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Abstract
Objective. Patients undergoing general anesthesia may awaken and become aware of the surgical
procedure. Due to neuromuscular blocking agents, patients could be conscious yet unable to
move. Using brain–computer interface (BCI) technology, it may be possible to detect movement
attempts from the EEG. However, it is unknown how an anesthetic influences the brain response
to motor tasks. Approach. We tested the offline classification performance of a movement-based
BCI in 12 healthy subjects at two effect-site concentrations of propofol. For each subject a
second classifier was trained on the subject’s data obtained before sedation, then tested on the
data obtained during sedation (‘transfer classification’). Main results. At concentration
0.5 μg ml−1, despite an overall propofol EEG effect, the mean single trial classification accuracy
was 85% (95% CI 81%–89%), and 83% (79%–88%) for the transfer classification. At
1.0 μg ml−1, the accuracies were 81% (76%–86%), and 72% (66%–79%), respectively. At the
highest propofol concentration for four subjects, unlike the remaining subjects, the movement-
related brain response had been largely diminished, and the transfer classification accuracy was
not significantly above chance. These subjects showed a slower and more erratic task response,
indicating an altered state of consciousness distinct from that of the other subjects. Significance.
The results show the potential of using a BCI to detect intra-operative awareness and justify
further development of this paradigm. At the same time, the relationship between motor
responses and consciousness and its clinical relevance for intraoperative awareness requires
further investigation.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interfaces (BCIs) are systems directly trans-
lating brain signals into useful output, such as control of a
device. By eliminating the need for muscular control, BCIs
can therefore provide a means of interaction with the
environment for partially or completely paralysed patients
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(e.g. in [1]). Patients under general anesthesia are often
temporarily paralysed with a neuromuscular blocking agent.
If they awake during surgery, they may find themselves in a
situation where they have a certain degree of consciousness
but are nevertheless unable to move or speak. This experi-
ence, known as ‘unintended awareness with postoperative
explicit recall’, has an estimated incidence of 0.1%–0.2% [2].
Although several (commercial) monitors of anesthetic depth
have been developed, they are not often used [3], which may
be due to concerns about their reliability [4–7]. Finding
accurate methods for detecting awareness in patients is thus
still an ongoing challenge within anaesthesia research.
Therefore we propose to extend BCI research into the domain
of anesthesia awareness.

One of the best known and most successful BCI para-
digms is detection of changes in sensorimotor rhythms from
the EEG during attempted and imagined movement [8]. For
instance, it has been shown that attempted movements can be
detected from patients with tetraplegia [9]. Likewise, motor
tasks may be used as a diagnostic tool in determining states of
altered consciousness in patients recovering from coma [10].
This evidence shows the potential of using patients’ move-
ment attempts during general anesthesia as an indicator of
awareness. Intentions of movement could replace or com-
plement the features currently used in anesthesia monitoring,
such as entropy or bispectral analysis [11].

Our proposed BCI paradigm proved successful in awake
volunteers intending gross movement [12] and also in awake
volunteers trying to move one isolated forearm temporarily
paralyzed by a neuromuscular blocking agent [13]. However,
hypnotics are known to change EEG characteristics [14, 15].
Sensorimotor rhythm modulations normally occurring when a
person is engaged in a motor task may be altered or disappear
altogether.

In this study we therefore investigated the influence of
low doses of propofol on sensorimotor rhythms. Healthy
participants performed a motor task in a baseline state as well
as in altered states of consciousness induced by propofol. For
each state, offline classification accuracies of movement as
compared to rest were determined. If the specific brain
response normally seen during movement is retained after
administration of hypnotic drugs, it may be used for BCI-
based communication.

2. Methods

2.1. Participants

Twelve right-handed healthy volunteers (aged 18–28, 5
females) participated in this study. None had any known
neurological or motor impairments, nor contraindications for
the use of propofol. All participants gave written informed
consent prior to the experiment. Measurements took place in
an operating room at the Radboud University Medical Centre
in Nijmegen, the Netherlands.

