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Abstract

Lattice regularizations of the bosonic string allow no tachyons. This has often been
viewed as the reason why these theories have never managed to make any contact
to standard continuum string theories when the dimension of spacetime is larger than
two. We study the continuum string theory in large spacetime dimensions where simple
mean field theory is reliable. By keeping carefully the cutoff we show that precisely
the existence of a tachyon makes it possible to take a scaling limit which reproduces
the lattice-string results. We compare this scaling limit with another scaling limit
which reproduces standard continuum-string results. If the people working with lattice
regularizations of string theories are akin to Gulliver they will view the standard string-
world as a Lilliputian world no larger than a few lattice spacings.
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1 Introduction

A first quantization of the free particle using the path integral requires a regularization.
A simple such regularization is to use a hypercubic D-dimensional lattice if the particle
propagates in D-dimensional spacetime. The allowed wordlines for a particle propagat-
ing between two lattice points are link-paths connecting the two points and the action
used is the length of the path, i.e. the number of links of the path multiplied with the
link length aℓ. This aℓ is the UV cutoff of the path integral. The lattice regularization
works nicely and the limit aℓ → 0 can be taken such that one obtains the standard
continuum propagator.

Similarly, the first quantization of the free bosonic string using the path integral
requires a regularization. It seemed natural to repeat the successful story of the free
particle and use a hypercubic D-dimensional lattice if the wordsheet of the string lived
in D-dimensional spacetime, the worldsheet being a connected plaquette lattice surface
[1]. The Nambu-Goto action, the area of the worldsheet, would then be the number of
worldsheet plaquettes times a2ℓ , aℓ again denoting the lattice spacing. However, in this
case one could not reproduce the results obtained by standard canonical quantization
of the string. First, one did not obtain the whole set of string masses, starting with the
tachyon mass, but only a single, positive mass state. Next, after having renormalized
the bare string coupling constant to obtain a finite lowest mass state, this renormaliza-
tion led to an infinite physical string tension for strings with extended boundaries.

Although it was not clear why the hypercubic lattice regularization did not work,
the formalism know as dynamical triangulation (DT) was suggested as an alternative
[2]. It discretized the independent intrinsic worldsheet geometry used in the Polyakov
formulation of bosonic string theory [3] and the integration over these geometries were
approximated by a summation over triangulations constructed from equilateral trian-
gles with link lengths at, where at again was a UV cutoff. However, the results were
identical to the hypercubic lattice results. In contrast to the hypercubic lattice model
the DT model can be defined when the dimension of spacetime is less than two, where
one encounters the so-called non-critical string theory. This string theory can be solved
both using standard continuum quantization and using the DT-lattice regularization
(and taking the limit at → 0). Agreement is found. Thus a lattice regularization is not
incompatible with string theory as such. However, in the lattice regularized theories
it is impossible to have a tachyonic lowest mass state and such states appear precisely
when the dimension of spacetime exceeds two. It might explain the failure of lattice
strings to connect to continuum bosonic string theory in dimensions D > 2.

The purpose of this article is to highlight the role of the tachyon in connecting the
continuum bosonic string theory to lattice strings. In [4] we showed how one could
technically make such a connection. However, the role played in the connection by the
tachyon was not emphasized to the extent it deserves.

Before starting the discussion let us make clear why there are no tachyons in, say,
a hypercubic lattice string theory [1, 5]. Consider the two point function for a closed
bosonic string on the lattice. We have an entrance loop of minimal length, say four
links spanning a plaquette (not belonging to the string worldsheet) and a similar exit
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Figure 1: Illustration of why G(n) > G(n1)G(n2), n = n1 + n2.

loop, separated by n lattice spacings. The genus zero closed string two-point function
G(n) is the sum over all plaquette cylinder lattice surfaces F with these two boundary
loops and with F assigned the weight e−µN(F ), N(F ) being the number of plaquettes of
F , µ the (dimensionless) string tension and µN(F ) the Nambu-Goto action associated
with F . Clearly this sum is larger than the sum over surfaces where the surfaces are
constraint to meet at a ”bottleneck” (again a single plaquette not belonging to F )
separated by n1 lattice spacing from the entrance loop, n1 < n (see Fig. 1), i.e.

