button press,
participants indicated their
choice after which a gray bar
appeared below the chosen
option. This display stayed on
screen for 1–4 sec ( jittered in
steps of 1 sec), after which the
next trial started. The control
condition had a similar trial
structure, except that the
duration of the stimulus was
based on participants’ RT in
preceding items. In the control
condition, a gray bar appeared
in one of the options signaling
the participants to press the
corresponding button.
Examples of items in the simple
(A) and conflict (B, C, D)
condition (bottom).
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Jansen et al., 2012; Van Duijvenvoorde et al., 2010) and
uses a fixed gain combined with a probabilistic loss, as used
in other risky choice paradigms such as the Iowa Gambling
Task (Bechara, Damasio, Damasio, & Anderson 1994).
Each machine contained 10 balls, some red and some
green (see Figure 1A–D for an illustration). The proportion
of red balls represented the loss probability. The number
written on the red balls represented the loss amount; within
a machine, all loss amounts were the same. The gain
amount was depicted on the front of the machine and
was not probabilistic, that is, that gain was received irre-
spective of whether a green or red ball would be drawn.
It was explained to the participants that, upon choosing a
machine, balls toss and tumble, one ball is drawn, and they
should choose the best machine to play with. Drawing a

green ball would result in the stated gain, whereas drawing
a red ball would result in the stated gain and loss. On each
item, the participant could choose Machine A, Machine B,
or indicate that the machines were equally profitable. In
the GMT, no direct outcomes were presented and all out-
comes differed in EV (see Table 1 for an overview of all of
the items in the conflict condition of the fMRI-GMT).

On the three items of the simple condition, a dominated
choice was presented in which respectively only gain
amounts (Simple: Gain), only loss amounts (Simple: Loss),
and only loss probability (Simple: Probability) differed be-
tween choice options. On the three items of the conflict
condition, at least one attribute was superior in one option,
but another attribute was superior in the other option.
These items differed systematically in the attribute-conflict

Table 1. Item Characteristics of the fMRI-GMT in the Conflict Condition

Items per Condition

Loss Probability Loss Amount Gain Expected Value

A B A B A B A B

fMRI-GMT

Conflict: Loss/Gain .5 .5 −2 −10 +2 +4 1 −1

Conflict: Loss/Gain .1 .1 −50 −2 +8 +4 3 3.8

Conflict: Loss/Gain .1 .1 −2 −50 +2 +4 1.8 −1

Conflict: Loss/Gain .3 .3 −2 −10 +2 +4 1.4 1

Conflict: Loss/Gain .3 .3 −50 −2 +8 +2 −7 1.4

Conflict: Loss/Gain .3 .3 −50 −10 +8 +4 −7 1

Conflict: Loss/Gain .1 .1 −50 −10 +4 +2 −1 1

Conflict: Loss/Gain .3 .3 −2 −50 +4 +8 3.4 −7

Conflict: Gain/Loss .3 .3 −2 −10 +2 +8 1.4 5

Conflict: Gain/Loss .1 .1 −2 −50 +2 +8 1.8 3

Conflict: Gain/Loss .1 .1 −10 −2 +8 +2 7 1.8

Conflict: Gain/Loss .3 .3 −10 −2 +8 +4 5 3.4

Conflict: Gain/Loss .1 .1 −2 −10 +4 +8 3.8 7

Conflict: Gain/Loss .5 .5 −10 −2 +8 +2 3 1

Conflict: Gain/Loss .1 .1 −2 −10 +2 +4 1.8 3

Conflict: Gain/Loss .1 .1 −50 −10 +8 +2 3 1

Conflict: Loss–Gain/Probability .3 .1 −2 −10 +4 +2 3.4 1

Conflict: Loss–Gain/Probability .3 .1 −10 −50 +4 +2 1 −3

Conflict: Loss–Gain/Probability .1 .5 −10 −2 +4 +8 3 7

Conflict: Loss–Gain/Probability .1 .5 −10 −2 +2 +4 1 3

Conflict: Loss–Gain/Probability .5 .1 −10 −50 +8 +4 3 −1

Conflict: Loss–Gain/Probability .5 .1 −2 −10 +8 +2 7 1

Conflict: Loss–Gain/Probability .3 .5 −10 −2 +2 +4 −1 3

Conflict: Loss–Gain/Probability .1 .5 −50 −10 +2 +8 −3 3

See main text for further description.
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they represented. On the first item, one option presented a
lower loss but the other option presented a higher gain,
whereas the loss probability was equal in both option.
The optimal choice according to EV was the option with
the lowest loss (Conflict: Loss/Gain). The second item pre-
sented a similar conflict, but now the optimal choice ac-
cording to EV was the option with the highest gain
(Conflict: Gain/Loss). On the final item, all three attributes
differed between the two options, and the option with the
lower loss, the higher gain, and the higher loss probability
was the optimal choice according to EV (Conflict: Loss–
Gain/Probability). In the behavioral session, participants
played four repetitions of each of the items in the simple
and conflict condition, resulting in 24 trials.

To reduce memory effects and keep participants en-
gaged, the numeric values of gains, losses, and probabil-
ities were varied somewhat across repetitions of the
same item: Gain amounts were +2 and +4, loss amounts
were −2, −10, and −50, and loss probabilities were .1
and .5. Location of the EV-maximizing option (left/right)
was counterbalanced across repetitions.