2.2. Experimental design

All procedures were according to the Declaration of Helsinki
and were approved by the local Medical Ethics Committee.

The experiment consisted of three blocks. The first
experimental block was a baseline block in which the subjects
performed the movement tasks without administration of
propofol (block 0). In the subsequent blocks, propofol was
administered via a target controlled infusion (TCI) pump in
steps of 0.5 μg ml−1 (target concentration). So, the target
concentration was 0.5 μg ml−1 for the second block (block
0.5) and 1.0 μg ml−1 for the third block (block 1.0). An Alaris
PK infusion pump (Carefusion, Basingstoke, UK) was used in
the TCI mode (Schnider model, effect-site targeting). When
the target concentration had been reached, participants waited
for another 10 min before proceeding with the experiment, to
ensure equilibration between the body compartments. Only
subjects S1, S2 and S3 received an additional propofol dose
increase with 1.5 μg ml−1 as target concentration. During the
entire procedure heart rate, blood pressure and oxygen
saturation (pulse oximetry) were monitored. After the end of
the experiment participants remained in the OR complex until
they were fully recovered.

In each block, sequences of nine movement trials were
presented to the subjects. Each trial consisted of an auditory 3 s
cue, with a 4 s silence interval between consecutive trials. At the
start of each sequence, an auditory instruction was given
explaining the task for the upcoming trials: either ‘move’
(continuous hand tapping) or ‘do not move’. The participants
had to perform the instructed task during the auditory cues, and
rest during the silence intervals (figure 1). Participants were
asked to keep their eyes closed throughout the entire sequence.
Between sequences participants could have a short rest, then
start the next sequence by pressing a button. Per block, between
54 and 63 trials were presented for each of the two task con-
ditions. Within each block, presentation of the sequences was
randomized. A short practice block to get the participants
acquainted with the task preceded the actual measurements.

The experiment was programmed in and run on the
BrainStream platform4 Version 1.0, i.e. a Matlab (MathWorks
Inc., MA, USA) toolbox especially developed for online BCI-
experiments, using Psychtoolbox5 for stimulus presentation.

2.3. EEG, EMG and BIS recording and analyses

EEG was recorded with a 32-channel actiCAP system (Brain
Products), based on the international 10/20 system. Impe-
dances were kept below 25 kΩ before starting the measure-
ment, and the sampling rate during recording was 2500 Hz.
After recording, signals were downsampled to 128 Hz.

Two electrodes were removed from the EEG cap and
instead used to record the left forearm electromyogram
(EMG). Muscle outputs as recorded by EMG were used to
determine if and when participants had executed the wrong
task. EMG signals were rereferenced using a bipolar reference
for the two channels and high-pass filtered at 10 Hz to reduce

4 http://www.brainstream.nu
5 http://psychtoolbox.org

2

J. Neural Eng. 13 (2016) 026014 Y Blokland et al

http://www.brainstream.nu
http://psychtoolbox.org


the effect of artifacts such as electrode drift. Then, the signals
were converted to power over time by taking the absolute
magnitude of the analytic signal as found using a Hilbert
transform, and the mean power per subject and movement
condition was determined for the period between 0.1 and 3.5 s
(task onset is at 0). Trials for which the EMG power deviated
more than 3 times the standard deviation from the mean for
that subject and condition were excluded from further ana-
lysis. For the remaining trials, the mean amplitude per subject
per condition was determined, as well as the mean movement
onset time and standard deviation for the movement tasks by
identifying the first rising edge of the EMG amplitude
increase.

Additionally, Bispectral index (BIS) was measured using
the Philips M1034AX (BIS) Solution plug-in module (Philips
Medical Systems, Eindhoven, The Netherlands). BIS is a
commercial depth of anesthesia monitor, providing a number
between 0 (no brain activity) and 100 (completely awake)
[16]. While no true gold standard is currently available, BIS is
generally considered to be one of the most important monitors
of anesthetic depth in clinical use and it is relatively well
known among anesthesiologists. Its straightforward output
gave an indication, both during the experiment and when
interpreting the results, about the overall awareness reduction
in our participants. Values were recorded manually every
1–2 min during the experimental blocks.

