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Macroscopic self-reorientation of interacting
two-dimensional crystals
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Microelectromechanical systems, which can be moved or rotated with nanometre precision,

already find applications in such fields as radio-frequency electronics, micro-attenuators,

sensors and many others. Especially interesting are those which allow fine control over the

motion on the atomic scale because of self-alignment mechanisms and forces acting on the

atomic level. Such machines can produce well-controlled movements as a reaction to small

changes of the external parameters. Here we demonstrate that, for the system of graphene

on hexagonal boron nitride, the interplay between the van der Waals and elastic energies

results in graphene mechanically self-rotating towards the hexagonal boron nitride crystal-

lographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres

the tangential movement can be on hundreds of nanometres) and can be used for repro-

ducible manufacturing of aligned van der Waals heterostructures.
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I
n many layered crystals, it is the van der Waals interaction
which is responsible for perfect stacking of individual layers.
Once such perfect stacking is lost (for instance through a

rotational fault), the van der Waals interaction tends to restore
the perfect stacking—the effect known as self-rotation. This effect
has been seen for nanometre-sized graphene flakes when driven
by an atomic force microscopy (AFM) tip on the surface of
graphite1. However, up to now, such phenomena has not been
observed at micrometre or larger sizes, apart for the cases when
such self-rotation was driven by surface free energy in displaced
graphite mesa structures2,3.

One of the reasons why self-rotation is hard to observe in
homogeneous systems (where the two surfaces are represented by
the same crystals) is because both the self-rotating forces (which
try to return the crystals to perfect stacking), and the friction
forces are essentially determined by the same van der Waals
potential. So, even when close to the perfect commensurate state
(where the self-retracting forces should be the strongest), the van
der Waals potential would exhibit a number of local potential
minima (which correspond to strong friction), where the system
may get localized.

The situation is very different when the two crystals are not
identical (for instance, have different lattice constants). In this
case, the local minima in the van der Waals potential are not
expected to play such a significant role, because of strong
incommensurability. In addition, if at least one of the crystals has
the freedom to relax elastically, the van der Waals potential starts
to compete with elastic energy, forming more complex potential
landscape. Thus, it is interesting to investigate if the self-rotation
can be achieved in such heterogeneous structures.

Such interfaces can be created by stacking several
two-dimensional (2D) atomic crystals into van der Waals
heterostructures4–6, with one of the most interesting systems
being graphene on hexagonal boron nitride (hBN)7, as the lattice
constants of the two crystals are different only by 1.8%. It has
been shown that graphene on hBN has an observable moiré
pattern, whose period depends on the misorientation angle8,9.
Because of the difference in the interatomic distances for the two
crystals, the maximum moiré period (of B14 nm) is achieved
when the crystallographic lattices are perfectly aligned. At small
deviations from the alignment, graphene on hBN undergoes an
incommensurate to commensurate transition10. In the
commensurate state, graphene splits into domains (where its
lattice is stretched to gain in van der Waals interaction energy
with hBN) separated by sharp domain walls (where graphene
lattice is relaxed)10,11. Within the domain, the stretching is
gradual, ranging11 from more than 1%, down to 0%. Thus, the
average stretching of graphene is quite small (well below 1.8%),
resulting in only a small lost in the elastic energy, which is
compensated by the gain in the van der Waals energy.

Such stretching of graphene, even so being small, leads to
global breaking of the sublattice symmetry12–14. Thus, the
possibility to align graphene and hBN is extremely important,
and already led to the observation of a number of exciting
physical phenomena, such as Hofstadter butterfly15–17 and
topological currents18. Furthermore, the concept of self-
alignment could be extended to other interfaces and utilized for
the formation of novel devices19–26, which rely on such aligned
crystals (for example, resonant tunnelling diodes27).

Typically, the commensurate state is identified by a small (of
the order of 0.1) ratio between the width of the domain walls (d)
and the moiré period (L), whereas d/LE0.5 in the incommensu-
rate phase.