Mixture Analysis

We performed a binomial mixture analysis with the pack-
age flexmix (Leisch, 2004) in R (R Development Core
Team, 2015) to classify participants in groups with homo-
genous choice patterns from which decision strategies
were inferred. Participants’ choices were converted to bi-
nary “EV-maximizing” and “non-EV-maximizing” re-
sponses and summed over repetitions per item. This
generated a multivariate choice pattern for each partici-
pant across all items, that is, across both the simple and
the conflict items.

The mixture analysis involved three steps ( Jansen
et al., 2012). First, the analysis was performed on a range
of models, varying in the number (1–10) of subgroups. For
each model, the estimation algorithm was run 100 times
with different starting values to reduce the risk of local min-
ima. Second, the solutions for the 10 models were com-
pared by means of the Bayesian Information Criterion
(Leisch, 2004), and the best fitting model was selected.

Third, we calculated each participant’s probability that
he/she belonged to a particular group and assigned each
participant to his or her most likely group.
A mixture analysis on the prestudy data indicated that a

model with three groups described the behavioral data
best (see Table 2 for estimated response patterns and ex-
pected response patterns for each group interpretation).
One group’s choice patterns were indicative of a compen-
satory strategy (n = 35; 45.5% of participants): These par-
ticipants chose the option with the highest EV across all
items. The two other groups’ choice patterns were most
indicative of noncompensatory strategies: In the simple
condition, these participants chose the option with the
highest EV (i.e., the dominating option), but they did not
do so consistently in the conflict condition. More specifi-
cally, the second group (n = 27; 35%) chose the option
with the smallest loss amount. The third group’s choice
patterns suggested that they chose the lowest loss proba-
bility if loss probability differed between options, and if
the two options had the same loss probability, they chose
the option with the lowest loss amount (n = 15; 19.5%).

fMRI Study

Participants

Selection for the fMRI study occurred semi at-random
from the prestudy. The first 20 participants that were will-
ing and eligible for fMRI research using an EV strategy
were included in the fMRI study. Similarly, 25 participants
were included from the other strategy groups, result-
ing in a total of 45 participants in the fMRI study from
the 77 participants in the prestudy (28 women, mean =
22.5 years, SD=3.2 years, min= 18 years, max= 29 years).
All included participants were right-handed and reported
normal or corrected-to-normal vision, an absence of any
metal implants or braces, and an absence of neurological
or psychiatric conditions. Testing was performed on a dif-
ferent day than the prestudy. Participants gave written in-
formed consent, and procedures were approved by the
local ethics committee. Data of three participants had to
be removed because of technical problems, and two partic-
ipants did not complete the fMRI session, leaving a total of

Table 2. Group Size and Estimated Probabilities to Choose the EV-maximizing Option for Each Group (Conditional Probabilities)

n

Items per Condition

Simple: Probability Simple: Loss Simple: Gain
Conflict:
Loss/Gain

Conflict:
Gain/Loss

Conflict:
Loss–Gain/Probability

1. Compensatory
EV max

35 1 .98 (1) .96 (1) .93 (1) .83 (1) .76 (1)

2. Noncompensatory
Loss amount min

27 1 1.00 (1) .98 (1) .97 (1) .03 (0) .69 (1)

3. Noncompensatory
Loss probability min

15 1 .90 (1) .96 (1) .78 (1) .41 (0) .14 (0)

In parentheses: the probabilities of the EV-maximizing choice that are expected given specific strategies. min = minimizing; max = maximizing.
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40 participants (24 women) for the fMRI analyses. Twenty
of those participants used in the prestudy a compensatory,
EV-maximizing strategy, and 20 participants used in the
prestudy a noncompensatory strategy. In the noncompen-
satory group, we included 14 participants that used a loss
amount-minimizing strategy and six participants that used
a loss probability minimizing strategy in the prestudy.
To confirm stability of choice strategies, we first com-

pared behavioral choices between the prestudy and the
fMRI study. That is a close inspection of the response
patterns across items on an individual level showed
that nearly all participants maintained their strategy.
Only two participants switched from a compensatory
EV-maximizing strategy in the prestudy to a noncompensa-
tory loss-minimizing strategy in the fMRI study. Addition-
ally, a comparison of the choice patterns for each of the
groups defined in the behavioral presession, showed that
both noncompensatory groups followed a predominantly
loss-minimizing choice pattern in the fMRI session (see
Tables 2 and 3 for the expected response pattern). For
further analysis, we therefore pooled participants from
the two noncompensatory groups. For the fMRI analyses,
this means that we compared a compensatory group of
n = 18 (9 women) versus a noncompensatory group of
n = 22 (15 women).
Before entering the scanner, task explanations were

briefly repeated. To increase motivation, all participants
were paid a flat rate for their participation plus an addi-
tional variable amount between A0 and A8 purportedly
related to their decisions: The participants were instructed
that a set of their choices would be played out after the
task, of which one randomly selected choice would be paid
out. Eventually, all participants were presented with the
same set of played out choices, and one of these played
out gambles was added to the participant’s flat rate (A2,
4, or 8). Given that participants were not presented with an
endowment, losses were treated as a A0 outcome in the
final payment, which was mentioned in the instructions.

fMRI-GMT

In the scanner, an adjusted version of the GMT was used
that included three changes. First, the fMRI-GMT ex-

cluded the answer category that the machines were
equally profitable. This third category has been used to
better differentiate between strategies (Bexkens et al.,
2016; Jansen et al., 2012; Van Duijvenvoorde et al.,
2010) that, however, were not of interest in the current
fMRI study.