2.3.1. Classification. To test the feasibility of detecting
movement during propofol sedation, offline classification
analyses were performed separately for each of the three
experimental blocks. Data obtained at a propofol effect-site
concentration of 1.5 μg ml−1 were not used for analysis, as
explained below. The parameter settings used have been
validated for this paradigm in a previous study [12].
Specifically, the classifier used information from only nine
EEG channels, as this would be more practical in clinical
settings than using a full standard EEG cap. Moreover,
frequencies above 24 Hz were disregarded. Even though they
may contain useful information, in the current setup involving
actual movements these higher frequencies may be prone to
class-related artifacts [17].

The typical brain response to be seen during motor tasks
(actual, attempted or imagined movements) is a power
decrease in mu rhythm (8–12 Hz) and beta rhythm
(18–25 Hz) activity in the sensorimotor cortex, with a short

rebound period in roughly the same frequencies after
movement has stopped. These changes are commonly
referred to as event-related desynchronization (ERD) and
event-related synchronization (ERS) [18]. Thus, these were
the main features the classifier used in this study was expected
to use for its decisions.

Trials were constituted of 3 s of movement (or no
movement) followed by 3 s of rest. For the classification
procedure, the data were first linearly detrended to minimize
analysis artifacts due to large DC offsets. After calculating the
surface Laplacian reference per channel using Perrins
spherical spline interpolation method [19], the power spectral
density was computed for 8–24 Hz using Welch’s method
[20] with a resolution of 4 Hz and a Hanning taper applied to
50% overlapping windows (i.e. windows of 250 ms with
overlap of 12 ms were used), using separate features for ERD
(data obtained during movement, i.e. 0–3 s) and ERS (post-
movement, i.e. 3.5–6 s). This subset of power spectral
features for each channel was then used to train a
quadratically regularized linear logistic regression classifier
[21] to distinguish between each subjects specific pattern of
spatial and spectral activation for the movement condition as
compared to the ‘no movement’ condition. Validation set
performance was estimated using ten-fold cross-validation.
So, for each condition the trials were distributed over ten
subsets (folds), with each fold used for testing once while the
remaining nine folds were used for training the classifier.

Additionally, we calculated the performance of the
classifier when it was trained on block 0 (baseline: no
propofol), then tested on the data from block 0.5 (propofol
effect-site concentration 0.5 μg ml−1) and block 1.0 (propofol
effect-site concentration 1.0 μg ml−1), respectively. The
rationale behind this lies in the eventual clinical application,
where it would make sense to train a classifier before general
anesthesia, then apply it after drug administration. Here, no
cross-validation was required for performance estimation.
Inspection of the power spectra revealed a β-increase in the
sedation conditions, a known effect of anesthetic drugs
[22, 23]. In order to cancel out these dose-dependent shifts,
which are unrelated to the movement task, trials were first
baselined by estimating the average spectrum of the entire
trial (−1–6 s) and then dividing by this estimate. After that the
classifier could be trained on the baseline (no propofol) data
and then transferred to the data obtained during sedation.

Figure 1. Visualization of two trials in an experimental sequence. The gray area on the time scale indicates the time period that is used for
analysis of each trial, and corresponds to the time scale used in figure 5 (results).
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2.3.2. Statistical analyses. To test whether the classifier can
make any meaningful decision at all, it is important to
compare its results to those of a ‘random’ classifier. For a
binary problem with balanced classes, such as in this study,
the theoretical chance level performance is 50%. Using the
binomial distribution for proportional data, taking into
account the number of trials per condition, confidence
intervals (CI) for a random classifier can be calculated [24].
Individual classification accuracies were compared to the
upper limit of the 95% CI of a random classifier.