G(n) ≥ G(n1)G(n − n1), (1)

and thus − logG(n) is a subadditive function. Further it can be shown that G(n) → 0
for n → ∞. According to Feteke’s lemma this implies that (− logG(n))/n converges
to a real non-negative number for n → ∞ and consequently the lowest mass cannot be
tachyonic.

Let us list some other results obtained in the hypercubic lattice string theory, for-
mulated in dimensionless lattice units. The theory has a critical point µc, such that the
partition function is defined for µ > µc and the scaling limit (where one can attempt
to define a continuum theory) is obtained for µ → µc. One finds (up to subleading
corrections)

Gµ(n) ∼ e−m(µ)n, m(µ) ∼ (µ− µc)
1/4, (2)

for µ → µc. Here Gµ(n) is the two-point function defined above andm(µ) is the positive
mass mentioned above. Scaling to a continuum theory is now done by introducing a
dimensionful lattice spacing aℓ and by requiring that the two-point function survives
when the lattice spacing aℓ → 0. Thus we write

L = n · aℓ, m(µ)n = mphL, µ → µc. (3)

This determines aℓ as a function of µ

mphaℓ(µ) = m(µ) ∼ (µ − µc)
1/4. (4)

The problem with the lattice string theory is that the so-called effective string tension
σ(µ) does not scale to zero for µ → µc [6]. The effective string tension is defined
as follows (for a closed string): compactify one of the lattice directions to m links
and insist that the string wraps around this dimension once. We still assume that the
string propagates n links in one of the other lattice directions. Again one can show that
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the corresponding partition function Gµ(m,n) falls off exponentially with the minimal
lattice area m× n spanned by the string worldsheet:

Gµ(m,n) ∼ e−σ(µ)mn. (5)

However, σ(µ) does not scale to zero for µ → µc:

σ(µ) = σ(µc) + c(µ− µc)
1/2, σ(µc) > 0. (6)

Thus the physical, effective string tension Kph (defined analogously to the physical
mass mph in eq. (4))

σ(µ) = Kph a
2
ℓ(µ) (7)

scales to infinity for µ → µc and Gµ(m,n) has no continuum limit.

2 The bosonic string at large D

Let us consider the closed bosonic string at large D. We choose the large D limit
because it allows us to perform a reliable mean field calculation, as noticed already
a long time ago [7]. In order to make contact to lattice results we want to control
the appearance of the tachyon. We do that by compactifying one of the dimensions
such that it has length β and by insisting that the worldsheet wraps once around this
compactified dimension. With this setup there will be no tachyons if only β is larger
than the cutoff, as we will show. Also, this setup allows us to define the physical,
effective string tension precisely as we did it for the lattice string theory.

We use the Nambu-Goto action (to make the situation analogous to the hypercubic
lattice) and deal with the area-action of the embedded surface by using a Lagrange
multiplier λab and an independent intrinsic metric ρab (ρ := det ρab):

K0

∫
d2ω

√
det ∂aX · ∂bX = K0

∫
d2ω

√
ρ+

K0

2

∫
d2ω λab (∂aX · ∂bX − ρab) . (8)

We choose the world-sheet parameters ω1 and ω2 inside an ωL × ωβ rectangle in the
parameter space and find the classical solution

X1
cl =

L

ωL
ω1, X2

cl =
β

ωβ
ω2, X⊥

cl = 0, (9a)

[ρab]cl = diag

(
L2

ω2
L

,
β2

ω2
β

)
, (9b)

λab
cl = diag

(
βωL

Lωβ
,
Lωβ

βωL

)
= ρabcl

√
ρcl, (9c)

minimizing the action (8).
Quantization is performed using the path integral. We integrate out the quantum

fluctuations of the X fields by performing a split Xµ = Xµ
cl+Xµ

q , where X
µ
cl is given by

eq. (9a), and then performing the Gaussian path integral over Xµ
q . We fix the gauge
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to the so-called static gauge X1
q = X2

q = 0.1 The number of fluctuating X’s is then

d = D − 2. We thus obtain the effective action, governing the fields λab and ρab,

Seff = K0

∫
d2ω

√
ρ+

K0

2

∫
d2ω λab (∂aXcl · ∂bXcl − ρab)

+
d

2
tr logO, O := − 1√

ρ
∂aλ

ab∂b. (10)

The operator −O reproduces the usual 2d Laplacian for λab = ρab
√
ρ, and we use the

proper-time regularization of the trace

tr logO = −
∫

∞

a2

dτ

τ
tr e−τO, a2 ≡ 1

4πΛ2
. (11)

In the mean field approximation which becomes exact at large D we disregard fluc-
tuations of λab and ρab about the saddle-point values λ̄

ab and ρ̄ab, i.e. simply substitute
them by the mean values, which are the minima of the effective action (10). Integration
around the saddle-point values will produce corrections which are subleading in 1/D.