Second, the fMRI-GMT consisted of three runs that
each presented eight repetitions of all three items in
the conflict and simple condition (see Table 1 for a com-
plete overview of all items in the conflict condition). Be-
cause of the increased repetition of items, variations in
numeric values were extended: Gain amounts were +2,
+4, and +8, loss amounts were −2, −10, and −50, and
loss probabilities were .1, .3, and .5. The two options
within a choice pair never had the same EV.

Finally, to control for activations triggered by processes
unrelated to decision-making, for example, perceptual or
motor processes, the fMRI-GMT included a “control” con-
dition that had a similar structure as the choice condi-
tion, except that participants were not presented with
an actual choice. In the control condition, two identical
options were shown. After an interval, a gray bar ap-
peared in one of the options, and participants were in-
structed to choose the option indexed by the gray bar.
Attributes used in the control trials were based on the
attribute values used in the choice trials, leading to 27
unique combinations of gains (2, 4, 8), probabilities (.1,
.3, .5), and losses (−2, −10, −50). These control trials
were randomly and evenly divided per participant into
simple and conflict control trials. That is, the interval be-
tween the onset of the stimulus and the appearance of
the gray bar was modeled based on each individual’s
RT on a preceding trial. Half of the control trials were
matched to the participant’s response duration in the
simple condition (simple-control), and half of the control
trials were matched to the participant’s response dura-
tion in the conflict condition (conflict-control). Matching
of RTs was applied to account for neural differences that
might be due to a Condition (simple, conflict) × Strategy
Group (Compensatory/Noncompensatory) interaction in
decision duration.

Trials in the fMRI-GMT had the following structure (see
Figure 1): First, a fixation cross was displayed on the

Table 3. Average Proportion of EV-maximizing Choices in the fMRI Session for Each Item and the Strategy Groups as Found in the
Behavioral Session, with the Two Compensatory Groups Split Out

n

Items per Condition

Simple:
Probability

Simple:
Loss

Simple:
Gain

Conflict:
Loss/Gain

Conflict:
Gain/Loss

Conflict:
Loss–Gain/Probability

1. Compensatory 18 1 .99 .99 .96 .93 .98

2. Noncompensatory 16 1 .99 .98 .98 .07 .86

3. Noncompensatory 6 .97 .99 .97 .94 .14 .81

The two participants that switched from a compensatory (behavioral) to a noncompensatory loss-minimizing decision strategy (fMRI) are included in
the second noncompensatory group.
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screen for 1–2.5 sec (jittered in steps of 500 msec; uni-
form distribution). Then, the two choice options were
presented, and participants could indicate their choice
by pressing one of two buttons with their left hand: A
button press with the middle finger indicated choice of
the left option and a button press with the index finger
indicated choice of the right option. After a decision was
made, a gray bar appeared under the chosen option for
1–4 sec (jittered in steps of 1 sec with a uniform distribu-
tion), after which a new trial started. Participants had a
maximum time allowance of 16 sec to make their deci-
sion, which was sufficient in all cases. In approximately
25% of the trials, intertrial intervals were included to
the fixation screen that presented a fixation cross and
were jittered exponentially to improve signal detection
(2, 4, 6, and 8 sec, with 2 sec as the most frequent and
8 sec as the least frequent interval).

In the fMRI-GMT, participants thus played three runs,
with 48 choice trials and 27 control trials included per
run. Control and choice trials were presented in pseudo-
random order. The control trials were not included for
possible payout.

Imaging

fMRI data were acquired with a standard whole-head coil
using a 3-T Philips (Amsterdam, The Netherlands) Achieva
scanner. T2*-weighted echoplanar images were obtained
during three functional runs of which the first two volumes
were discarded to allow for equilibration of T1 saturation
effects. Volumes covered the whole brain (34 slices;
3 mm slice thickness; 0.3 mm slice spacing; 2202 mm field
of view; 9622 in plane resolution; ascending orientation)
andwere acquired every 2000msec (echo time=28msec).
A high-resolution T1-weighted anatomical scanwas obtained
from each participant after the functional runs.

fMRI analysis was performed using FEAT (fMRI Expert
Analysis Tool) Version 5.98, part of FSL 4.1 (FMRIB’s
Software Library, www.fmrib.ox.ac.uk/fsl). The data were
high-pass filtered with a cutoff frequency of 90 sec to
remove baseline drift in the signal. Functional volumes
were spatially smoothed with a 5-mm FWHM isotro-
pic Gaussian kernel motion-corrected and slice time-
corrected. Finally, the functional data were prewhitened
using FSL. All functional data sets were individually
registered into 3-D space using the participant’s indi-
vidual high-resolution anatomical images. The individual
3-D image was then used to normalize the functional data
into the Montreal Neurological Institute (MNI) template.
Registration to high-resolution structural and/or standard
space images was carried out using FLIRT. Registration
from high-resolution structural to standard space was
then further refined using FNIRT nonlinear registration.
The statistical analysis was performed using the general
linear model (GLM). The design matrix of the GLM was
convolved with a double gamma hemodynamic response
function and its first derivative.