Additionally, for each condition the 95% CI for the mean
classification accuracy was calculated, using GraphPad Prism
version 5.03, GraphPad Software, San Diego California,
USA. A 95% CI lower limit above 50% for a given condition
means that the classifier performs better than chance, i.e. the
true mean in the population is higher than 50% (p=0.05).

3. Results

All participants performed the tasks well. During the
administration of propofol, however, participants started to
show signs of sleepiness, and gradually needed to increase
their efforts to stay alert and perform the required task. The
table shows that the mean BIS values decreased from 92.1
during baseline to 90.5 and 83.1 during propofol adminis-
tration. As the experiment progressed, reaction times
increased and some participants started making a few errors.
Based on the EMG responses, 0.6%, 1.7% and 4.1% of trials
were judged to have been wrongly executed in blocks 0, 0.5
and 1.0 respectively. For the movement conditions, the mean
EMG amplitude as a percentage of each subject’s baseline
EMG amplitude was 86% and 74% at propofol effect-site
concentrations of 0.5 and 1.0 μg ml−1, respectively. The
mean movement onset time increased by 65 ms (from 273 to
338 ms) between block 0 and block 1, but there was no dif-
ference between block 0 and block 0.5 (see table 1).

Only the first three participants received propofol aiming
at 1.5 μg ml−1 effect-site concentration. For all three, aware-
ness levels were reduced so much that they were unable to
perform the task. Therefore the data obtained at this con-
centration were not analysed and the final nine participants
did not receive this dose.

Figure 2 shows the paired data for single trial classifi-
cation accuracies for each subject. Mean accuracies were
87.5% (95% CI 82.4%–92.5%) for block 0, 84.9% (80.9%–

88.9%) for block 0.5 and 80.9% (76.1%–85.8%) for block
1.0. For each subject and condition the performance was

significantly higher than chance level (p<0.05). After cor-
recting for dose-dependent EEG shifts (figure 3), a classifier
was trained on data from the baseline block and then applied
on data from blocks 0.5 and 1.0. The mean accuracy for this
transfer classification was 83.4% (79.3%–87.5%) for block
0.5, and 72.4% (65.7%–79.1%) for block 1.0. The transfer
classification performance was significantly higher than
chance level (p<0.05) for all subjects at 0.5 μg ml−1, but
only for 8 out of 12 subjects at 1.0 μg ml−1. All transfer
classification accuracies are shown in figure 4.

To find possible indicators as to why the transfer clas-
sification was not significantly better than chance in subjects
S1, S2, S3 and S6, the propofol-associated changes in the BIS
and EMG measures were reanalysed post-hoc for the effect-

Table 1. Overview of the experimental blocks with the propofol target concentrations, along with the results for BIS (Bispectral Index) and
EMG analyses. Numbers are given as mean (SD).

Block Target Concentration BIS Task execution errors (%) EMG amplitude (%) Movement onset time (ms)

Block 0 0 μg ml−1 92.1 (4.56) 0.6 (0.8) 100 273 (24)
Block 0.5 0.5 μg ml−1 90.5 (4.05) 1.7 (3.3) 86 (16) 273 (33)
Block 1.0 1.0 μg ml−1 83.1 (3.81) 4.1 (3.7) 74 (20) 338 (59)

Figure 2. Single trial classification accuracies in percentages per
subject per propofol effect-site concentration. The twelve subjects
entered the study in an order designated by the integers from 1 to 12.
The dashed line shows the binomial confidence interval (α=0.05)
for the minimum number of trials used for performance estimation
(46 trials for S1 at 1.0 μg ml−1). For the remaining subjects and
conditions the line would be slightly lower. The error bar gives an
indication of the standard error of the performance estimates using
10-fold cross-validation (single example shown).
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site concentration of 1.0 μg ml−1. The mean BIS-value for
these four subjects was 80.6, as compared to 84.4 for the
remaining subjects. Regarding the EMG, S1, S2, S3 and S6
not only had the highest movement onset times (range
370–448 ms versus range 264–348 ms in the other subjects),
but also the standard deviations of the movement onset times
were highest for these subjects (range 181–292 ms versus
range 64–158 ms), meaning their responses were both slower
and more erratic.

