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We implement a proper-time UV regularisation of the Nambu-Goto string, introducing

an independent metric tensor and the corresponding Lagrange multiplier, and treating them

in the mean-field approximation justified for long strings and/or when the dimension of

space-time is large. We compute the regularised determinant of the 2d Laplacian for the

closed string winding around a compact dimension, obtaining in this way the effective ac-

tion, whose minimisation determines the energy of the string ground state in the mean-field

approximation. We discuss the existence of two scaling limits when the cutoff is taken to

infinity. One scaling limit reproduces the results obtained by the hypercubic regularisation

of the Nambu-Goto string as well as by the use of the dynamical triangulation regularisation

of the Polyakov string. The other scaling limit reproduces the results obtained by canonical

quantisation of the Nambu-Goto string.

PACS numbers: 11.25.Pm, 11.15.Pg,

I. INTRODUCTION

Recently there has been an increased interest in the spectrum of the large-N QCD string. It

has been investigated both by numerical simulations [1–10] and by analytic studies [11–20]. The

two major questions to be addressed are: what is the effective action of the QCD string at large

distances and what is the spectrum of this string? Addressing the former question implies that

we have to modify the Nambu–Goto action by adding operators which are less relevant in the

long-string limit, while the latter question requires a consistent quantisation of the string in D = 4

dimensions.

String theory is generically a nonlinear problem, since the Nambu–Goto action, representing

the area of the string world-sheet, is not a quadratic function of the fields. However, a gauge fixing

makes the action quadratic with certain constraints imposed on physical states. This is the essence

http://arxiv.org/abs/1510.03390v1
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of the canonical quantisation successfully applied to the relativistic string in the 1970’s, which leads

to consistent results in the critical dimension (D = 26 for the bosonic string) and on mass shell.

A subtle feature of the quantized string theory is the emergence of ultraviolet divergences which

have to be regularised and the theory has to be renormalised in order to remove these divergences.

In quantum field theory the regularisation is customary done by cutting off momenta squared

above a certain value Λ2. In string theory such a cutoff has to be done for a certain choice of

the world-sheet coordinates (or the choice of gauge) at Λ2√g, where g is the determinant of the

world-sheet metric tensor, to comply with diffeomorphism invariance. If gab is the induced metric,

this may actually result in a complicated nonlinear problem.

The importance of such a dependence of the cutoff on the world-sheet metric is seen already in

the very first computation by Brink and Nielsen [21] of the energy due to zero-point fluctuations

of an open string with fixed ends separated by the distance L. The classical energy is Ecl = K0L.

The energy of zero-point fluctuations is given by the sum over the string oscillator modes:

E0 = K0
D − 2

2

nmax∑

n=1

n

2Ecl
=

D − 2

2

(
πn2

max

2L
− π

12L

)
. (1)

The universal (i.e. regularisation-independent) second term on the right-hand side comes as the

difference between the actual sum of discrete modes and an integral approximation to the sum.

Diffeomorphism invariance requires that the maximal number of modes, nmax, is L-dependent:

nmax = LΛ/π. We thus obtain

E0 = (D − 2)

(
Λ2L

4π
− π

24L

)
. (2)

Therefore the divergence contributes only to the string tension, but not to the lowest mass, which is

determined by the (universal) second term on the right hand side, whose negative sign is associated

with a tachyon. If we naively used nmax = const, it would result in a divergent (and positive) mass

squared of the lowest state of the string.

The dependence of the cutoff on the world-sheet metric is crucial for the path-integral formu-

lation of string theory [22], where the world-sheet metric gab and the target-space position Xµ,

µ = 1, . . . ,D, of the string world-sheet are independent. Owing to diffeomorphism invariance, the

world-sheet metric can be diagonalized, gab = eϕδab, by choosing the conformal gauge. While the

classical action does not depend on ϕ, it emerges in the effective action after the path-integration

over Xµ (and ghosts) because of the divergences of these path integrals and the corresponding de-

pendence of the cutoff on ϕ. However, the remaining path integral over ϕ decouples on mass shell

in the critical dimension, and then the results obtained in the 1970’s using the operator formalism
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are reproduced. For D 6= 26 and/or off shell, the path integral over ϕ has to be taken into account

and plays an important role for the consistency.

In the Polyakov formulation of string theory the path integral over the target-space string

coordinates (and ghosts) is Gaussian and results in the determinant of the 2d Laplace-Beltrami

operator with proper boundary conditions. For an open string with fixed ends these are the

Dirichlet boundary conditions, for which the computation of the determinant was performed in

[23, 24]. For slowly varying fields ϕ, the effective action is determined by the conformal anomaly

and given by the so-called Liouville action. Remarkably, the path integral over ϕ can be consistently

treated [18] order by order in the inverse string length and/or in the limit of large D, where the

WKB expansion about the saddle points applies. The result for the ground-state energy as a

function of L coincides with the well-known Alvarez-Arvis spectrum [25, 26]. It reveals a tachyonic

singularity at distances L ≤ L0 with −K2
0L

2
0 being the tachyon mass squared. For larger distances

this quantity is well-behaved.

The Alvarez-Arvis spectrum follows [26, 27] from the canonical quantisation of an open string

with the Dirichlet boundary condition. Similarly, no effect of nonlinearities are seen in the compu-

tation [25] of the Nambu–Goto path integral at large D when one uses the zeta-function regularisa-

tion. However, one may wonder whether this regularisation always can be used since a power-like

divergence is missing by construction. It is thus not obvious to which extent the dependence of

the cutoff on the metric, which was the origin of the non-linearity, is correctly captured using

the zeta-function regularisation. For this reason we would like to repeat the computation using

a regularisation where the UV cutoff is given by a dimensional parameter, like the Pauli-Villars

or proper-time regularisation. Without such a dimensional parameter it is hard to follow how the

regularisation affects the renormalisation of the string tension or the masses in the theory.

There exist two lattice-like string theories1 where the UV cutoff is explicitly a dimensional

parameter, the lattice length a ∼ 1/Λ. In the first lattice approach the starting point is the

Nambu-Goto action, and the path integral over string configurations is regularised by considering

surfaces embedded on a hypercubic lattice, living on the plaquettes of the lattice. We denote this

theory the hypercubic lattice string theory (HLS) [29]. The second lattice theory is a regularisation

of the Polyakov string theory, often denoted dynamical triangulation (DT) [30], since summation

over the intrinsic geometries of the world-sheet in the path integral is performed by summing over

a suitable class of equilateral triangulations, each with link length a. The target space variables

1 For an introduction see the book [28].
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Xµ then live on the vertices of the triangulations and in this way a target space triangulation

is defined. Both theories are naturally defined in any Euclidean RD target space, where D ≥ 2,

and both theories lead to the following picture: one can define a two-point function which falls off

exponentially at large target space distances, thus defining a renormalised lowest, positive mass of

the theories. However, once this two-point function is defined, the string tension of the theory does

not scale [29, 31], i.e. it goes to infinity when the cutoff a → 0. Thus, these regularised theories

seemingly had little to do with ordinary bosonic string theory.

However, so-called non-critical string theory, which can be viewed as an extension of string

theory to D < 2, showed that the DT-regularisation indeed captured precisely what one would

view as string theory in this region (it is not known how to extend HLS to D < 2). Since bosonic

string theory ceases to be tachyonic for D < 2, the problem for the lattice versions of string theory

seems to be the fact that by construction they have no tachyons. From their very construction,

the logarithm of the two-point function in these theories is sub-additive, leading to a mass larger

than or equal zero (see for instance [28] for a discussion).

Clearly the continuum bosonic string theory manages to perform subtractions which result

in a negative m2 (and a finite, positive renormalised string tension), but it has never been fully

understood how to reconcile the continuum calculations with the lattice calculations where it seems

plain impossible to obtain a negative m2. In order to avoid this conundrum we will try to put

ourselves in a string theory situation where there is no tachyon in the continuum formulation,

where D > 2 and where there is thus a chance that the lattice and the continuum formulations

might agree, precisely as they agree in the case D < 2, as mentioned above.

Remarkably, such a comparison is possible in the large D limit if we consider a closed string

which propagates a distance L and which is wrapped around one target space dimension compact-

ified to a circle with circumference β ≪ L. For β not too small there is no tachyon according

the old calculation by Alvarez [25]. We will repeat the calculation, using the Nambu-Goto action

and a Lagrange multiplier for the induced world-sheet metric. In the large D limit a saddle point

calculation is reliable and we will perform the calculation using a proper time cutoff a which serves

as the equivalent to the lattice cutoff mentioned above. We will find a remarkable situation: one

can follow the philosophy of the lattice approach and first renormalise the two-point function. It

leads naturally to a certain renormalisation of the string tension. However, this renormalisation is

then incompatible with a finite effective action for an “extended” string where L ≫ β, and where

β ≫ a. From the perspective of the effective action of the extended string it implies that the effec-

tive string tension goes to infinity when the cutoff a → 0, i.e. precisely the situation encountered
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for the lattice regularisations. However, due to a scale invariance of the effective action, it is in the

continuum possible to avoid this situation by a rescaling of the target space coordinates, but the

price one pays is the introduction of the tachyon.