Imaging Analysis

Conflict Analysis

In a GLM, we included two discrete regressors that coded
choices for the (1) simple and (2) conflict condition re-
spectively and two discrete regressors that coded (3) the
control items based on RT in the simple condition and
(4) the control items based on RT in the conflict condi-
tion. Accordingly, the first of the two control regressors
was used in whole-brain contrasts with the simple condi-
tion and the second in whole-brain contrasts with the
conflict condition. The duration of each event in all re-
gressors was modeled by the respective RT.

EV Analysis

In a subsequent GLM, we included additional parametric
regressors of absolute EV differences between options,
separately for the simple and conflict condition. For these
parametric regressors, the height of each event was mod-
eled by the absolute difference in EV.
In both GLMs, motion regressors, and inconsistent re-

sponses (see below) were included as regressors of no
interest. For all analyses, only trials were included in
which participants chose in accordance to their pre-
dominant strategies (e.g., EV-maximizing or loss amount-
minimizing choices; see Table 3). Trials with deviating
responses were included in a regressor of no interest. This
happened relatively rarely. In the simple condition, a
nondominating choice occurred on 0.7% of trials in the
compensatory group and on 1.5% of trials in the noncom-
pensatory group. In the conflict condition, a non-EV-based
choice occurred in 4.6% of trials for the compensatory
group. In the noncompensatory group, a non-loss
amount-minimizing choice occurred in 9.5% of trials.
Higher-level analysis was performed using FLAME

(FMRIB’s Local Analysis of Mixed Effects) Stage 1 with
automatic outlier detection. For the whole-brain analysis,
Z-statistic images were thresholded with Gaussian
Random Field Theory cluster-wise correction, Z > 2.3
and family-wise error (FWE)-corrected with p< .05 (unless
indicated otherwise).

RESULTS

Behavioral Results

Figure 2A depicts the proportion of EV-maximizing
choices as a function of condition (three simple, three
conflict items) and strategy group. We performed a
generalized linear mixed model using the lme4 pack-
age (Bates, Maechler, Bolker, & Walker, 2015) in R
(R Development Core Team, 2015). The unit of analy-
sis was the binary decision level (choose EV-maximizing
option/non-EV-maximizing option), including Condition
(simple vs. conflict), Group (noncompensatory vs. com-
pensatory), and Condition × Group as fixed effects. To
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account for the nested structure of the data, a random
intercept and a random slope of Condition (simple vs.
conflict) per participant was included. Self-evidently (as
we grouped participants according to their behavior), log-
likelihood ratio tests (Singmann, Bolker, & Westfall, 2015)
indicated a significant interaction between Condition and
Group, B = −.45, p = .001. There were no significant
group differences in the simple condition. Generally, both
groups chose the option that dominated the other (and
thus had the largest EV). In the conflict condition, however,
the compensatory group showed a larger proportion of

EV-maximizing choices than the noncompensatory group,
B = 1.26, p < .001. Note that on two items in the conflict
condition, EV-maximizing and loss-minimizing strategies
led to the same choice (see Figure 2A). These items are
of particular interest, because potential behavioral RT dif-
ferences or neural differences cannot be attributed to
choosing a different option but should be attributed to a dif-
ference in decision strategy.

To test whether RTs would support our hypothesis
that choice strategies are adaptively applied and that
groups would particularly differ in their decision process

Figure 2. Behavioral task
performance: (A) The
proportion of EV-maximizing
choices for each simple and
conflict item for compensatory
and noncompensatory groups.
(B) RTs for each
simple and conflict item for
compensatory and
noncompensatory groups.
(C) RTs in the conflict
condition, plotted for each
strategy group, as a function
of differences in EV and
differences in loss amounts
between choice items. Error
bars indicate ±SE around the
mean.
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on conflict trials, we performed a similar linear mixed
model analyses, but now with RT as the dependent vari-
able (Figure 2B). This analysis indicated a significant
interaction between Condition and Group, B = −302.69,
p < .001. There were no group differences in the simple
condition ( p = .46). In the conflict condition, the com-
pensatory group was generally slower than the non-
compensatory group, B = 678.3, p < .001. Note that RTs
were longer in the compensatory group for all items in
the conflict condition (see Figure 2B), even those that
yielded similar choices as the noncompensatory group,
providing further evidence that the groups used different
decision strategies.

An additional check on the nature of decision strate-
gies was obtained from an analysis in which we tested
whether the continuous differences in EV were related
to the RT differences in choice behavior. To this end,
we calculated the absolute difference in Expected Value
between options and performed a similar mixed-model
analysis with RT on each trial predicted by the fixed effects
of Expected Value difference, Condition (simple vs. con-
flict), Group (noncompensatory vs. compensatory), and
all possible interactions. Additionally, a random inter-
cept per participant and random slopes of Expected Value
difference and Condition were included. As expected,
results showed a three-way interaction; Expected Value
difference × Group × Condition, B = 54.8, p < .001.
Follow-up tests showed that greater differences in Expected
Value led to faster RTs, but this was only the case in the
conflict condition, and only present in the compensatory
group (Expected Value difference × Group p < .001 in
the conflict condition, but p = .21 in the simple condition;
see Figure 2C). Moreover, a similar mixed-model analysis
with the absolute value of loss differences (instead of
Expected Value differences) showed no significant main
effect of loss difference ( p = .13), nor significant inter-
actions of Group or Condition with loss difference (all

ps > .1). Together these results indicate that, as expected,
the compensatory group uses EV in their decision strat-
egy, but only in the conflict condition. On the other hand,
these results show that the difference in amount of loss is
not continuously coded. This seems to strengthen the idea
that the noncompensatory (loss-minimizing) strategy
group particularly focuses on the presence or absence
of a loss difference, without considering continuous loss
differences.
Finally, to test whether choice behavior was stable

across the task, we additionally tested the mixed model
on choice behavior with Run included as an additional
fixed and random effect. There was no significant main
effect of Run ( p = .47), nor a Group × Run interaction
( p = .67) or a significant Group × Run × Condition
interaction ( p = .055). Taken together, these effects
show that choice behavior was stable for both strategy
groups.