For diagonal and constant λ̄ab and ρ̄ab the explicit formula for the determinant is
well-known and for L ≫ β we obtain2

Seff =
K0

2

(
λ̄11L

2

ω2
L

+ λ̄22 β
2

ω2
β

+ 2
√
ρ̄11ρ̄22 − λ̄11ρ̄11 − λ̄22ρ̄22

)
ωβωL

−πd

6

√
λ̄22

λ̄11

ωL

ωβ
− d

√
ρ̄11ρ̄22 ωβωL

2
√
λ̄11λ̄22

Λ2. (12)

The minimum of the effective action (12) is reached at

ρ̄11 =
L2

ω2
L

(
β2 − β2

0

2C

)

(
β2 − β2

0

C

) C

2C − 1
,

ρ̄22 =
1

ω2
β

(
β2 − β2

0

2C

)
C

2C − 1
, (13)

λ̄ab = Cρ̄ab
√
ρ̄, C =

1

2
+

√
1

4
− dΛ2

2K0
, (14)

where

β2
0 =

πd

3K0
. (15)

Equations (13) and (14) generalize the classical solution (9). Note that C as given
in (14) takes values between 1 and 1/2. This will play a crucial role in what follows.

1Gauge fixing will in general produce a ghost determinant. To leading order in D this determinant
can be ignored, but it may have to be included in a 1/D-expansion.

2The averaged over quantum fluctuations induced metric 〈∂aX · ∂bX〉 which equals ρ̄ab at large D
depends in fact on ω1 near the boundaries, but this is not essential for L ≫ β [4].
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Also note that if one were performing a perturbative expansion in 1/K0, both C and
eqs. (13) and (14) would start out with their classical values.

Substituting the solution (13) – (14) into eq. (12), we obtain

Ss.p.
eff = K0CL

√
β2 − β2

0/C (16)

for the saddle-point value of the effective action, which is nothing but L times the mass
of string ground state. Further, we find that the average area A = 〈Area〉 of the surface
which appears in the path integral is

A =

∫
d2ω

√
ρ̄11ρ̄22 = L

(
β2 − β2

0/2C
)

√
β2 − β2

0/C

C

(2C − 1)
. (17)

All these results are just a repetition of the original Alvarez computation [7], ex-
cept that he used ωL = L, ωβ = β and, more importantly, he used the zeta-function
regularization where formally our cutoff Λ is put to zero. As we will see, maintaining
a real cutoff a will be important, so let us discuss its relation to a spacetime cutoff like
the hypercubic aℓ mentioned above.

The cutoff a refers to the operator O defined in parameter space and provides a
cutoff of the eigenvalues of O. However, the eigenvalues (which are invariant under
change of parametrization) are linked to the target space distances L and β and not to
the parameters ωL and ωβ. Effectively a acts as a cutoff on the wordsheet, measured in
length units from target space, in agreement with the way we introduced ρab and λab

in the first place. We can write symbolically

(∆s)2 = ρab∆ωa∆ωb = ∆X ·∆X, (18)

where ∆s ∼ a and ∆ω ∼ a/ 4
√
ρ, which reflects to what extent the eigenfunctions

of O which are not suppressed by the proper-time cutoff a can resolve points on the
worldsheet. This is true semiclassically where the worldsheet is just the minimal surface
(9) and it will be true when we consider genuine quantum surfaces which are much
larger. In the latter case eq. (18) has to be averaged over the quantum fluctuations, so
ρab will change accordingly (see eq. (13)), such that the allowed eigenfunctions still can
resolve these larger surfaces down to order a, measured in target space length units.

Formulas (16) and (17) are our main results, valid for L ≫ β in the mean field or
large D approximation. The term −β2

0/C appearing under the square root in eq. (16)
is a manifestation of the closed string tachyon as first pointed out in [8, 9] and this
minus-sign will be essential for the limit we take in the next Section and which will
reproduce the lattice string scaling.