In figure 5 details are shown for one participant for whom
the transfer worked (S7) and for one participant for whom it
did not (S2). The plots reveal that the desynchronization in
8–24 Hz (ERD) remains constant in S7 after propofol
administration, whereas for S2 the effect is greatly reduced at
1.0 μg ml−1 target concentration.

4. Discussion

4.1. Principal findings

This study showed that motor responses could be detected
from the EEG of volunteers during altered states of con-
sciousness, with an average single trial classification accuracy
of 85% at a propofol effect-site concentration of 0.5 μg ml−1

and 81% at a propofol effect-site concentration of
1.0 μg ml−1. Single trial ‘transfer’ classification accuracies of
83% and 72% were obtained at propofol effect-site con-
centrations of 0.5 and 1.0 μg ml−1, respectively. Adding this
to previous findings showing the possibility of detecting
attempted movement during neuromuscular block [13], we
conclude that further development of the proposed BCI is
justified. During various conditions of drug administration,
including both hypnotics (propofol) and neuromuscular
blocking agents (rocuronium), movement can be dis-
tinguished from rest with high accuracy.

For eight of the 12 subjects it was possible to ‘transfer’
between the baseline state and the highest level of sedation. In
other words, a classifier trained on the subjects’ data obtained
prior to administering propofol was able to detect the move-
ments at the target concentration of 1.0 μg ml−1 with an
accuracy above chance level (p<0.05). This fact is useful
for subsequent steps in development of the paradigm, speci-
fically for determining the most efficient way of system
calibration. The transfer of the BCI from a baseline condition
to the sedation conditions is relevant because of the inter- and
intrasubject variabilities in the brain signal. Currently, most
BCIs require a calibration phase for each individual user and
session. Especially in the developmental phase of BCI para-
digms, system calibration is an essential step. In the near
future however, end-user applications may no longer require
this phase, as novel methods are being developed in which a
generic classifier can be applied to every user’s data. This
means there is not only a transfer between different states in
an individual user, but also between users. Promising results
have recently been reported on such so-called zero-training
BCIs for a spelling paradigm [25], and also movement-related
BCIs may be feasible without (or with very limited) user-
specific calibration [26–29].

The successful transfer was partly based on adequate
compensation of propofol-induced effects. Most conventional
EEG-monitors in anesthesia, like BIS or entropy module, use
only frontal electrodes to detect drug-induced EEG changes.
However, hypnotic drugs like propofol have substantial
effects on the EEG measured at other electrode locations as
well [30]. Accordingly, we found a clear propofol effect with
a β-increase at the central electrodes, where the main EEG

Figure 3. Frequency powers at propofol effect-site concentrations
0.0 and 1.0 μg ml−1, averaged over all subjects, channel C3. At
1.0 μg ml−1 a β-increase is seen, as well as a reduction in γ.

Figure 4. Transfer classification rates (single trial) per subject for two
propofol effect-site concentrations. Classification accuracies were
obtained after classifier training using data from the baseline
condition (no propofol administered). The dashed line shows the
binomial confidence interval (α=0.05).
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effect of (attempted) movement is located. By baselining each
individual trial this increase was cancelled out. As a result, the
classifier only took into account relative motor response
effects. Because the exact change of the background EEG
does not have to be known, this crucial compensation seems
to be a large benefit of using a BCI algorithm during general
anesthesia. However, the baselining procedure may introduce
other issues, as discussed further on.