Imaging Results

EV Coding

As expected, in the conflict condition, the Group × EV
effect showed significantly stronger EV difference coding
in the compensatory than in the noncompensatory
group; these differences were found in the visual and
the parietal cortex (see Figure 3B and Table 4). The re-
versed group contrast (noncompensatory > compensa-
tory) showed no significant clusters, even at more
lenient thresholds (e.g., uncorrected p < .001; minimally
15 contiguous voxels). Follow-up tests for each group
separately showed a positive effect of EV in the compen-
satory group in similar regions as those identified in the
Group × EV effect (see Table 4), whereas the main effect
of the noncompensatory group showed a cluster of acti-
vation in the visual cortex only.

Figure 3. EV coding (left)
and EU coding (right)
by the compensatory group
in the simple (A) and
conflict (B) conditions. The
noncompensatory group
did not show any EV- or
EU-related effects. The figure
displays cluster-corrected
results (Z > 2.3, p < .05
FWE-corrected); coordinates
of EV activation are reported
in Table 4.
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Surprisingly, compensatory decision-makers also
showed evidence of EV coding in the simple condition.
In this condition, the compensatory, compared with the
noncompensatory group, showed significantly stronger
EV coding in parietal cortex, vmPFC, and PCC (see

Figure 3A and Table 4). The reversed group contrast (non-
compensatory > compensatory) showed no significant
clusters, even not at more lenient thresholds (e.g., uncor-
rected p < .001; minimally 15 contiguous voxels). Follow-
up tests for each group separately showed EV coding in the

Table 4. Coordinates for the Brain Regions Showing Parametric EV Difference Coding

Anatomical Area Cluster Size

MNI Coordinates (mm)
Z-max
Valuex y z

Conflict Condition

Compensatory > noncompensatory

R lateral occipital cortex 11,414 30 −78 16 4.21

L lateral occipital cortex −30 −78 22 4.07

L superior parietal cortex, including intraparietal sulcus
and inferior parietal cortex

−30 −56 44 3.99

Mean activation compensatory group

R occipital pole 13,070 22 −98 2 5.17

L inferior parietal lobe, including intraparietal sulcus
and superior parietal cortex

408 −52 −28 32 3.29

Noncompensatory > compensatory

None

Mean activation noncompensatory group

R occipital pole 755 20 −94 −12 3.96

Simple Condition

Compensatory > noncompensatory

R frontal pole 2882 32 48 −8 3.74

Posterior cingulate gyrus 2050 6 −54 14 4.18

L angular gyrus 472 −48 −54 40 3.32

Medial frontal gyrus 408 8 56 16 3.03

R middle frontal gyrus 401 44 30 22 3.02

Mean activation compensatory group

Posterior cingulate gyrus 1670 6 −54 14 4.09

L inferior frontal gyrus 854 −52 24 −4 3.99

L angular gyrus 388 −48 −54 40 3.27

L frontal pole 357 −14 68 −4 3.43

Frontal medial cortex 4 54 −18 2.75

Noncompensatory > compensatory

None

Mean activation noncompensatory group

None

Main effects per strategy group and group differences are reported for cluster-corrected Z > 2.3, p < .05 thresholds. MNI coordinates are given for
the (local) peaks of activation.

Van Duijvenvoorde et al. 1367



compensatory group in similar regions as those identified
in the Group × EV effect, but not in the noncompensatory
group (see Table 4).

Control Analyses

We tested three alternative explanations for this differen-
tial between group EV coding. First, it may be argued that
the noncompensatory group does use a compensatory
strategy, but instead of objective EV, codes some form
of EU. That is, the noncompensatory group may integrate
subjective attributes and base their decisions on a subjec-
tive integrated value signal. Particularly, the noncom-
pensatory loss-minimizing strategy may actually be a
compensatory, but highly loss-aversive, strategy. There-
fore, we estimated per participant a loss aversion param-
eter from the behavioral data in the fMRI session. To do
so, we fitted a cumulative prospect theory model (Tversky
& Kahneman, 1974, 1992) that included a loss aversion
parameter and a weight parameter, the latter indicating
to what extent choices are guided by differences in subjec-
tive utility. The cumulative prospect theory model was
fitted to all items simultaneously, we assumed a logistic
choice rule, and estimates were obtained by iteratively
minimizing the negative log-likelihood function. The algo-
rithm was restarted 100 times to avoid local minima. Note
that the estimated loss aversion parameters were signifi-
cantly different between the strategy groups, t(21.01) =
−3.5, p = .002, with lower loss aversion in the compensa-
tory than the noncompensatory group (compensatory:
M = 1.09, SD = 0.21; noncompensatory: M = 12.34,
SD = 15.09). Subsequently, we used this loss aversion pa-
rameter of each participant to calculate the subjective util-
ity difference between options on each trial. This EU
parametric regressor was used in a whole-brain fMRI anal-
ysis (Trepel et al., 2005). That is, in this analysis we included,
instead of two parametric EV regressors, two parametric
EU regressors (coding subjective utility) separately for the
simple and conflict condition.