In the following, we demonstrate that, despite the strong
competition between the elastic and van der Waals energies,
graphene can reorient itself on top of hBN towards a

commensurate state (where the crystallographic axis of the two
crystals are aligned better thanB0.7�).

Results
Demonstration of self-rotation for graphene on hBN.
Graphene flakes, studied in this work, were transferred onto hBN
by the dry transfer method28,29, to produce a clean interface
(Fig. 1a). During the transfer procedure, we ensure (by direct
optical observation of the crystallographic facets in the transfer
set-up) that the crystallographic directions of graphene and hBN
are misoriented by y¼ 1–2�. We further confirmed the
misorientation angle by measuring the period of the moiré
pattern in scanning probe experiments8–10 (Fig. 1b) as well as by
the width of Raman 2D peak (Fig. 2a), which can be related to the
period of the moiré superstructure30 and the misorientation
angle30 (Fig. 2b). Moiré patterns can be observed in various
channels in AFM, including topography, friction and so on, as
well as in scanning tunnelling experiments8,9 and conductive
AFM15. Here we mainly used PeakForce Tapping mode31 and
evaluated the point Young’s modulus channel with a typical
resolution better than 2 nm.
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Figure 1 | Optical and atomic force microscopy of a self-rotating flake.

(a) Optical microscopy image of the flake, demonstrating a very clean

interface (bubble free) between graphene and hBN (the scale bar is 20mm).

Different colours correspond to different thicknesses of hBN. Graphene is

practically invisible and is marked by red dashed line. The hatched area is

bilayer graphene. (b,c) Young modulus distributions obtained in PeakForce

Tapping mode of the moiré superlattice before (b) and after (c) self-

alignment. The scale bar in b and c is 10 nm. (d,e) Line profiles across the

respective Young’s modulus distribution images, which indicates the

smaller width of the Young’s modulus peaks in the annealed (self-rotated)

sample. Symbols—experimental data, solid curves—fitted peaks.
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Figure 1a shows an optical image of one of our graphene on
hBN structures (another example is given in Supplementary
Note 1). Originally, it has been aligned by yE1.0� with respect to
the hBN flake, as confirmed by AFM (Fig. 1b) and Raman
(Fig. 2a,b). We would like to note that, even before annealing, this
flake approaches the commensurate state (d/L¼ 0.35, Fig. 1d).
The sample was annealed at 200 �C for 4 h in forming gas
(90% Arþ 10% H2). After annealing, L increases by 15%
(from 10 to 11.5 nm, Fig. 1c), which indicates greater alignment
(misalignment angle yE0.7�). Importantly, d/L¼ 0.20 after
annealing, which demonstrates an increased level of commen-
suration (also confirmed by Raman, Fig. 2c,d). The alignment is
uniform across the flake, which could be seen from the Raman
signal (Fig. 2b,d) or from the observation of the uniform moiré
period by AFM measurements in different parts of the sample
(see Supplementary Note 2 for details, and similar data for
another sample in Supplementary Note 1).

We would like to stress that neither formation of creases nor
strain accumulation have been observed after the annealing
(as follows from our AFM and Raman measurements, respec-
tively). To achieve such uniform alignment, the graphene flake
should have uniformly rotated by Dy¼ 0.3�. It means that some
parts of the flakes should have moved by d¼DylE0.15 mm
(here lB30mm is the characteristic size of the flake). This is a
significant macroscopic movement, which can be used to drive
certain nanomachines (such a macroscopic motion is demon-
strated in Supplementary Note 1, as well as has recently been seen
by other groups as well32).

Theoretical analysis. What pushes such macroscopic movement
is the gradient in the van der Waals forces. To analyse their role,
we compare, in Fig. 3, the interlayer van der Waals energy to the
elastic intralayer contribution to the total energy after energy
minimization for different alignments, relative to the values at 0�.
The total energy does not vary up to 0.7�, after which the
interlayer energy interaction increases while the intralayer energy
decreases, resulting in an increase of total energy. As all values are
obtained from energy minimization for a given angle, this
figure does not give information about the barriers between
different angles.