The rest of this article is organized as follows: In Sect. II we consider the particle, rather

than the string, using the length of the world-line as the action, the particle equivalent of the

Nambu-Goto action for the string. The technique and many of the results are the same as for the

string, just simpler. In Sect. III we consider a path-integral formulation of the Nambu-Goto string,

introducing an independent metric tensor and the corresponding Lagrange multiplier. In Sect. IV

we find a saddle-point solution to the path-integral formulation of the Nambu-Goto string which

is justified by the mean-field approximation and becomes exact at large D. The dependence of the

ground-state energy on the string length L is computed in Sect. V. We also evaluate there the

value of the area of typical surfaces which dominate the path integral. Our main results concerning

two possible scaling behaviors are presented in Sect. V and VI. In Sect. VII we show how the same

results can be obtained using the Polyakov string formulation. The spectrum of excited states is

briefly discussed in Sect. VIII. Our main results are summarized in Sect. IX. In Appendix A we

remind the reader of some results for path integral of the relativistic particle. In Appendix B we

compute the induced metric for the string and find its unexpected coordinate dependence near the

boundary.

II. SUM OVER PATHS FOR THE RELATIVISTIC PARTICLE

Before performing the calculation for the bosonic string it is instructive to consider a similar

calculation for the relativistic particle, using the length of the world-line as the action, the particle

equivalent of the Nambu-Goto action we will use for the string.

We rewrite the action (the bare mass times the length of the path) as

S = m0

∫
dω

√
ẋ2 = m0

∫
dω

√
h+

m0

2

∫
dω λ

(
ẋ2 − h

)
, (3)

where ẋ = dx(ω)/dω and where we have introduced an independent world-line metric h which is a

tensor [h(ω) = h11(ω)], and a Lagrange multiplier λ = α/
√
h with α being a scalar.

The classical equations of motion are

1√
h

d

dω
λẋµ = 0, (4a)

h = ẋ2, (4b)

λ =
1√
h
. (4c)
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A generic solution is

x1cl(ω) =

∫ ω

0
dω′
√

hcl(ω′), x2cl = . . . = xDcl = 0. (5)

We can choose the (static) gauge, where

x1cl =
ω

ωL
L,

√
hcl =

1

λ
=

L

ωL
, ω ∈ [0, ωL] (6)

and L is the distance in the target space between the endpoints of the path. Of course any change

of parametrization ω → ω′(ω) will also provide us with a classical solution x′(ω′) = x(ω) and

h′11(ω
′)(dω′)2 = h11(ω)(dω)

2.

Splitting xµ = xµcl + xµq where xµcl is given by (5) and then integrating over xµq , we find the

effective action

Seff = m0

∫
dω

√
h+

m0

2

∫
dω λ

(
ẋ2cl − h

)
− dΛ

∫
dω

4
√
h√
λ
+

d

2
log

(
Λ

∫
dω

4
√
h√
λ

)
. (7)

More specifically the integration over xµq results in the determinant of the diffeomorphism invariant

differential operator

O = − 1√
h

d

dω
λ

d

dω
. (8)

We regularise this determinant by using a proper time cutoff

tr logO = −
∫ ∞

a2

dτ

τ
tr e−τO, a2 ≡ 1

4πΛ2
, (9)

By an explicit calculation for constant h and λ we obtain

tr log

(
− 1√

h

d

dω
λ

d

dω

)
= −

∫ ∞

a2

dτ

τ

∞∑

n=1

exp

[
− τ√

h
λ

(
πn

ωL

)2
]
= − ωL√

πa

4
√
h√
λ
+ log

ωL
4
√
h

a
√
λ

, (10)

which finally leads to (7).

In addition to the path integral over xµ which resulted in the effective action (7), we have path

integrals over the fields h and λ. As is well known,2 the path integral over λ is saturated by a

constant value of α owing to localisation, after which the dependence on h enters only via the

length τ =
∫
dω

√
h of the path. The path integral over h (factorised over reparametrisations f(ω),

f ′(ω) ≥ 0, of the path) can then be substituted by an ordinary integral over τ

∫ Dh

Df
· · · =

∫
dτ√
τ
det 1/2

(
− 1√

h

d

dω

1√
h

d

dω

)
· · · . (11)

2 See, e.g. the book [32], Sect. 9.1.
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This will change D → D− 1 in the linear divergence of the effective action in accordance with the

fact that there are only D − 1 independent degrees of freedom for the relativistic path.

In the rest of this section we shall ignore such a shift of D assuming that D is large. For the

string the shift will be from D to D − 2. We will use the notation d for the shifted value of D

with the understanding that it makes not difference in the large D limit. For m0 ∼ d all the terms

in the action (7) would be of order d, so the Jacobian displayed in Eq. (11) will be not essential.

We can then compute the integral over τ by the saddle-point method. Equivalently, we can simply

compute the path integrals over h and λ at large d by the saddle-point method, minimising the

effective action (7), without introducing the variable τ . This is exactly how we shall proceed in

the next sections when we deal with the relativistic string.

Minimising (7) with respect to h, we obtain the equation for α

1− α− dΛ

2m0
√
α
+

d

4m0
√
α
∫
dω
√
h/α

= 0. (12)

The solution is an ω-independent constant. Since we can always choose h to be constant in one

dimension by change of parametrization, this shows that it is not inconsistent to choose both h

and λ constant, as was done in the calculation (10).

Minimising (7) with respect to λ, we obtain the equation for h

ẋ2cl − h+
dΛ

m0α3/2
h− dh

2m0α3/2
∫
dω
√

h/α
= 0, (13)

relating h and xcl. Using Eq. (12), we write

h =
α

(3α − 2)
ẋ2cl =

α

(3α− 2)

L2

ω2
L

. (14)

From (12) it follows that the “bare” mass m0 has to diverge as Λ for Λ → ∞.

At the minimum, we have the following leading large L behavior

Seff = m0 (3α− 2)

∫
dω

√
h = m0

√
α (3α− 2)L. (15)

Since our effective action is just the logarithm of the free particle propagator, we know that the

leading L behavior is

Seff = mphL+O(logL) (16)

where mph is the physical mass of the particle. This is obtained by choosing

α =
2

3
+

m2
ph

2m2
0

. (17)
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Equation (12) then says

m0 =

√
27

8
dΛ +

√
3

2

m2
ph

dΛ
, (18)

the scaling relation well known from treating the relativistic particle as a limit of a random walk

process with average step length a ∼ 1/Λ ([28]). The value α = 2/3 is far away from the classical

value α = 1. However, Eqs. (12) and (13) have semiclassical power expansions in dΛ/m0 (1/m0 ∝
~), starting out with α = 1 and decreasing towards α = 2/3 with decreasing m0. The radius of

convergence of this expansion corresponds precisely to α = 2/3, as is shown in Appendix A, and

the value m0 = dΛ
√

27/8 associated with α = 2/3 is thus the natural quantum point of the free

particle. As we will see the situation will be similar for the string.

Classically the length of the particle path is
∫
dω

√
hcl = L. However, the average path in the

path integral is much longer, as is clear from (14), which shows that the average length of such a

path is

ℓ =

〈∫
dω

√
ẋ2
〉

=

∫
dω

√
h =

√
α

3α− 2
L. (19)

The reason for the divergence of ℓ when the cutoff a → 0 is of course the quantum fluctuations of

xq. One can explicitly calculate (see Appendix A) that in the limit where a → 0 we have

〈
ẋ2q
〉
=

dΛ 4
√
h

m0λ3/2
= h. (20)

Equation (19) shows that the Hausdorff dimension of such a path is two in the scaling limit and

that the proper time cutoff a, even if introduced as a diffeomorphism invariant cutoff in parameter

space ω ∈ [0, ωL], has a consistent interpretation as a length a in target space. Let us assume that

a can be interpreted as a typical smallest length scale probed in target space. Then we can view

the path of length ℓ as made of nℓ = ℓ/a pieces or “building block”. Similarly the classical path

xcl consists of nL = L/a building blocks and (19) reads in the scaling limit:

nℓ =

√
3

8π

d

mphL
n2
L, (21)

which tells us that the path of length ℓ with endpoints separated by a distance L in target space

has Hausdorff dimension dH = 2.

We remind the reader that there is nothing wrong with the result that the average length of a

path appearing in the path integral diverges when the cutoff is removed. As is well known, even

in ordinary quantum mechanics, such a path is not an observable. In the Heisenberg picture the

operators x̂µ(t) do not commute at different times and attempts to measure x̂µ(t) at successive
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small time intervals ∆t will precisely result in an average fractal path with dH = 2 in the limit

∆t → 0.