Results of brain regions coding EU were highly similar
to the EV results, showing greater activation in the con-
flict condition for the compensatory compared with the
noncompensatory group, in similar regions as with the
EV regressor (Z > 2.3, p < .05, FWE cluster-corrected;
see Figure 3B), including a cluster in the visual cortex
(x= 24, y=−98, z= 2; voxels = 14,395), parietal cortex
(x = −42, y = −24, z = 52; voxels = 526), and addition-
ally in the PCC (x = −4, y = −40, z = 22; voxels = 499).
The reversed group contrast (noncompensatory > com-
pensatory) showed no significant clusters in the conflict
condition, even at more lenient thresholds (e.g., uncor-
rected p< .001; minimally 15 contiguous voxels). Follow-
up tests for each group separately showed a positive effect
of EU in the compensatory group in similar regions as
those identified in the Group × EU effect, whereas the
noncompensatory group showed clusters of activation in
the visual cortex only (x = 34, y = −94, z = 6, voxels =

1490; x = −22, y = −98, z = 14, voxels = 571). Also in
the simple condition, EU results were highly similar to the
EV results, showing greater EU activation for the com-
pensatory compared with the noncompensatory group
(see Figure 3A). The reversed group contrast (non-
compensatory > compensatory) and the positive main
effect in the noncompensatory group showed no sig-
nificant clusters of activation, even at more lenient thresh-
olds (e.g., uncorrected p < .001; minimally 15 contiguous
voxels).
Second, it might be argued that the noncompensatory

group does not code the difference in EV between op-
tions, but instead continuously codes differences in loss
amounts, consistent with the notion that this is the main
choice criterion in this group. Therefore, we calculated
the absolute loss difference between choice options on
each trial. This loss difference parametric regressor was
used in a whole-brain fMRI analysis. Thus, in this second
control analysis, we included, instead of two (objective)
EV regressors, two parametric loss difference regressors
separately for the simple and conflict condition. For both
conditions, these analyses indicated no greater coding of
loss differences in the noncompensatory group, even at
more lenient thresholds (uncorrected p< .001, 15 contig-
uous voxels).
Third, it might be argued that the noncompensatory

group coded the chosen loss amount instead of the dif-
ference in loss, focusing not on the comparison between
choice options but on the potential loss that may be

Figure 4. Whole-brain results across groups showing brain regions that
were activated for the contrasts simple > control condition (left) and
conflict > control condition (right). Figure displays cluster-corrected
results (Z > 3.6, p < .05 FWE-corrected); coordinates are reported in
Table 5.
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incurred. This chosen loss parametric regressor was
similarly included in a whole-brain fMRI analysis. In the
conflict condition, the Group × Chosen loss effect
showed that there was significantly stronger loss coding
in the noncompensatory than in the compensatory group.

These differences were found in, among other regions,
the visual cortex (x = −46, y = −74, z = 6, voxels =
29,577), extending into the parietal cortex, and the puta-
men (x = 28, y = 8, z = −8, voxels = 536), with greater
activations for higher chosen loss amounts. The reversed

Table 5. Coordinates for the Brain Regions Showing Activations for the Simple > Control and Conflict > Control Contrast
at Z > 3.6, p < .05 FWE Cluster-corrected

Anatomical Area Cluster Size

MNI Coordinates (mm)

Z-max Valuex y z

Simple > Control

Mean activity Z > 3.6

R lateral occipital cortex 5656 36 −90 −10 6.07

R precuneus 2177 26 −64 46 6.14

L lateral occipital cortex 1768 −30 −68 30 5.68

L middle frontal gyrus 1455 −46 48 0 5.34

Paracingulate gyrus 961 4 28 36 5.36

R middle frontal gyrus 767 48 38 16 5.62

L precentral gyrus 158 −42 −22 58 4.58

Cerebellum 142 0 −78 −24 4.71

R superior frontal gyrus 112 30 10 50 4.54

Conflict > Control

Mean activity Z > 3.6

L lateral occipital cortex 6679 −28 −66 38 6.65

L lateral occipital cortex (inferior) 3904 −40 −78 −18 6.16

L frontal pole 3551 −46 50 −4 6.41

R lateral occipital cortex (inferior) 3230 36 −88 −12 6.45

Cerebellum 2206 2 −54 −28 5.78

Paracingulate gyrus 1788 −2 18 44 6.14

R middle frontal gyrus 1490 46 36 20 5.62

R superior frontal gyrus 519 28 10 46 5.53

R striatum (caudate) 454 12 14 −2 5.63

L insula 295 −30 20 −2 5.76

L superior frontal gyrus 234 −26 6 52 4.95

R insula 140 34 24 −6 5.0

R frontal pole 133 20 46 −18 4.9

R hippocampus 104 22 −32 −8 4.34

L hippocampus 94 −24 −28 −10 4.83

L orbitofrontal cortex 53 −16 28 −20 3.76

L frontal pole 52 −16 52 −24 4.1

MNI coordinates are given for the peaks of activation.
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group contrast (compensatory > noncompensatory)
showed no significant clusters of activation, even at more
lenient thresholds (uncorrected p < .001, 15 contiguous
voxels). Follow-up tests for each group separately showed
a positive effect of chosen loss amount in the noncompen-
satory group in similar regions as those identified in the
Group × Chosen loss effect, whereas the compensatory
group did not show any neural activation tracking the cho-
sen loss between choice options.