This picture fits remarkably well with our experimental
observation. Our graphene flakes rotated to within 0.7� to the

crystallographic orientation of hBN, which corresponds
nicely to the plateau in van der Waals energy misalignment
dependence for yo0.7�. Still, we note that in many previous
experiments8–10,15–17 the graphene flakes exhibit much better
alignment than 0.7�, which we would like to also attribute to the
self-rotation mechanism.

Appearance of one-dimensional wrinkling. We would like to
stress that not all the flakes become aligned after annealing. We
had a number of flakes that do not self-align. At the same time,
those which do not undergo the self-rotation would typically
form one-dimensional network of wrinkles (Fig. 4b), similar to
that reported previously33 (although in that case such wrinkles
are formed upon cooling). Similar to the moiré pattern, the
wrinkles could be observed in several AFM modes, although they
are most clearly visible in the local Young modulus and height
channels (see Supplementary Note 3 for more examples). The fact
that they are readily observable in the Young’s modulus channel,
suggests strain accumulation around the wrinkles, which is also
confirmed by an increase in the full-width at half-maximum of
the Raman 2D peak (Fig. 4e; in this case, the broadening is
uniaxial, which reflects the fact that wrinkles predominantly
create strain only in one direction, see Supplementary Note 4).
Figure 4a,b shows the contrasting images in Young’s modulus of
the moiré pattern before and after annealing to high temperature,
respectively. The one-dimensional network of wrinkles is clearly
visible on the sample after annealing to be superimposed on the
moiré structure (Fig. 4b). At the same time, the period of the
moiré structure has not changed. We would also like to suggest
that the wrinkles are most likely linked to the moiré structure, as
seen from the orientation and the position of the peaks in the
Fourier transform patterns.

The proposed mechanism for their formation is the following.
At high temperature, because of the difference in the thermal
expansion coefficients between the hBN and graphene, the lattice
mismatch increases, favouring the incommensurate phase.
Upon cooling, the same difference in thermal expansion
coefficient acts as a compression for graphene, possibly leading
to wrinkles (Fig. 4f). Also, the reconstructed moiré pattern
recovers upon cooling, making the two structures (wrinkles and
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Figure 2 | Raman spectroscopy before and after self-rotation. (a,c) Maps

of the full-width at half-maximum of Raman 2D peak before and after

annealing, respectively (the scale bars are 10mm). (b,d) Histograms of

alignment angles, as recalculated from a and c, respectively.
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Figure 3 | Calculated interaction energies for graphene on hexagonal

boron nitride. Total energy (red circles) contributions from intralayer

(elastic changes/blue triangles) and interlayer (adhesive/black squares)

interactions, as a function of alignment angle, relative to the value at y¼0.

Points are calculated by minimizing energy for a given angle. Inset: the

same curves for low misalignment angles.
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the reconstructed moiré pattern) to coexist (Fig. 4g). However, as
both the domain walls of the reconstructed moiré pattern and the
wrinkles carry strain field, it becomes energetically favourable to

make the two commensurate, overlapping the wrinkles and the
domain walls (Fig. 4h). Furthermore, the wrinkles can undergo
further reconstruction within the domains of stretched graphene
themselves (Fig. 4i). In this model, wrinkles should carry
additional strain, which indeed has been observed by strong
broadening of the Raman 2D peak (Fig. 4e). Such contribution to
the strain energy changes the potential landscape and, as it turns
out, prevents the self-alignment process.

Finally, the presence of contamination bubbles and creases
seems to prevent the possibility of self-alignment. Self-alignment
was not observed in any sample with more than a few bubbles.
The detrimental influence of the bubbles can be twofold: it
reduces the interaction area between graphene and hBN, making
the van der Waals potential landscape shallower; also, the
contamination concentrated in such bubbles29 can act as pinning
centres, preventing any macroscopic movements of graphene.