3 The lattice-like scaling limit

Equation (14) shows that the bare string tension K0 needs to be renormalized in order
for C to remain real since this requirement forces

K0 > 2dΛ2 =
d

2πa2
. (19)
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Also, C is clearly constraint to take values between 1 and 1/2 when K0 is decreasing
from infinity to 2dΛ2. We also require that Seff is real. This is ensured for all allowed
values of K0 if

β2 > β2
min =

(2πa)2

3
. (20)

For β ≥ βmin we have no tachyonic modes, precisely the scenario needed if we should
have a chance to make contact to lattice string theory.

At first glance it seems impossible to obtain a finite Seff by renormalizing K0 in
(16), since K0 is of order Λ2. However, let us try to imitate as closely as possible the
calculation of the two-point function on the lattice by choosing, for a fixed cutoff a (or
Λ), β as small as possible without entering into the tachyonic regime of Seff , i.e. by
choosing β = βmin. With this choice we obtain

Ss.p.
eff =

√
π

3

K0CL

Λ

√
2C − 1. (21)

Only if
√
2C − 1 ∼ 1/Λ can we obtain a finite limit for Λ → ∞. Thus we are forced to

renormalize K0 as follows

K0 = 2dΛ2 +
K̃2

ph

2dΛ2
(22)

where K̃ph is finite in the limit Λ → ∞. With this renormalization we find

Ss.p.
eff = mphL, m2

ph =
πd

6
K̃ph. (23)

Note that mph and K̃ph are proportional to d as to be expected in a large d limit.
Since the partition function in this case has the interpretation as a kind of the two-

point function for a string propagating a distance L, we have the following leading L
behavior of the two-point function

G(L) ∼ e−Ss.p.

eff = e−mphL, (24)

where the massmph is a tunable parameter. Note that we have the classical value C = 1
and a semiclassical expansion in 1/K0 interpolating between C = 1 and the quantum
value C = 1/2, which is very similar to the situation for the free particle where a
semiclassical expansion in the inverse bare mass interpolates between the classical and
quantum cases.

In the scaling limit (22) we can calculate the average area A of a surface using (17):

A ∝ L

m3
pha

2
. (25)

It diverges when the cutoff a → 0. This is to be expected. The quantum fluctuations of
the worldsheet is included in the effective action (12) and the same thing will happen
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if we consider a free particle propagating a distance L and integrate out the quantum
fluctuations. The average length ℓ of a quantum path in the path integral will be

ℓ ∝ L

mpha
. (26)

We can express (25) and (26) in dimensionless units

nL =
L

a
, nA =

A
a2

∝ 1

m3
phL

3
n4
L, nℓ =

ℓ

a
∝ 1

mphL
n2
L. (27)

These formulas tell us the Hausdorff dimension of a quantum surface is dH = 4 and
the Hausdorff dimension of a quantum path of a particle is dH = 2 in the scaling limit
where mphL is kept fixed while the cutoff a → 0.

Let us now discuss how we define the physical string tension. With the given
boundary conditions the string extends over the minimal area Amin = βL and we write
the partition function as

Z(K0, L, β) = e−Ss.p.

eff
(K0,L,β) = e−KphAmin+O(L,β). (28)

This is precisely the way one would define the physical (renormalized) string tension
in a lattice gauge theory via the correlator of two periodic Wilson lines of length β
separated by the distance L ≫ β ≫ a, where a is the lattice spacing. This is also the
way the physical string tension is defined in lattice string theories as discussed in the
Introduction.

From the explicit form of Ss.p.
eff given in (16) we have from (22):

Kph = K0C = dΛ2 +
1

2
K̃ph +O(1/Λ2). (29)

Thus the physical string tension as defined above diverges as the cutoff Λ is taken to
infinity. However, the first correction is finite and behaves as we would have liked Kph

to behave, namely as K̃ph ∝ m2
ph/d.