In the simple condition, the noncompensatory group al-
so showed greater coding of the chosen loss amount com-
pared with the compensatory group, resulting in activation
in the PCC and lateral PFC. However, inspection of the
main effects per group indicated that this effect was pre-
dominantly driven by a negative relation in the compensa-
tory group between chosen loss amount and neural
activation. This can be explained from the relatively high
negative correlation in the simple condition between the
chosen loss amount and the difference in EV (simple con-
dition: r = −.65; conflict condition: r = .06). Therefore, it
seems that the results in the simple condition have limited
interpretability for the noncompensatory group.

Taken together, these control analyses showed limited
evidence that the noncompensatory group coded sub-
jective utility differences or coded continuous loss dif-
ferences. However, these results do suggest that the
magnitude of the chosen loss amount is tracked particu-
larly by the noncompensatory group, albeit only in the
conflict condition.

Conflict Detection

Finally, we focused on group differences in neural activa-
tion in simple and conflict conditions. That is, we specif-
ically tested for group differences in neural activation on
the simple > control and conflict > control contrasts.
Main effects of neural activation across groups are pre-
sented in Figure 4 and Table 5.
We did not observe any group differences in neural ac-

tivation in the simple condition. In the conflict condition,
a Group × (conflict > control) effect showed increased
dmPFC activity in the noncompensatory as compared
with the compensatory group (x = −24, y = 36, z =
44, number of voxels = 638; see Figure 5A). Follow-up
tests on each conflict condition separately (conflict:
Loss/Gain; conflict: Gain/Loss; conflict: Loss–Gain/Proba-
bility; see Figure 5B) indicated that increased dmPFC ac-
tivation in the noncompensatory group was present on
each of these conditions separately. No other clusters
of activation were found.

DISCUSSION

In this study, we investigated the neural mechanisms
underlying compensatory (EV-maximizing) versus non-
compensatory (loss-minimizing) decision strategies.
Therefore, we compared individuals using these com-
pensatory and noncompensatory strategies in a simple
and in a conflict choice condition. Conflict choices were
expected to trigger an individual’s typical strategy, result-
ing in behavioral and neural differences, which were not
expected on simple (in our study, dominating) choices.
In the conflict condition, we expected that particularly

the compensatory, EV-maximizing, group would show
neural activation in relation to a value signal that reflected
the difference in EV between options; we expected this
value signal in regions such as the VStr, vmPFC, PCC, lat-
eral PFC, and parietal cortex (Mc Kell Carter et al., 2010;
Kable & Glimcher, 2007; Tom et al., 2007; Blair et al.,
2006). Indeed, we observed that primarily the compensa-
tory group showed EV coding in the parietal cortex,
whereas the noncompensatory group showed limited
evidence for such a parametric EV signal. Parietal cortex
activation was more prominent than neural activation in
more typical value-based regions, which may suggest that
EV coding in the current task is a more deliberative pro-
cess. These findings are supported by the increased RTs
of the compensatory group in the conflict condition and
their scaling of RT with the difference in EV. In addition
to parietal cortex activation that tracked the difference in
EV in conflict items, we also observed activation in the
visual cortex. Previous studies of value coding in the visual
cortex (Krajbich, Armel, & Rangel, 2010; Serences, 2008)
speculated that this activation is related to attentional pro-
cesses. That is, visual cortex activation may be an inherent
part of allocating attentional resources to value-based
comparisons, in which a larger difference in EV indicates

Figure 5. Group differences in the conflict condition. (A, left) Brain
regions in which the noncompensatory group showed more activation
than the compensatory group in conflict > control (left). For
illustration purposes, the average extracted values are plotted per
strategy group. (B, right) Brain regions in which the noncompensatory
group showed more activation than the compensatory group in each of
the items of the conflict condition. The figure displays cluster-corrected
results (Z > 2.3, p < .05 FWE-corrected).
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that there is more at stake, leading to more attentional
resources allocated.
Because we assumed that decision-makers would

adopt a simple strategy if that sufficed, we expected no
group differences in EV coding in the simple condition.
Surprisingly, we did observe differences. In the simple
condition, the compensatory, but not the noncompen-
satory, group showed evidence of EV coding in, among
other regions, the vmPFC and PCC. It is tempting to in-
terpret these findings as evidence that the compensatory
group codes EV also in contexts where a dominating op-
tion is present (e.g., the simple condition). However, an
alternative and more probable explanation is that this
activation reflects the continuous coding of differences
on choice attributes (gain amount, loss amount, loss
probability), which are, in the simple condition, perfectly
correlated with EV. This interpretation is also supported
by RT analyses indicating that EV differences do not scale
with RTs of the compensatory group in the simple
condition.
Second, we expected that noncompensatory decision-