The fact that the Hausdorff dimension dH = 2 is linked to the interpretation of the proper

time cutoff a as a length scale also in target space. From the explicit expressions (8) and (9) it

is clear that in the classical limit where λ/
√
h = (ωL/L)

2 oscillating modes with mode number

n > L/πa will be suppressed, telling us that we can probe distances down to a in target space by

the fluctuating field xµ. However, from (19) the corresponding mode cutoff in the quantum case

is n > ℓ/πa ∝ L/mpha
2. The fact that the path has length ℓ ≫ L implies that we have to use a

much larger frequency ω when expanding xµ in modes in order to obtain the same resolution in

target space.

It is possible to perform a different scaling. Suppose we insist that ℓ is finite. This is what

one would do if we considered one-dimensional gravity and xµ(ω) were fields living in this one-

dimensional world3. In such a world we expect the leading term in the effective action (15) to be

proportional to the one-dimensional volume ℓ =
∫
dω

√
h, i.e. one would write

Seff = m̃phℓ, m̃ph = m0(3α − 2), (22)

or

α =
2

3
+

m̃ph

3m0
(23)

and

m0 =

√
27

8
dΛ+

√
2

3
m̃ph (24)

instead of the scaling (17), (18). From the perspective of such a one-dimensional world a finite

ℓ implies that our former target space L is as small as the cutoff a ∼ 1/Λ. However, from the

viewpoint of our one-dimensional world xµ is just a field and in the split x = xcl + xq, where

integration over quantum xq produces the different scaling of L and ℓ, we are free to perform a

renormalisation of the background field

xcl = Z1/2xR, Z = (3α − 2)/α. (25)

3 Of course the gravity formulation would be even clearer if we had used to Brink-Howe-DiVecchia formulation,
where we have an independent metric h11(ω) and a free Gaussian field xµ(ω) coupled covariantly to h11(ω), i.e.
the particle equivalent of the Polyakov string formulation. However, the results will be the same as the ones we
have already derived, so we will refrain from giving any details in the case of the particle. For the string we will
consider the Polyakov formulation in addition to the Nambu-Goto formulation.
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The field renormalisation Z has a standard perturbative expansion

Z = 1−m−1
0 dΛ +O(m−2

0 ), (26)

in terms of the coupling constant m−1
0 , which in perturbation theory is always assumed to be small

even compared to the cutoff. By such a renormalisation we obtain a new LR in target space,

L = Z1/2LR, which scales the same way as ℓ and the effective action is simply changed from mphL

to m̃phLR (and a complete calculation of effective action which also includes power corrections will

lead to identical expressions, except for an allover, cutoff dependent normalisation factor).

We will see that similar relations are valid for the Nambu-Goto string, but they will have more

radical consequences in the string universe.

III. THE NAMBU-GOTO STRING

We now use the Nambu-Goto action and perform a calculation similar to the one for the particle.

This was first done by Alvarez [25] at large D and extended by Pisarski and Alvarez [33] to

the topology of a cylinder. As described in the introduction the set up is the following: we

have a closed string propagating a distance L and wrapped around a compactified dimension of

circumference β. The action is diffeomorphism invariant and the results should not depend on the

chosen parametrization.

Introducing an auxiliary field λab and independent metric field ρab, we rewrite the Nambu-Goto

action in the standard way as

K0

∫
d2ω

√
det ∂aX · ∂bX = K0

∫
d2ω

√
det ρab +

K0

2

∫
d2ω λab (∂aX · ∂bX − ρab) . (27)

Here λab transforms under coordinate transformations as a tensor times the volume element and

ρab is a tensor. The path integration is performed independently over real values of Xµ and ρab

and over imaginary values of λab.

The Euler-Lagrange equations, minimising the right-hand side of Eq. (27) with respect to Xµ,

λab and ρab are

1√
det ρ

∂aλ
ab∂bX

µ = 0, (28a)

ρab = ∂aX · ∂bX, (28b)

λab = ρab
√

det ρ, det ρ ≡ det ρab. (28c)
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Choosing the world-sheet parametrization with ω1 and ω2 inside a ωβ × ωL rectangle in the

parameter space, we find from Eq. (28)

X1
cl =

L

ωL
ω1, X2

cl =
β

ωβ
ω2, X⊥

cl = 0, (29a)

[ρab]cl = diag

(
L2

ω2
L

,
β2

ω2
β

)
, (29b)

λab
cl = diag

(
βωL

Lωβ
,
Lωβ

βωL

)
. (29c)

To analyze quantum fluctuations in the path-integral approach, it is convenient to split Xµ =

Xµ
cl+Xµ

q , whereX
µ
cl is given by Eq. (29a), and perform the Gaussian path integral over Xµ

q . We may

fix the gauge at this stage, e.g. by choosing X1
q = X2

q = 0, i.e. choosing the so-called static gauge,

where fluctuations are transversal to the classical string world-sheet.4 The number of fluctuating

X’s then equals the number of dimensions transversal to the string world-sheet: d = D − 2. We

then obtain the effective action, governing the fields λab and ρab

Seff = K0

∫
d2ω

√
det ρ+

K0

2

∫
d2ω λab (∂aXcl · ∂bXcl − ρab) +

d

2
tr log

(
− 1√

det ρ
∂aλ

ab∂b

)
, (30)

where d = D − 2 is the number of fluctuating X’s.

We use the proper-time regularisation of the trace as in (9), now with

O = − 1√
ρ
∂aλ

ab∂b,
√
ρ ≡

√
det ρ, (31)

which reproduces the usual 2d Laplacian for λab given by Eq. (28c).

Using the invariance of the measure in the path integral over Xµ, λab and ρab, we derive the

following exact set of the quantum Schwinger-Dyson equations

〈
F [λ, ρ]

1√
ρ
∂aλ

ab∂bX
µ
cl

〉
= 0, (32a)

〈ρabF [λ, ρ]〉 = 〈∂aX · ∂bXF [λ, ρ]〉+
〈

1

K0

δF [λ, ρ]

δλ

〉
, (32b)

〈
λab

√
ρ
F [λ, ρ]

〉
=

〈
ρab
(
1− d

2K0
√
ρ
〈ω| e−a2O|ω〉

)
F [λ, ρ]

〉
+

〈
1

K0
√
ρ

δF [λ, ρ]

δρab

〉
. (32c)

Here F [λ, ρ] is an arbitrary functional of λab and ρab.

4 Fixing a static gauge produces a ghost determinant, which is a determinant of an operator of multiplication by
a function. At large D this determinant can be ignored, but may become essential to next orders of the 1/D-
expansion.
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In the mean-field approximation, which becomes exact at large D, we can disregard fluctuations

of λab and ρab around the saddle-point values, i.e. simply substitute them by mean values. This is

analogous to what happens in the N -component sigma-model at large N , where we can disregard

quantum fluctuations of the Lagrange multiplier.

Disregarding the quantum fluctuations means in the path-integral language that the path inte-

grals over λab and ρab are given by saddle points. These saddle points can be alternatively found

from the whole set of the Schwinger-Dyson equations (32), assuming factorisation.5 The Schwinger-

Dyson equations are then reduced to three equations for the saddle-point values λ̄ab ≡
〈
λab
〉
and

ρ̄ab ≡ 〈ρab〉:

1√
ρ̄
∂aλ̄

ab∂bX
µ
cl = 0, (33a)

ρ̄ab = 〈∂aX · ∂bX〉 , (33b)

λ̄ab

√
ρ̄
= ρ̄ab

(
1− d

2K0
√
ρ̄
〈ω| e−a2O|ω〉

)
. (33c)

Equations (33a) and (33b) look similar to the classical Eqs. (28a) and (28b), while Eq. (33c)

contains an additional term compared to the classical Eq. (28c), due to the fact that operator O
in Eq. (31) depends explicitly on ρ.

Using the known Seeley expansion for the cylinder, we write Eq. (33c) in the bulk (i.e. away

from the boundary) as

λ̄ab = ρ̄ab
√
ρ̄

(
1− dΛ2

2K0

√
det λ̄ab

)
. (34)

This equation possesses the solution

λ̄ab = Cρ̄ab
√
ρ̄, C =

1

2
+

√
1

4
− dΛ2

2K0
, (35)

which generalises the classical solution (28c). Note that C is fixed to be the ω-independent value

between 1/2 and 1 given by Eq. (35). This will play a crucial role in the following.

It is interesting to note that if we straightforwardly insert Eq. (35) into the action (27), it results

in a Polyakov-like expression

S =
CK0

2

∫
d2ω

√
ρρab∂aX · ∂bX +K0 (1− C)

∫
d2ω

√
ρ (36)

with independent ρab and Xµ. In the action (36) the coefficients of the quadratic in Xµ term and

the volume term obey a certain relation. As we shall see below in Sect. VII, this is necessary for

the consistency.