We have thus reproduced the scenario from the lattice strings: it is possible by
a renormalizing of the bare coupling constant (K0 = 1/(2πα′

0)) to define a two-point
function with a positive, finite mass. In the limit where the cutoff a → 0 the Hausdorff
dimension of the ensemble of quantum surfaces is dH = 4, but then the effective string
tension defined as in eq. (28) will be infinite. In addition the relation (29) is precisely
the relation (6) from the lattice string theories. To make this explicit let us introduce
dimensionless variables

µ = K0a
2, µc =

d

2π
, n =

L

a
, σ(µ) = Kpha

2. (30)

Then the renormalization of K0, eq. (22), can be inverted to define the cutoff a in terms
of µ − µc and it becomes identical to eq. (4). Similarly eqs. (22) and (23) can now be
written as

m(µ)n = mphL, σ(µ) = σ(µc) + c(µ − µc)
1/2, (31)
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where

m(µ) ∼ (µ− µc)
1/4, σ(µc) =

µc

2
> 0, c =

1

2
√
µc

. (32)

Thus one obtains identical scaling formulas by continuum renormalization and by lattice
renormalization.

4 Scaling to the standard string theory limit

When we integrated out the quantum fluctuations of the worldsheet we made decompo-
sition Xµ = Xµ

cl +Xµ
q , where the parameters L and β refer to the “background” fields

Xµ
cl. In standard quantum field theory we usually have to perform a renormalization

of the background field to obtain a finite effective action. It is possible to do the same
here by rescaling

Xµ
cl = Z1/2Xµ

R, Z = (2C − 1)/C. (33)

Notice that the field renormalization Z has a standard perturbative expansion

Z = 1− dΛ2

2K0
+O(K−2

0 ) (34)

in terms of the coupling constant K−1
0 , which in perturbation theory is always assumed

to be small, even compared to the cutoff.
However, in the limit C → 1/2 it has dramatic effects since, working with renor-

malized lengths LR and βR defined as in (33):

LR =

√
C

2C − 1
L, βR =

√
C

2C − 1
β, (35)

we now obtain for the effective action

Seff = KR LR

√
β2
R − πd

3KR
, KR = K0(2C − 1) ≡ K̃ph. (36)

The renormalized coupling constant KR indeed makes Seff finite and is identical to
the K̃ph defined in (22). In fact the renormalization KR = (2C − 1)K0 is identical to
the renormalization (22) for Λ → ∞. If we view LR and βR as representing physical
distances, eq. (36) tells us that we have a renormalized, finite string tension K̃ph in the
scaling limit and even more, (36) is the Alvarez-Arvis continuum string theory formula
[7, 8].

The background field renormalization makes the average area A of the woldsheet
finite. If the scaling (33) for Xµ

cl and (36) for K0 is inserted in the expression (17) for
A we obtain

A = LR

(
β2
R − πd

6KR

)

√
β2
R − πd

3KR

, (37)

which is cutoff independent and thus finite when the cutoff is removed. The area is
simply the minimal area for β2

R ≫ πd/(3KR) and diverges when β2
R → πd/(3KR).
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5 Discussion

As mentioned in the Introduction the fact that lattice string theories seemingly are
unable to produce anything resembling ordinary bosonic string theory has often been
“blamed” on the absence of a tachyonic mass in these regularized theories, but it is of
course difficult to study the role of the tachyon in a theory where it is absent. Here
we have addressed the problem from the continuum string theory point of view by
repeating the old calculation [7], while keeping a dimensionful cutoff a explicitly. In
the continuum calculation the tachyonic term −β2

0/C appears in formula (16), and if
this term was not negative it would be impossible to find a renormalization of K0 which
reproduces the lattice string scenario.

Somewhat surprising the same renormalization of K0 can produce a completely
different scaling limit (the conventional string theory limit) provided we are allowed to
perform a “background” renormalization of the coordinates Xµ

cl. It is seemingly difficult
to reconcile the two scaling limits. In the limit where the cutoff a → 0 we can write
(35) as

L = a ·
√

2KR/µc LR, β = a ·
√

2KR/µc βR. (38)

Thus the scaling limit where KR, LR and βR are finite as a → 0 is a limit where L
and β are of the order of the cutoff a. From the point of view of the hypercubic lattice
theory we have the lattice cutoff aℓ which acts simultaneously as a cutoff in the target
space where the string is propagating and as a cutoff on the worldsheet of string. In the
lattice world (“Gulliver’s world”) everything is defined in terms of aℓ and the lattice
scaling is such that Gulliver’s L ≫ aℓ. Since we have argued that one essentially can
identify the proper-time cutoff a with a minimal distance a in RD similar to aℓ, the
conventional string limit where LR and βR are kept fixed becomes a “Lilliputian world”
since L and β are then of the order aℓ from Gulliver’s perspective. Gulliver’s tools are
too coarse to deal with the Lilliputian world.
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