Discussion
Our observation opens a new direction in the physics and
applications of van der Waals heterostructures—self aligned
stacks. Already now this effect is being used to produce graphene
aligned on hBN for transport experiments (such as the
observation of Hofstadter effect15–17, topological currents due
to Berry curvature18 and so on). In such devices, the self-
rotation could be in principle observed directly as shifting of the
secondary Dirac point and the associated with it resistance peak
(see Supplementary Note 5 for details). We also expect that such
self-rotation is not unique to graphene/hBN stacks and that other
layered materials should exhibit similar behaviour. For instance,
in Supplementary Note 6, we present an example of the
observation of self-rotation in graphene/graphene stack being
seen via direct measurements of the electronic density of states in
tunnelling experiments. Furthermore, one can utilize the
mechanical motion of the crystals to produce nanomechanical
devices. It is still unclear to what extent the surface reconstruction
of the crystal influences the van der Waals potential—a subject
still to be explored further both through experimental and
theoretical investigations.

Methods
Sample fabrication. Our samples were produced by the dry (‘stamp’) transfer
technique described in detail previously28,29,34. In brief, the method involves using
a double polymer layer to identify and isolate graphene flakes on a membrane,
before bringing the graphene into contact with the hBN. Importantly, this method
does not require the use of any solvents, which minimizes the contamination.

Sample characterization. AFM measurements were performed on a Bruker
FastScan AFM, in the PeakForce31 feedback mode, which allows the extraction and
analysis of individual force curves for each pixel at regular scanning speeds
(0.5–4 Hz). Typically, fast and large area scans are used to determine the period,
whereas slower and smaller area scans are used to calculate the ratio d/L. Raman
spectroscopy measurements were taken with the Witec confocal Raman
spectrometer with a wavelength of 514 nm and 1 mW power.

Details of theoretical analysis. For the calculation of the interaction energies, we
constructed a model of graphene on hBN with their crystallographic axis rotated
with respect to each other. The hBN is kept fixed to mimic a bulk substrate. Note
that a different supercell has to be constructed at each misorientation angle
(see Supplementary Note 7 for details). The size of the supercells with periodic
boundary conditions demands the use of an empirical potential. The graphene
atoms interact through the reactive empirical bond order potential35, as
implemented in the molecular dynamics code large-scale atomic/molecular
massively parallel simulator (LAMMPS)36. This potential is widely used in
simulations of carbon materials in view of its excellent description of structure and
elastic properties of all carbon allotropes. As no potential for graphene/hBN
interaction is currently available, the interlayer interaction is assumed to be of the
form of a registry-dependent potential for interlayer interactions in graphene37,
without the correction for bending. We scale this potential to the lattice constant of
hBN and use different scaling factors for C–B and C–N interactions as was done in
ref. 11 because this leads to a good agreement with experimental results10 and ab-
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Figure 4 | Evidence of uniaxial straining in graphene on hexagonal boron

nitride. (a,b) AFM images of the moiré superstructure in a sample which

did not rotate before and after annealing to 600 �C, respectively. The scale
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temperature, the increase is linked to the formation of one-dimensional

(1D) wrinkles. (f–i) Proposed structure of the superposition between the

moiré pattern and the 1D wrinkles. At high temperatures, 1D wrinkles are

formed due to difference in thermal expansion coefficients of graphene and

hBN (f). Upon cooling, the moiré structure appears, which coexists with the

wrinkle (g). It is more energetically favourable, however, for the 1D wrinkles

to coincide with the domain walls of the moiré structure (h). Part of the

wrinkle can be flattened because of commensurate–incommensurate

transition (i).
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initio calculations38,39. We have further refined this approach13 leading to a choice
of the B–C interaction of 60% of the C–C value, whereas the N–C interaction is set
to 200% of the C–C value in the original form37. We minimize the total potential
energy by relaxing the graphene layer by means of FIRE40, a damped dynamics
algorithm. For samples close to alignment, this leads to significant changes in bond
length along the moiré pattern.
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