5 See e.g. p. 247 of the book [34].
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Let us now discuss how λ̄ab depends on the world-sheet coordinate ω. If we choose the conformal

gauge, where ρab is proportional to δab, we have from Eq. (35) λ̄ab = Cδab, i.e. λ̄ab is constant.

This obviously satisfies Eq. (33a). For general coordinates we expect that λ̄ab may depend only on

ω1 because of the cylinder geometry. We therefore obtain from Eq. (33a) the restriction

∂1λ̄
11 = 0, ∂1λ̄

12 = 0, (37)

so λ̄11 and λ̄12 = λ̄21 have to be ω1-independent. Because det λ̄ab = C2, we conclude that λ̄22 is

also ω1-independent. Thus λ̄
ab is constant.

As is shown in Sect. IV below, both ρ̄ab and λ̄ab are in fact diagonal as a consequence of the

diagonal form (29a) of the classical solution and Eq. (33b). However, ρ̄11 and ρ̄22 are not constant

and depend on ω1 near the boundary in a nontrivial way in order that the boundary conditions are

satisfied (as is discussed in Appendix B). Equation (35) then implies that ρ̄11 and ρ̄22 will have

the same ω1 dependence if λ̄11 and λ̄22 are constant since we have

λ̄11ρ̄11 = λ̄22ρ̄22. (38)

IV. SADDLE-POINT SOLUTION AT LARGE D

To compute ρ̄ab from Eq. (33b), we note that

〈∂aXq · ∂bXq〉 =
d

K0

δ

δλab(ω)
tr log

[
1√
ρ

(
−∂cλ

cd∂d

)]
. (39)

As we have shown in the previous section, the saddle-point value λ̄ab is ω-independent. We have

therefore a weaker relation

∫
d2ω 〈∂aXq · ∂bXq〉 =

d

K0

∂

∂λ̄ab
tr log

[
1√
ρ̄

(
−∂cλ̄

cd∂d

)]
. (40)

Using the proper-time regularisation (9), we write for the given world-sheet coordinates explic-

itly

tr log

[
1√
ρ̄

(
−∂aλ̄

ab∂b

)]

= −
∫ ∞

a2

dτ

τ

+∞∑

m=−∞

+∞∑

n=1

exp

{
− τ√

ρ̄

[
λ̄11

(
πn

ωL

)2

+ λ̄22

(
2πm

ωβ

)2

+ (λ̄12 + λ̄21)

(
πn

ωL

)(
2πm

ωβ

)]}
.

(41)

We have substituted here a constant value of
√
ρ̄ because ρ̄ab, as is already pointed out (see

Appendix B), depends on ω1 only near the boundary, and the contribution from such a region will
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be suppressed in the closed string channel as β/L. Below we will present formulas which are valid

also for ω1-dependent ρ̄11 and ρ̄22, and where this phenomenon can be explicitly observed.

The right-hand side of Eq. (41) can be differentiated with respect to λ̄ab. Acting with ∂/∂λ̄12

we find

∫
d2ω 〈∂1Xq · ∂2Xq〉 =

d

K0

∑

m,n

(
πn
ωL

)(
2πm
ωβ

)

λ̄11
(

πn
ωL

)2
+ λ̄22

(
2πm
ωβ

)2
+ 2λ̄12

(
πn
ωL

)(
2πm
ωβ

)

× exp

{
− a2√

ρ̄

[
λ̄11

(
πn

ωL

)2

+ λ̄22

(
2πm

ωβ

)2

+ 2λ̄12

(
πn

ωL

)(
2πm

ωβ

)]}
,

(42)

where we have substituted λ̄21 = λ̄12. From Eq. (42) it follows that

ρ̄12 = 0, λ̄12 = 0 (43)

is a solution. That it is the correct solution can be shown order by order of the semiclassical

expansion in d/K0, starting from the classical solution (29c) and using Eq. (35). The reason for

(43) can be traced to the diagonal form (29a) of the classical solution. We thus conclude that ρ̄ab

and λ̄ab are diagonal.

For diagonal and in general ω-dependent ρ̄ab and constant λ̄ab we have

tr log

[
1√

ρ̄11ρ̄22

(
−λ̄11∂2

1 − λ̄22∂2
2

)]
= −

∫
d2ω

√
ρ̄11ρ̄22√

λ̄11λ̄22
Λ2 +

βΛ√
λ̄22

+ 2 log η


 i

2

√
λ̄11

λ̄22

ωβ

ωL


 , (44)

where the quadratic and linear divergences are as they should be for the proper-time regularisation.

The finite term is given as usual [35] by the Dedekind eta-function. Equation (44) coincides with

the trace log of the 2d Laplacian for the cylinder, extracted from the general formula [24].

To avoid confusion, we point out that the boundary divergence in Eq. (44) (given by the second

term on the right-hand side) is linked to the bulk divergence (given by the first term on the right-

hand side). No contradiction with the open-closed string duality emerges in this case in contrast

to Ref. [36], where it was argued that the boundary term is ruled out by open-closed string duality.

In the so-called analytic regularisation employed in [36] one effectively is using Λ = 0, and in that

case the boundary term indeed vanishes.

We shall concentrate on the closed-string sector, where L ≫ β (i.e. a long cylinder), and in this

case the second term on the right-hand side of Eq. (44) can be neglected. We then use the modular

transformation of the η-function

η

(
iτ

2

)
=

√
2

τ
η

(
2i

τ

)
(45)
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and the asymptote

η

(
iτ

2

)
→ e−πτ/24 (46)

to get6

tr log

[
1√

ρ̄11ρ̄22

(
−λ̄11∂2

1 − λ̄22∂2
2

)]
= −

∫
d2ω

√
ρ̄11ρ̄22√

λ̄11λ̄22
Λ2 − π

3

√
λ̄22

λ̄11

ωL

ωβ
. (47)

Substituting the regularised trace log from Eq. (47) into Eq. (40), we finally obtain

1

ωβωL

∫
d2ωρ̄11 =

L2

ω2
L

+
πd

6K0

√
λ̄22

(λ̄11)3
1

ω2
β

+
dΛ2

2K0

∫
d2ω

√
ρ̄11ρ̄22√

(λ̄11)3λ̄22
, (48)

1

ωβωL

∫
d2ωρ̄22 =

β2

ω2
β

− πd

6K0

√
λ̄11λ̄22

1

ω2
β

+
dΛ2

2K0

∫
d2ω

√
ρ̄11ρ̄22√

λ̄11(λ̄22)3
. (49)

To solve these equations, we substitute

λ̄11 = C

√
ρ̄22
ρ̄11

, λ̄22 = C

√
ρ̄11
ρ̄22

(50)

as it follows from Eq. (35) for diagonal ρ̄ab and use the already mentioned fact that ρ̄11 and ρ̄22

have the same ω-dependence (see Eq. (38)). We then find the following solution

1

ωβωL

∫
d2ωρ̄11 =

L2

ω2
L

(
β2 − β2

0

2C

)

(
β2 − β2

0

C

) C

2C − 1
,

1

ωβωL

∫
d2ωρ̄22 =

1

ω2
β

(
β2 − β2

0

2C

)
C

2C − 1
(51)

and

λ̄11 = C
ωL

ωβL

√
β2 − β2

0/C,

λ̄22 = C
ωβL

ωL

1√
β2 − β2

0/C
(52)

with

β2
0 =

πd

3K0
. (53)

It should be noted that the same solution can be obtained by a straightforward minimisation

of the effective action (30) with Eq. (47) inserted for the trace log and assuming that ρ̄ab and λ̄ab

6 In Eq. (47) the sign of the first term on the right-hand side is negative when the proper-time regularisation, but
it may be positive for other regularisations. For instance, cutting of the mode expansion at some maximal mode
number leads to a positive term as shown in Ref. [37].
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are diagonal and constant:

Seff =
K0

2

(
λ̄11L

2ωβ

ωL
+ λ̄22β

2ωL

ωβ
+ 2

∫
d2ω

√
ρ̄11ρ̄22 − λ̄11

∫
d2ω ρ̄11 − λ̄22

∫
d2ω ρ̄22

)

−πd

6

√
λ̄22

λ̄11

ωL

ωβ
− d

∫
d2ω

√
ρ̄11ρ̄22

2
√
λ̄11λ̄22

Λ2. (54)

This simply repeats the original Alvarez computation except that we start from an arbitrary

ωβ × ωL rectangle in the parameter space and use the proper-time regularisation rather than the

zeta-function regularisation. We reproduce the results [25], when ωL = L, ωβ = β and Λ = 0 as it

is when using the zeta-function regularisation. However, we emphasize once again that the more

cumbersome approach we have used by solving Eqs. (33) leads to the solution (51) – (52) without

invoking the assumption that ρ̄ab and λ̄ab are diagonal and constant.