makers would experience decision conflict from their
attribute-wise comparisons, but only when a dominating
choice option was unavailable. Alternatively, it may be
expected that, in a strict noncompensatory decision strat-
egy (only considering loss amounts), no decision conflict
is experienced whatsoever. Here, we observed enhanced
dmPFC activation particularly in the noncompensatory
group and only in the conflict condition. This is consistent
with an attribute-wise comparison leading to increased
decision conflict as proposed by Tversky and colleagues
(1988) and fits well with the interpretation of the dmPFC in
detecting decision conflict and heuristic biases (Venkatraman
& Huettel, 2012; De Neys et al., 2008). It should be noted,
however, that dmPFC activation has been related to other
interpretations such as detecting errors, choice uncertainty
(Ridderinkhof, Ullsperger, Crone, & Niewenhuis, 2004), and
representing action outcome contingencies (Rushworth,
Buckley, Behrens, Walton, & Bannerman, 2007).
The conflict monitoring function of the dmPFC may be

associated with signaling the need to respecify the intensity
of the executed control (Shenhav, Botvenick, & Cohen,
2013). In a previous study, it was indeed observed that a
more anterior dmPFC region was related to strategy-related
control (Venkatraman, Payne, Bettman, Luce, & Huettel,
2009; Venkatraman, Rosati, et al., 2009). That is, this region
became active when participants chose counter to their
preferred strategy, and it interacted with other brain re-
gions to drive local choice behaviour. In the current study,
we were limited in testing such strategy-related control
given the stable response patterns in both groups.
Additional analyses were performed to check whether

the noncompensatory group coded parametric subjective
utility differences or loss differences instead of paramet-
ric EV differences. Generally, the imaging results show
limited evidence that the participants adopted the cur-
rent loss-minimizing strategy use continuous loss differ-

ences between options, which is supported by an
absence of RT scaling with increasing loss differences.
Note that a strategy such as loss minimization indeed
does not require a parametric coding of loss differences,
as a discrete detection of attribute differences between
options is sufficient to arrive at a decision (Minati, Grisoli,
Seth, & Critchley, 2012). Additional analyses indicated
that the noncompensatory group, however, did code
the chosen loss amount, more prominently than the
compensatory group, and particularly in the conflict
items. Although future studies are needed to allow fur-
ther interpretation of neural activation related to the cho-
sen versus differences in choice attributes, these control
analyses do support the particular focus on losses for the
noncompensatory group.

A limitation of the current study is that the noncom-
pensatory group seems more heterogeneous than the
compensatory group. Therefore, an absence of inte-
grated value coding might be related to decreased power
to detect this coding. Note, however, that even testing at
lenient thresholds, as well as including a subjective value
regressor, yielded limited evidence for value coding,
making this explanation less likely. Second, we used a
limited set of items for strategy detection, which may
lead to the possibility that we misinterpreted partici-
pants’ decision strategies. That is, theoretically, it may
be possible that the noncompensatory group, for
instance, would have used a strategy in which they calcu-
lated Probability × Loss amount and only considered
gains if a difference in such expected losses was not pres-
ent. That this misspecification was present in the current
study is, however, unlikely given that the distinction of
compensatory and noncompensatory strategies is not
only present in choice behavior but also in RTs. Further-
more, we already considered potential alternative strate-
gies, which, however, were not supported by our data.
To distinguish between a greater set of possible strategies,
a more elaborate set of choice items would be necessary
in future studies. Another limitation is that we only con-
sidered one type of noncompensatory and one type of
compensatory strategy; the two investigated strategies
commonly occur in risky choice, but many others are
known to exist (Riedl, Brandstätter, & Roithmayr, 2008;
Payne, Bettmann, & Johnson, 1993). To what extent the
current results are particularly related to these types of
decision strategies or generalize to other noncompen-
satory strategies is an important question for future
studies. A final limitation is that, although the current
task presented an additional payout based on a random
selection of a set of played out gambles, this payout was
only experienced at the end of the task and payout loss
was treated as a A0 outcome. Therefore, eventually
choices were indirectly related to payout and a true loss
was not experienced. It could be argued that the fact that
participants knew that they could not experience a true
loss influenced their decision strategy. However, it would
then be more likely that they would have neglected losses,
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whereas the current results indicate that both the com-
pensatory and noncompensatory group did take losses
into account. Notwithstanding, future studies should
include an incentive-compatible payout.

This study highlights the importance of studying indi-
vidual differences in decision strategies by including par-
adigms and analyses that allow for strategy assessment.
These individual differences in decision strategies may
go unnoticed if data are averaged across participants
and thus may obscure results. For example, value coding
would have been less pronounced if we would have ne-
glected individual differences in strategy use and pooled
across all participants. Therefore, such experimental par-
adigms and analysis techniques allowing assessment of
strategy differences may be highly beneficial to decision
neuroscience.

To conclude, compensatory and noncompensatory
decision-makers do not only differ in behavior but also
in underlying neural mechanisms. That is, compensatory,
EV-maximizing, decision-makers, but not noncompensa-
tory, loss amount-minimizing decision-makers, coded
the difference in EV between options. Noncompensatory
decision-makers, on the other hand, showed increased
dmPFC activation when choice attributes provided conflict-
ing information, indicative of experienced decision-conflict.
These results indicate the need for decision neuroscience
and neuroeconomics to expand its scope by focusing
not only on compensatory but also on noncompensatory
decision strategies.
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