Unexpectedly, for four subjects (33%), a classifier trained
on the baseline data could not distinguish between movement
and rest at a propofol effect-site concentration of 1.0 μg ml−1.
If these subjects were excluded, the transfer classification
performance would increase from 72% to 79% (95% CI 74%–

85%). Studying the properties of these trials may shed light

on how propofol-induced sedation interferes with sensor-
imotor integration. However, for a full understanding, future
studies will be required that directly target at addressing these
issues. Nevertheless, careful analysis of the available data
showed that a few patterns emerged. Speculating on the
reason for the low classification performance for these four
subjects, we point out a few aspects.

First, visual inspection of the individual time–frequency
spectra of these subjects revealed a large reduction or even
absence of the ERD/ERS pattern at the effect-site con-
centration of 1.0 μg ml−1. Second, the individual differences
in the propofol-induced β-increase should be considered. For
S2, the largest relative increase in power between 14 and
22 Hz was found (power at 1.0 μg ml−1 target concentration

Figure 5. Relative power spectra for the movement period and time–frequency plots for S7 (left-hand subfigures) and S2 (right-hand
subfigures), channel C3. Subfigures (c)–(f) show the relative power increase or decrease per time point as compared to the mean of the trial.
The dashed lines indicate the movement task period.
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was more than 200% of the power at 0.0 μg ml−1 target
concentration). A large increase was also seen in S1 and S3,
but the same was true for S7, S10 and S11 (all between 150%
and 190%). While overall the performance was largely
increased by adding the baselining procedure, in some cases
this may in fact have attenuated the ERD/ERS response
altogether. Third, remarkably, the first three subjects entering
the study all belonged to the group of four subjects with
deviating results. They were the only participants in whom we
attained the highest propofol concentration, i.e. 1.5 μg ml−1.
At this effect-site concentration, all three subjects became
unable to follow commands. Afterwards, none of these sub-
jects exhibited recall of events from after administration of
this third and final dose. Fourth, the four subjects for whom
the transfer classification performed below chance level were
the four who had the largest increase in both mean movement
onset times as well as the largest spread between said onset
times. For two of these subjects, S2 and S6, the mean EMG
amplitude at 1.0 μg ml−1 target concentration was less than
50% of the amplitude at 0.0 μg ml−1 target concentration,
which may point to a change in task intention (note that a
reduction or absence of motor output itself does not neces-
sarily mean a reduced brain response; the intention itself
seems to be the most important factor [13]). Fifth, S1, S2 and
S3 had made relatively many errors in executing the move-
ment task as compared to the remaining subjects at 1.0μg/ml
target concentration, while S6 had made the most mistakes at
0.5 μg ml−1 target concentration. This may indicate a mis-
interpretation of sensory information and therefore a lower
level of awareness and command following. Finally, the mean
BIS value at 1.0 μg ml−1 target concentration was lower for
these four subjects (80.6) than the mean of the other eight
subjects (84.4).

4.2. Models of consciousness

The current study was based on the assumption that a patient
under general anesthesia would either be unconscious and
hence not move while being stimulated, or the patient would
be conscious and move, unless paralysed. Our findings indi-
cate that instead a more detailed model of consciousness
should be adopted.

While the above observations may not be sufficient to
draw any hard conclusions, they do indicate that the group of
four volunteers may have been close to a state described by
Pandit [31] as ‘dysanesthesia’ at the target concentration of
1.0 μg/ml. In this state, one may respond to simple com-
mands but not to surgical stimuli. There is a certain degree of
consciousness, but perception and sensory input are uncou-
pled such that memory formation is unlikely. This state is,
according to Pandit, the minimum requirement for satisfac-
tory general anesthesia [32]. Our findings seem to be in line
with the functional model of consciousness proposed by
Pandit as well as his view on the isolated forearm technique
(IFT, [33, 34]).