V. THE LATTICE-LIKE SCALING LIMIT

Substituting the solution (51) – (52) into Eq. (54), we obtain

Ss.p.
eff = K0CL

√
β2 − β2

0/C (55)

for the saddle-point value of the effective action. Further, we find that the average area of a surface

which appears in the path integral is

A = 〈Area〉 =
∫

d2ω
〈√

det ρab

〉
=

∫
d2ω

√
ρ̄11ρ̄22 = L

(
β2 − β2

0/2C
)

√
β2 − β2

0/C

C

(2C − 1)
. (56)

Formulas (55) and (56) are our main results, valid for L ≫ β in the mean-field approximation.

Let us now discuss the physical implications of these formulas.

Firstly, formula (35) for the constant C (which plays the same role as α in our discussion of

the random walk) shows that the bare string tension K0 needs to be renormalised in order for

C to remain real. Also, C is clearly constraint to take values between 1/2 and 1. Secondly, all

calculations are done with a proper time cutoff a ∼ 1/Λ, which as in the random walk case can

be though of as shortest distance one can measure in target space. Thus it is questionable if it

makes sense to consider a β < a, i.e. it does probably not make sense to enter the regime where

Seff ceases to be real.

At first glance it seems impossible to obtain a finite Seff by renormalising K0 in (55), since K0

is of order Λ2. However, let us try to imitate as closely as possible the calculation of the two-point

function of the string by choosing, for a fixed cutoff a or Λ, β as small as possible without entering
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into the tachyonic regime of Seff . Thus we choose

β2
min = 2β2

0

K0

2dΛ2
=

π

3

1

Λ2
=

1

3
(2πa)2. (57)

This choice ensures that β2
min > β2

0/C for all values of K0 > 2dΛ2 and that β2
0/C → β2

min for

K0 → 2dΛ2. With this choice we have

Seff =

√
π

3

K0CL

Λ

√
2C − 1. (58)

Only if
√
2C − 1 ∼ 1/Λ can we obtain a finite limit for Λ → ∞. Thus we are forced to renormalise

K0 as follows

K0 = 2dΛ2 + f
M4

ph

Λ2
, f =

18d

π2
. (59)

With this renormalisation we find

Seff = dMphL. (60)

Since the partition function in this case has the interpretation as a kind of two-point function for a

string propagating a distance L, we have the following leading L behavior of the two-point function

Z(L) ∼ e−Seff = e−dMphL+O(logL), (61)

where the mass is a tunable parameter. We note that the situation is very similar to the situation

for the free particle. In that case we had the classical value α = 1 and a semiclassical expansion

in 1/m0 which interpolated between α = 1 and the quantum value α = 2/3. Here we have the

classical value C = 1 and a semiclassical expansion in 1/K0, which interpolates between C = 1

and the quantum value C = 1/2.

In the scaling limit (59) we can calculate the average area 〈Area〉 = A of a surface using (56):

A ∝ L

M3
pha

2
. (62)

It diverges. If we view the surface as made from nA building blocks of size a2, we find

nA ∝ 1

(MphL)3
n4
L, nL =

L

a
, (63)

telling us that the Hausdorff dimension of the surface is dH = 4 since nL = L/a is a typical linear

extent of the surface measured in units of the cutoff a.
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Let us finally turn to the situation where L ≫ β ≫ a. In this case we have a real extended

minimal surface of area Amin = L × β, around which the string fluctuates. In this case we find

from (56) that

A ∝ Amin

M2
pha

2
. (64)

Again this can be written in terms of building blocks as

nA ∝ 1

M2
phAmin

n2
Amin

, nAmin
=

Amin

a2
, (65)

showing that the Hausdorff dimension of the surface is still four for this kind of surfaces.

Let us now discuss what we define as the physical string tension. With the given boundary

conditions the string extends over the minimal area Amin and we write the partition function as

Z(K0, L, β) = e−Seff (K0,L,β) = e−KphAmin+O(L,β). (66)

This is precisely the way one would define the physical (renormalised) string tension in a gauge

theory, with L, β being the side lengths of a Wilson loop and L, β ≫ a, where a is the lattice link

length. This is also the way the physical string tension is defined in lattice string theories like HLS

and DT. Let us rewrite (59) as

K0 = 2dΛ2 +
K̃2

ph

2dΛ2
, (67)

very similar to the relation between the bare mass m0 and the renormalised mass mph. From the

explicit form of Seff given in (56) we have

Kph = K0C = dΛ2 +
1

2
K̃ph +O(1/Λ2). (68)

Thus the physical string tension as defined above diverges as the cutoff Λ is taken to infinity.

However, the first correction is finite and behaves as we would have liked Kph to behave, namely

as K̃ph ∝ dM2
ph.

We have encountered a situation identical to the one met in HLS and DT: it is possible by

renormalising the coupling constant to define a two-point function with a positive, finite mass.

The Hausdorff dimension of the ensemble of surfaces is dH = 4, but then the effective string

tension defined as in (66) will be infinite. In addition the relation (68) is precisely the relation one

finds in the lattice string theories. To make things clear, let us rephrase our scaling relations in

dimensionless units like it is done in the lattice theories. Denote

K0a
2 = µ, d/2π = µc, Kpha

2 = K, Mpha
2 = M. (69)
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Then the renormalisation we have encountered (Eqs. (59) and (68)) can be rewritten as

M(µ) = c1(µ− µc)
1/4, K(µ) = K(µc) + c2(µ− µc)

1/2, K(µc) = µc/2 > 0. (70)

These are the scaling relations obtained in lattice string theory and we have now reproduced them

by a standard continuum mean-field calculation.

VI. SCALING TO THE STANDARD STRING THEORY LIMIT

The scaling limit of the previous section was essentially particle-like, because the string tension

has remained infinite. Remarkably, it is possible to have yet another scaling behavior which is

string-like and where the string tension is finite.

We have made a decomposition Xµ = Xµ
cl + Xµ

q , where the parameters L and β refer to

the “background” field Xµ
cl. In standard quantum field theory we usually have to perform a

renormalisation of the background field to obtain a finite effective action. It is possible to do the

same here by scaling

Xµ
cl = Z1/2Xµ

R, Z = (2C − 1)/C. (71)

Notice that the field renormalisation Z has a standard perturbative expansion

Z = 1− dΛ2

2K0
+O(K−2

0 ) (72)

in terms of the coupling constant K−1
0 , which in perturbation theory is always assumed to be small,

even compared to the cutoff.

However, in the limit C → 1/2 it has dramatic effects since, working with renormalised lengths

LR and βR defined as in (71):

LR =

√
C

2C − 1
L, βR =

√
C

2C − 1
β, (73)

we now obtain for the effective action

Seff = KR LR

√
β2
R − πd

3KR
, KR = K0(2C − 1) ≡ K̃ph. (74)

The renormalised coupling constant KR indeed makes Seff finite and is identical to the K̃ph defined

in (67). If we view LR and βR as representing physical distances, (74) tells us that we indeed

have a renormalised, finite string tension K̃ph in the scaling limit. In fact (74) is identical to the

continuum string theory formula.
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The “price” we pay for this rescaling of lengths is that we have introduced a tachyon in the

theory. Before rescaling we argued that the negative term under the square root was of the order

of the cutoff a2 and there was thus no compelling reason to view it as responsible for a tachyon.

However, now it has become finite and in fact it is precisely (minus) the closed bosonic string

tachyon mass squared:

M2
tachyon =

πd

3K̃ph

. (75)

Looking at (74) there is no compelling reason why βR could not be smaller than Mtachyon. However,

let us write (71) in the following form

β

2πa
=

√
1

πd

√
KRβR. (76)

Thus, insisting that β/2πa > 1, since a plays the role of a cutoff distance in target space, implies

that β2
R > πd/KR, i.e. we are outside the tachyon region of (74). Being deep into to tachyonic

region, i.e. having βR ≪ Mtachyon/KR means that originally β ≪ a, clearly a situation which is

strange starting out for instance in a hypercubic lattice theory with lattice spacing a.

The background field renormalisation we have performed in the string case is very similar to

the one we made for the particle, and we can give it the same interpretation: the background

field renormalisation is such that the average area A is finite, as one would define it to be if we

considered a theory of two-dimensional gravity coupled to some matter fields. In fact, if we insert

the scaling (71) for Xµ and (74) for K0 in the expression (56) for A, we obtain

A = LR

(
β2
R − πd

6KR

)

√
β2
R − πd

3KR

, (77)

which is cutoff independent and thus finite when the cutoff is removed. The area is simply the

minimal area for βR ≫ Mtachyon/KR and diverges when βR → Mtachyon/KR.

One may wonder if it is possible to have a continuum theory when L, β ∼ a, i.e. of the order of

the cutoff. Of course it is not in general. But in the scaling limit (67), where (2C−1) → K̃ph/2dΛ
2,

the actual cutoff is ∼ a/ 4
√
ρ̄ ∝ a

√
2C − 1, which is much smaller than a. After the renormalisation

(73) the cutoff becomes ∼ a in the units, where the “physical” distances LR and βR are finite, that

is still much smaller than the distances.

This phenomenon can be explicitly seen within the mode expansion, quite similarly to what is

discussed in Sect. II for the relativistic particle. The exponent of the cutting factor [like in Eq. (42)]
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at the saddle point is

∑

m,n

a2√
ρ̄

[
λ̄11

(
πn

ωL

)2

+ λ̄22

(
2πm

ωβ

)2
]

=
∑

m,n

a2(2C − 1)

[(πn
L

)2
+
( 2πm√

β2 − β2
0/C

)2
]

=
∑

m,n

a2C



(
πn

LR

)2

+


 2πm√

β2
R − πd/3KR




2
 . (78)

So the modes are cut off at nmax ∼ a−1LR, mmax ∼ a−1
√

β2
R − πd/3KR. These numbers are as

large as usual (∼ a−1) also in the scaling limit described in this section.

VII. POLYAKOV VERSUS NAMBU-GOTO FORMULATIONS

It is natural to ask if it is possible to reproduce the above results using the Polyakov formulation

of string theory.

Let us rewrite the Nambu-Goto action as

S = (1− α)K0

∫
d2ω

√
g +

αK0

2

∫
d2ω

√
ggab∂aX · ∂bX, (79)

where α is a constant and where gab is the induced metric

gab = ∂aX · ∂bX. (80)

Let us now consider Xµ and gab as independent in (79). We then have the Polyakov formulation

of string theory. Integrating over quantum fluctuations of Xµ, we arrive at the following effective

action for gab:

Seff = (1− α)K0

∫
d2ω

√
g +

αK0

2

∫
d2ω

√
ggab∂aXcl · ∂bXcl +

d

2
tr log

(
− α√

g
∂a
√
ggab∂b

)
. (81)

The invariance of the measure in the path integral over gab under a shift results in the Schwinger-

Dyson equation

〈
gab
(
1− α− d

2K0
√
g
〈ω| ea2α∆|ω〉

)〉
= 0. (82)

Using the Seeley expansion (in the bulk)

1√
g
〈ω| ea2∆|ω〉 = 1

2πa2
+

1

24π
R (83)

we find this equation is consistent if α satisfies

K0 (1− α)− dΛ2

2α
= m2, (84)
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where m2 is finite, i.e. if the quadratic divergence cancels. Solving Eq. (84) for m2 ≪ K0 ∼ Λ2, we

find

α = C =
1

2
+

√
1

4
− dΛ2

2K0
(85)

which is already familiar from the analysis where we used the Nambu-Goto action.

For the value (85) of α, the Λ2 term in the action (81) vanishes, so the action looks like the one

obtainable using the zeta-function regularisation where Λ = 0 and C = 1. The equation for the

Liouville field ϕ (which appears in the conformal gauge ρab = eϕδab) is then the standard Liouville

equation. In the string-like scaling limit the constant m2 in (84) is multiplied by (2C − 1) and the

Liouville equation becomes a free field equation.

Thus the action (81) is consistent for α = 1 only for analytic regularisations with Λ = 0.

Otherwise, we have to add the non-vanishing first term. The Nambu-Goto formulation remarkably

leads to the consistent action, as was shown in Eq. (36) above.

A few comments regarding the Polyakov formulation are in order. In the conformal gauge

there appears the usual ghost determinant, which can be neglected at large d. Nevertheless,

reparametrisations of the boundary remain essential and for the case of the cylinder the path

integral over the reparametrisations (or, equivalently, over the boundary value of ϕ) reduces to an

integration over the modular parameter ωβ/ωL. The latter integral can be calculated at large d

again by the saddle-point method which implies a minimisation with respect to ωβ/ωL. This is in

contrast to the Nambu-Goto formulation, where ωβ/ωL was arbitrary.

The fact that
√
g enters the action (81) linearly allows us to compute the ground state energy.

Fixing the conformal gauge, we find at the saddle point with respect to ϕ for our cylinder

Seff =
K0C

2

(
L2ωβ

ωL
+ β2ωL

ωβ

)
− πd

6

ωL

ωβ
. (86)

Notice that the bulk value of gab does not enter Eq. (86).

Minimising (86) with respect to ωL/ωβ , we get

E0 = K0C

√
β2 − πd

3CK0
(87)

that is the same as Eq. (55) for the Nambu-Goto formulation. For C = 1 we reproduce the

results [38] obtained for the zeta-function regularisation.

The mean area can be found by differentiating the partition function with respect to K0:

−K0
∂

∂K0
logZ = Kph 〈Area〉 , (88)



23

where the string tension Kph = CK0 from Eq. (87), as in Eq. (68). Differentiating we find

〈Area〉 = L
(β2 − β2

0/2C)√
β2 − β2

0/C

C

(2C − 1)
, (89)

which is the same as Eq. (56) for the Nambu-Goto formulation.

However, it is not so clear how to link gab to the induced metric. They are only related by the

boundary condition, stating they are the same at the boundary [24, 39].

VIII. EXITED STATES

Masses of exited states can be extracted from the next terms in the expansion of the η-function.

Using Eq. (45) with τ =
√

λ̄11/λ̄22ωβ/ωL = L−1
√

β2 − β2
0/C, we expand it in the closed-string

sector as

η

(
2i

τ

)−d

= edπ/6τ
∞∏

n=1

(
1− e−4πn/τ

)−d
= edπ/6τ

∞∑

N=0

dN e−4πN/τ , (90)

where dN are the level occupation numbers. Repeating the above computation, we obtain for the

spectrum at level N :

EN = KR

√
β2
R +

2π

KR

(
4N − d

6

)
. (91)

For N ∼ d this results in a linear Regge trajectory with the “renormalised” Regge slop 1/8πKR =

α′/4. As usual it is four times smaller for the closed string than for an open string.

Equation (91) is again the usual formula for the spectrum of excited string states, as it follows

from the zeta-function regularisation.

IX. DISCUSSION

Using a mean-field continuum calculation, which we expect to be reliable in the large-d limit,

we have obtained the same result for the bosonic string as was originally obtained in lattice string

theories (HLS or DT). In these theories it was impossible to define a finite physical string tension

in the limit where the lattice cutoff a was taken to zero. Our mean-field calculation allows us

to trace in detail how this non-scaling arises, and it also allows us to understand how one in

the continuum theory can perform an alternative scaling which reproduces some of the standard

continuum results of bosonic string theory, like formula (74). Rather surprisingly this scaling

implies that the distances one considers in target space are comparable or even much smaller than
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the cutoff a one starts out imposing. If one had started out with a lattice string theory like HLS

where the path integral is performed over surfaces embedded on a hypercubic lattice with link-

lengths a, it clearly makes no sense to consider target space distances less than a. While one in

these theories can define a scaling limit for a two-point function, this scaling limit always considers

distances much larger that a: when a → 0 the correlation length stays finite in target space, i.e. it

involves infinite many lattice spacings.

Working in a continuum formalism, nothing prevents us from making an additional rescaling

like (71) of the target space, but from the point of the regularised theory we will, as shown explicitly

by e.g. formula (76), always be at cutoff scale a for fixed rescaled distances βR, LR and fixed string

tension KR. In terms of the original variables L, β the continuum string limit describes a Lilliputian

world, which is a world where the average area A remains finite (as shown in formula (77)) when

the cutoff is removed. Having a finite A is natural from a two-dimensional world-sheet point of

view, so our Lilliputians are naturally two-dimensional beings, while standard lattice scaling is an

enterprise only for Gulliver. In the case of the particle this shift between the worlds of Gulliver

and the Lilliputians is more or less an academic exercise in the sense that the resulting propagator

was the same up to a cutoff dependent factor not depending on xµ. However, in the string case

the Lilliputian world is the one of standard continuum string theory, while the Gulliver world is

one where strings are degenerated into so-called branched polymers due to the non-scaling of the

string tension, as described long ago in the framework of the HST or DT regularisation.

From a standard field theory perspective it seems a little contrived to insist that ℓ is finite,

as one would naturally do in a one-dimensional quantum gravity theory, since the average length

of a world-line goes to infinite in the path integral when removing the cutoff. Nevertheless, as

mentioned, this change of perspective has no consequences in the case of the particle, contrary to

the case of strings. In ordinary continuum string calculations such a rescaling of “distances” Xµ

which makes the average area A finite, is usually not mentioned explicitly. However, it is there.