While reviewing results from IFT, Pandit has suggested
that patients may have retained some limited capacity for
responsiveness to simple command, but that this does not

always mean consciousness. The method of IFT is simple but
its interpretation is controversial. One arm of the patient is
isolated from the circulation so that it remains unaffected
when a neuromuscular blocker is administered. The patient is
asked to respond to command by moving the unparalysed
hand. An awake patient would thus be able to communicate
his/her state of awareness. According to the Global Work-
space Theory specialized neuronal networks can execute
movements on verbal command without the subject being
conscious. This could explain why in some IFT studies
patients responded to command, but did not show any
spontaneous response to surgery [31]. In addition, movements
during IFT are not correlated with any recall of events in most
of the studies on IFT [35].

It might be hypothesized that in our study the movements
were executed on a subconscious level at a certain propofol
target concentration. For the four volunteers showing—to a
certain extent—deviating results, the progressive loss of the
respective functions constituting consciousness could have
been more rapid than in the other participants. If Pandits
model is right and if the group of four shows signs of dysa-
nesthesia, then they would no longer belong to the primary
target population of our research project.

As the BCI detects real cortical involvement during
movement, it may be an even better measure of intraoperative
awareness than the BIS or the IFT. Nevertheless, we must
recognize that the state of dysanesthesia might represent a
precursor for awareness [32].

4.3. Limitations and future research

To find more conclusive answers on the matters discussed
here, future studies on our proposed paradigm could be
expanded with behavioral measures to track memory forma-
tion after drug administration. Moreover, it would be highly
interesting to measure the EEG above the motor cortex during
the IFT and to correlate this with memory formation. A dif-
ficulty presented by that type of research setting, however, is
that it is very sensitive to the Heisenberg uncertainty principle
with a marked observer effect: every behavioural measure-
ment of consciousness itself is potentially altering the state of
consciousness by being an arousal stimulus.

Despite this study being conducted in an operating room,
the question still remains to which extent this controlled
research setting mirrors the real clinical situation. The focus
of a patient awakening during surgery who follows movement
commands for seconds to escape this situation is different
from that of a paid volunteer performing a non-demanding
repeating task in a non-stimulating environment for more than
an hour. This may explain the marked sedation of the
volunteers at relatively low propofol concentrations, as the
actual state of sedation is always the result of the balance
between sedating drug effect and environmental arousal. For
example, Röpcke and colleagues [36] studied the effect of
surgical stimulation on the EEG. They found a shifted dose-
response relationship for the effect of anesthetic drugs on the
EEG depending on the presence or absence of surgical
stimulation.
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This study was a first exploration as to whether motor
response detection after hypnotics administration may be
feasible. Meanwhile, BCI research is continually bringing
forth further advancements, of which many may be applied to
the paradigm proposed here. For example, improvement of
motor detection performance could be gained by taking into
account multi-trial classification (i.e. increasing the amount of
information the classifier uses for making its decision) and by
adapting the system to achieve a certain true positive/false
positive trade-off rate. Moreover, with the development of
more advanced EEG systems a reduction in setup time and
signal noise can be expected in the near future. The intro-
duction of wireless and dry electrodes will also mean an
improvement in comfort and user-friendliness, which is
important for clinical use [37–39].

4.4. Conclusions

To conclude, despite a clear effect of propofol on the EEG,
changes in sensorimotor rhythms could still be detected in
sedated volunteers. These findings are encouraging for the
further development of a BCI for detecting attempted move-
ments during intraoperative awareness. Importantly, in con-
trast to existing monitors, it is based on active communication
by the patient, rather than a passive interpretation of the brain
signal. However, alongside further technical development of
the proposed system, a more precise model of the relationship
between motor responses and consciousness is required.
Because some volunteers moved without a clear correlated
EEG response, future studies are needed to investigate the
exact state of consciousness in these cases, as well as its
clinical relevance for intraoperative awareness. This provides
an opportunity for deeper insights in this challenging field of
research. At the very least, anesthesiology research could
benefit from BCI technology in general. Much insight could
be gained by connecting with this field of research as anes-
thesiologists and BCI experts pursue a similar goal: com-
munication by patients in a conscious locked-in state.
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