Using the conformal invariance of the world-sheet field theory involves a renormalisation of the

vertex operators eipµX̂
µ(ω), i.e. effectively an adjustment of scales dictated by the fields Xµ(ω).

It should also be mentioned that a finite A is more or less the starting point in non-critical

string theory, which can be viewed as two-dimensional quantum gravity coupled to matter fields

with central charge c < 1. In these theories the finite A is obtained by a renormalisation of

the two-dimensional gravitational cosmological term, i.e. the first term on the right-hand side of

Eq. (79). Some of our calculations can formally be extended to the region c < 1, since this region,

again formally, corresponds to d < 0. As is seen from our formulas everything is different if d < 0
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and one obtains completely different scaling. Such a different scaling could well be consistent with

the scaling obtained by the DT lattice theory which for c < 1 provides a regularisation of two-

dimensional quantum gravity coupled to matter, and where the scaling, contrary to the situation

for d > 0, agrees with continuum non-critical string calculations. Our mean-field results might be

reliable in the d → −∞ limit, but we have not investigated it in detail.

Our results are based on the mean-field approximation and reproduce in the string-like scaling

limit the spectrum obtained by the canonical quantisation. It would be interesting to pursue our

approach beyond the mean-field approximation, accounting for fluctuations of ρab and λab to next

orders in 1/d, to check whether or not the spectrum changes.
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Appendix A: More on relativistic paths

Let us explicitly check that the solution (17) to Eq. (12) is the one which sums up the semi-

classical expansion in 1/m0. The proper exact solution to the cubic Eq. (12) at large L is

α(r) =
2

3
+

(
1 + i

√
3
)(

2− 27r2 + i3
√
3r
√
4− 27r2

)1/3

21/36

+

(
1− i

√
3
) (

2− 27r2 − i3
√
3r
√
4− 27r2

)1/3

21/36
, (A1)

where r = dΛ/2m0. It has the required series expansion

α = 1− r − r2

2
− 5r3

8
− r4 − 231r5

128
− 7r6

2
+O(r8), (A2)

monotonically decreases with r and indeed for r =
√

2
27 − δ

α =
2

3
+ 2

√
2

3
δ +O(δ2). (A3)

To explicitly compute the induced metric in the static gauge, we use the mode expansion

xq =
√
2

∞∑

n=1

an sin
πnω

ωL
. (A4)
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We then obtain

〈
ẋ2q
〉
=

2

ωL

∞∑

n=1

(
πn

ωL

)2 〈
a2n
〉
cos2

πn

ωL
ω e

−a2λ
(

πn
ωL

)2

h−1/2

=
2

ωL

d

m0λ

∞∑

n=1

cos2
πn

ωL
ω e

−a2λ
(

πn
ωL

)2

h−1/2

.

(A5)

Replacing the sum by an integral, we find

〈
ẋ2q
〉
=

2d

m0λ

∫ ∞

0
dx cos2 x e−a2λx2h−1/2

=
dΛ 4

√
h

m0λ3/2
. (A6)

This simply reproduces Eq. (13) without the last term, which comes from the difference between

the sum in Eq. (A5) and the integral in Eq. (A6).

We have seen that nothing unexpected happens with the induced metric in the case of paths.

In particular, we can make it constant by choosing the proper-time gauge (6). This is in contrast

to the case of surfaces, where the dependence of the induced metric on ω is present to fulfill the

boundary condition for the component of the metric tensor along the boundary, as is demonstrated

in Appendix B.

To see how the typical paths that dominate the path integral look like, let us compute the

averaged transverse displacement squared
〈
x2⊥
〉
. Proceeding as in Eq. (A5), we find

〈
x2⊥
〉
=

2

ωL

∞∑

n=1

〈
a2n
〉
sin2

πn

ωL
ω =

2

ωL

d

m0λ

∞∑

n=1

sin2 πn
ωL

ω
(

πn
ωL

)2 (A7)

which is convergent. At large L we can replace the sum by an integral to get

〈
x2⊥
〉
=

2d

πm0λ

∫ ∞

0

dx

x2
sin2 xω =

dω

m0λ
=

dL

m0

√
α(3α − 2)

ω

ωL
(A8)

for ω < ωL/2. In the scaling regime (18) it tends to a finite value

〈
x2⊥
〉
=

dL

mph

ω

ωL
(A9)

with the transverse displacement growing like
√
L, as it should for the Brownian motion in the

target space.

In the other scaling regime (24), the right hand side of Eq. (A8) vanishes as m−1
0 ∼ Λ−1.

However, if we renormalise the transverse coordinate in the same way as in Eq. (25), the transverse

displacement would also be finite

〈
xR

2
⊥

〉
=

dLR

m̃ph

ω

ωL
(A10)

and coinciding with (A9).
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We can also compute the correlator at non-coinciding “times” ω1 and ω2. The 1d Dirichlet

Green function can be computed through the mode expansion quite similarly to Eqs. (A7) – (A10).

We obtain

〈xµq(ω1)x
ν
q(ω2)〉 =

2

ωL

δµν

m0λ

∞∑

n=1

sin πn
ωL

ω1 sin
πn
ωL

ω2
(
πn
ωL

)2

=
δµνL

m0

√
α(3α − 2)

(
ω1 + ω2

2ωL
− |ω1 − ω2|

2ωL

)
, (A11)

which is valid for ωi < ωL/2 (otherwise ωi =⇒ ωL − ωi) and reproduces Eq. (A8) for ω1 = ω2. It

vanishes if ωi = 0 (i.e. at the boundary), as the Dirichlet Green function should. The first term in

the brackets makes it positive.

In Eq. (A11) the coefficient L

m0

√
α(3α−2)

equals either L
mph

in the scaling limit (18) or LR
m̃ph

in

the scaling limit (24), if we renormalise xµq . So the continuum formulas are identical in both cases.

Appendix B: Induced metric in the world-sheet coordinates

Let us compute the induced metric 〈∂aX · ∂bX〉 in the string case to verify its coordinate

dependence.

Using the mode expansion

Xq = 2
∑

m,n≥0

(
amn cos

2πmω2

ωβ
+ bmn sin

2πmω2

ωβ

)
sin

πnω1

ωL
, (B1)

we have explicitly for the quantum part of the induced metric

〈∂1Xq · ∂1Xq〉

=
2

ωβωL

∞∑

m=0

∞∑

n=1

(
πn

ωL

)2 [
(2− δm0)

〈
a2mn

〉
cos2

2πm

ωβ
ω2 + 2

〈
b2mn

〉
sin2

2πm

ωβ
ω2

]
cos2

πn

ωL
ω1

=
2

ωβωL

d

K0

+∞∑

m=−∞

∞∑

n=1

(
πn
ωL

)2

λ̄22
(
2πm
ωβ

)2
+ λ̄11

(
πn
ωL

)2 cos
2 πn

ωL
ω1 (B2)

The sum over m is convergent and easily done, while the sum over n can be substituted by an

integral as L → ∞ (the closed string channel). For the divergent part we find

d

πK0

√
(λ̄11)3λ̄22

∫ ∞

0
dx

x2

y2 + x2
cos2

(
xω1√
λ11

)
e−εx2

=
d

K0

√
(λ̄11)3λ̄22

1

8πε

[
1− ελ11

ω2
1

+ e−
ω2
1

ελ̄11

(
2 +

ελ̄11

ω2
1

)]
, (B3)
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where

ε =
a2√
ρ̄11ρ̄22

=
1

4πΛ2
√
ρ̄11ρ̄22

. (B4)

For the finite part we get

d

K0

√
(λ̄11)3λ̄22

1

π

∫ ∞

0
dxx

[
coth

(
ωβx

2
√
λ̄22

)
− 1

]
cos2

(
xω1√
λ11

)

=
πd

6K0ω2
β

√
λ̄22

(λ̄11)3/2
+

d

K0

√
λ̄11λ̄22

1

π




1

8ω2
1

− π2λ̄22

2ω2
βλ

11

1

sinh2
(

2πω1

ωβ

√
λ̄22

λ̄11

)


 . (B5)

The first term on the right-hand side is familiar from the integrated version of Sect. IV. The second

term makes the induced metric to be ω1-dependent. At ω1 = 0 it is equal to the first term.

Adding (B3) and (B5), we finally obtain

〈∂1Xq · ∂1Xq〉 =
d

K0

√
(λ̄11)3λ̄22

1

8πε

[
1 + e−

ω2
1

ελ̄11

(
2 +

ελ̄11

ω2
1

)]

+
πd

6K0ω2
β

√
λ̄22

(λ̄11)3/2
− πd

2K0ω2
β

√
λ̄22

(λ̄11)3/2
1

sinh2
(

2πω1

ωβ

√
λ̄22

λ̄11

) . (B6)

We see from Eq. (B2) that the mean value equals

1

ωβωL

∫
d2ω 〈∂1Xq · ∂1Xq〉 =

d

8πεK0

√
(λ̄11)3λ̄22

+
πd

6K0ω
2
β

√
λ̄22

(λ̄11)3/2
(B7)

which coincides with the right-hand side of Eq. (B6) far away from the boundary. The fact that

the induced metric is ω1-dependent near the boundary does not affect the mean value, because

its contribution to the mean value is O(1/L). This ω1-dependence of the induced metric near the

boundary is specific to the cylinder (and disk) topology. It would be missing for a torus.

Exactly at the boundary we have from Eq. (B6) the twice larger value then the mean value

(B7)

〈∂1Xq · ∂1Xq〉
∣∣
B

=
d

4πεK0

√
(λ̄11)3λ̄22

+
πd

3K0ω
2
β

√
λ̄22

(λ̄11)3/2
. (B8)

As we shall momentarily see, this guarantees for the gauge condition (38) to be satisfied in the

bulk.
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Analogously, we find

〈∂2Xq · ∂2Xq〉 =
1

ωβωL

2d

K0

∑

m,n

(
2πm
ωβ

)2

λ̄22
(
2πm
ωβ

)2
+ λ̄11

(
πn
ωL

)2 sin
2 πn

ωL
ω1

=
λ̄11

λ̄22
〈∂1Xq · ∂1Xq〉 −

1

ωβωL

2d

K0λ̄22

∑

m,n




λ̄11
(

πn
ωL

)2

λ̄22
(
2πm
ωβ

)2
+ λ̄11

(
πn
ωL

)2 − sin2
πn

ωL
ω1




=
λ̄11

λ̄22
〈∂1Xq · ∂1Xq〉 −

λ̄11

λ̄22
〈∂1Xq · ∂1Xq〉

∣∣
B
+

d

K0

√
λ̄11(λ̄22)3

1

4πε

(
1− e−ω2

1/ελ̄
11
)
. (B9)

We see that at the boundary

〈∂2Xq · ∂2Xq〉
∣∣
B
= 0 (B10)

because of the boundary condition Xq

∣∣
B
= 0 and because the derivative is along the boundary.

Using Eq. (B8) and adding the classical parts, we rewrite Eq. (B9) as the following relation

between components of the whole induced metric:

λ̄11 〈∂1X · ∂1X〉 = λ̄22 〈∂2X · ∂2X〉+ d

4πεK0

√
λ̄11λ̄22

e−ω2
1/ελ̄

11

. (B11)

We see that 〈∂2X · ∂2X〉 equals 〈∂1X · ∂1X〉 everywhere outside the ε-vicinity of the boundary,

where a more careful analysis of the second term on the right-hand side is required.

Using the mode expansion, we can also compute the transversal size of the string. Proceeding

as above, we get

〈
X2

q

〉
=

1

ωβωL

2d

K0

+∞∑

m=−∞

∞∑

n=1

1

λ̄22
(
2πm
ωβ

)2
+ λ̄11

(
πn
ωL

)2 sin
2 πn

ωL
ω1

=
d

πK0

√
λ̄11λ̄22

∫ ∞

0

dx

x
coth

(
ωβx

2
√
λ̄22

)
sin2

(
xω1√
λ̄11

)
e−εx2

. (B12)

The integral in Eq. (B12) has a logarithmic domain for ε ≪ ω2
1/λ̄

11 The (logarithmically)

divergent part of the integral is

∫ ∞

0

dx

x
sin2

(
xω1√
λ̄11

)
e−εx2

=
1

4

(
log

4ω2
1

ελ̄11
+ γE

)
+O(ε). (B13)

The finite part is

∫ ∞

0

dx

x

[
coth

(
ωβx

2
√
λ̄22

)
− 1

]
sin2

(
xω1√
λ̄11

)
=

1

2
log sinh

2πω1

√
λ̄22

ωβ

√
λ̄11

− 1

2
log

2πω1

√
λ̄22

ωβ

√
λ̄11

, (B14)

Finally, we obtain for large L

〈
X2

q

〉
=

d

K0C

{
1

4π

(
log

[
ωβωL

√
β2 − β2

0/C

επ2CL

]
+ γE

)
+

ω1

ωL

L√
β2 − β2

0/C

}
. (B15)
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If we perform the above renormalisation (71) of the length scale X2
q → (2C − 1)[X2

q ]R/C, then K0

in the denominator becomes KR:

〈
[X2

q ]R
〉
=

d

KR





1

4π

(
log

[
4Λ2

π

(
β2
R − πd

6KR

)]
+ γE

)
+

ω1

ωL

LR√
β2
R − πd/3KR)



 . (B16)

The first term on the right-hand side of Eq. (B16) is familiar from the open-string case. It has

the logarithmic divergence which cannot be renormalised, so it always diverges. It is the same for

the zeta-function regularisation, where the log is replaced by ζ(1) = ∞. We shall soon return to

this issue.

The appearance of the second term on the right-hand side of Eq. (B16) is specific to a cylinder.

It comes from the modes with m = 0 (the zero mode) and is missing for an open string. It looks

pretty much like the one in Eq. (A10) for the random paths, if we identify m̃R with the mass of

the lowest string state which propagates the distance LR.

We can also compute the whole Dirichlet propagator at different ω and ω′, replacing the sum

over n by an integral at large L and summing over m by using the formulas

∫ ∞

0

dx

a2 + x2
sin(bx) sin(cx) =

π

4a

(
e−a|b−c| − e−a(b+c)

)
, (B17)

∞∑

m=1

1

m
e−bm cos(am) = −1

2
log
(
1− 2 e−b cos a+ e−2b

)
. (B18)

Integrating first over n and then summing over m, we obtain

〈Xµ
q (ω)X

ν
q (ω

′)〉 =
2δµν

ωβωLK0

+∞∑

m=−∞

∞∑

n=1

sin πn
ωL

ω1 sin
πn
ωL

ω′
1

λ̄22
(
2πm
ωβ

)2
+ λ̄11

(
πn
ωL

)2 cos
2πm

ωβ
(ω2 − ω′

2),

=
δµν

K0C

1

4π
log

(
cosh

2π(ω1+ω′

1)
ωβ

− cos
2π(ω2−ω′

2)
ωβ

)

(
cosh

2π(ω1−ω′

1)
ωβ

− cos
2π(ω2−ω′

2)
ωβ

) , (B19)

where we set

ωL = L, ωβ =
√

β2 − β2
0/C (B20)

for simplicity of the formulas.

Equation (B19) represents the 2d (non-regularised) Dirichlet Green function for a cylinder. If

|ω − ω′| ≪ ωβ, (B19) behaves as

(B19)
|ω−ω′|≪ωβ→ − δµν

K0C

1

2π
log |ω − ω′|, (B21)

i.e. as the ordinary Green function.
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We can also compute 〈∂aXq(ω) · ∂bXq(ω
′)〉 for ωβ ≫ |ω − ω′| ≫ √

ε = a 4
√
ρ̄ by differentiating

(B19) with respect to ωa and ω′
b. We then find

〈∂1Xq(ω1, ω2) · ∂1Xq(ω
′
1, ω2)〉

ω′

1→ω1→ d

K0C

π

2ω2
β

(
− 1

π2(ω1 − ω′
1)

2
+

1

3
− 1

sinh 2πω1

ωβ

)
(B22)

for ω′
2 = ω2. In particular, we recover this way the ω1-dependent term in the final part of the

induced metric displayed in Eq. (B6). The constant term is also reproduced but this could be a

coincidence because it is in general regularisation-dependent.

It is not hard to compute a correlator analogous to (A11) in the string case. Setting in Eq. (B19)

ω′
2 = ω2, we find

〈Xµ
q (ω1, ω2)X

ν
q (ω

′
1, ω2)〉 =

δµν

2πK0C

(
log sinh

π(ω1 + ω′
1)L

ωL

√
β2 − β2

0/C
− log sinh

π|ω1 − ω′
1|L

ωL

√
β2 − β2

0/C

)
.

(B23)

At large L only the zero mode (i.e. the m = 0 modes) remains with an exponential accuracy and

we get

〈Xµ
q (ω1, ω2)X

ν
q (ω

′
1, ω2)〉 =

δµνL

K0C
√
β2 − β2

0/C

(
ω1 + ω′

1

2ωL
− |ω1 − ω′

1|
2ωL

)
, (B24)

which is quite analogous to Eq. (A11) in the particle case. In the open-string case this zero mode

was absent and the contribution of nonzero modes coincides with the open-string result [25].

Remarkably, the log divergence, contaminating Eqs. (B15), (B16) is missing in the corrlela-

tor (B23). It comes back if |ω1 − ω′
1| <∼

√
ε = a 4

√
ρ̄. This could be most probably interpreted as an

effect of spikes, i.e. very long thin pieces of surfaces of negligible area, of longitudinal size of the

cutoff at the world-sheet.
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