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Empirical studies have shown that belowground feeding herbivores can affect the
performance of aboveground herbivores in different ways. Often the critical life-history
parameters underlying the observed performance effects remain unexplored. In order
to better understand the cause for the observed effects on aboveground herbivores,
these ecological mechanisms must be better understood. In this study we combined
empirical experiments with a modeling approach to analyze the effect of two root
feeding endoparasitic nematodes with different feeding strategies on the population
growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica
nigra. The aim was to test whether emerging differences in life history characteristics
(days until reproduction, daily reproduction) would be sufficient to explain observed
differences in aphid population development on plants with and without two species
of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in
comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment
showed that aphid daily reproduction was lower on plants with P. penetrans (3.08
offspring female−1 day−1) in comparison to both uninfested plants and plants with
Meloidogyne spp. (3.50 offspring female−1 day−1). The species-specific reduction of
aphid reproduction appeared independent of changes in amino acids, soluble sugars
or the glucosinolate sinigrin in the phloem. An individual-based model revealed that
relatively small differences in reproduction rate per female were sufficient to yield a similar
difference in aphid populations as was found in the empirical experiments.

Keywords: aboveground-belowground interactions, induced responses, individual-based population model,
Brassica, root-lesion nematode, root-knot nematode, cabbage aphid

INTRODUCTION

Plants are the primary food source on earth for a wide range of aboveground and belowground
organisms. To defend themselves against this wide range of herbivores and pathogens, plants
possess a large arsenal of defense strategies (Meldau et al., 2012). Many plants increase their level
of defense upon damage by an herbivore. Induced defense responses have been found in over 100
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plant species. Compared to constitutive defenses, they have the
advantage that they can be aimed specifically at the attacker,
amongst others based on differences in feeding patterns or cues
in the saliva (Erb et al., 2012; Maffei et al., 2012). Induced
defense responses can be triggered both by aboveground and
belowground herbivores. It has been shown that, depending on
the feeding type and species of herbivore, different hormonal
signaling pathways are activated upon damage by herbivores or
pathogens. Cross talk between these pathways eventually will
determine the nature of the defense response (Pieterse et al.,
2012). The signaling hormones involved in activating the defense
responses are transported throughout the plant, thereby changing
the defense levels in undamaged systemic organs as well (Erb
et al., 2009). Consequently, the defense responses triggered by
a root herbivore may indeed affect the performance of shoot
herbivores, and vice versa (Wurst and van der Putten, 2007;
Kaplan et al., 2008; Vandegehuchte et al., 2010; Erb et al., 2011;
van Dam and Heil, 2011; Kutyniok and Müller, 2012). Because
of the specificity of the induced response to different species of
herbivores, the direction of the interaction between aboveground
and belowground herbivores strongly depends on the feeding
habit of the herbivores involved (van Dam and Heil, 2011). Root
chewing herbivores, for example, generally have a negative effect
on their aboveground counterparts whereas the effects of root
herbivores on sap-sucking shoot herbivores, such as aphids may
be more diverse (Kaplan et al., 2008; Johnson et al., 2012).

In many ways, root feeding nematodes and shoot feeding
aphids are analogs: both are serious plant pests with a sucking-
piercing feeding habit. They also intimately interact with
their host plant by injecting saliva into the plant. The saliva
contains various compounds and proteins, such as cellulases and
pectinases, which serve to facilitate penetration of the aphid’s
stylet or movement of the nematode itself through plant tissues
(Jones et al., 2013; Will et al., 2013). Moreover, other salivary
constituents are needed to create a local sink for plant resources
at the feeding site (Gheysen andMitchum, 2011;Will et al., 2013).
On the other hand, there are also distinct differences: many plant-
parasitic nematodes are endoparasitic and remain inside the root
tissue for a large part of their life cycle (Jones et al., 2013). During
the endoparasitic phase, root knot nematodes (e.g.,Meloidogyne)
and cyst nematodes (Heterodera) are sedentary, and establish
specific feeding structures requiring remodeling of plant root
tissues. Root-lesion nematodes (e.g., Pratylenchus) remainmobile
and feed on individual root cortex cells (Jones et al., 2013). This
results in very different damage dynamics which may lead to
distinct plant responses (Wondafrash et al., 2013). Moreover, the
salivary compounds injected by the different nematode species
may also be used by the plant to recognize the species that
is feeding and to respond accordingly; salivary components of
Myzus persicae induced defense responses inArabidopsis thaliana
(de Vos and Jander, 2009). Similar to aboveground herbivory
(Bidart-Bouzat and Kliebenstein, 2011), different feeding styles of
belowground herbivores may result in the triggering of different
signaling pathways, which may also have consequences for the
effect on aboveground herbivores feeding on the same plant
(Wondafrash et al., 2013). For nematode-aphid interactions, it
was found by Kaplan et al. (2011) that the ability of the generalist

aphid M. persicae to create a nutrient sink was not affected by
Meloidogyne incognita infestation (Kaplan et al., 2011). However,
this has not been assessed for other nematode species, such
as Pratylenchus penetrans, or the specialist aphid Brevicoryne
brassicae.

Even without knowing the exact molecular or chemical
mechanisms, it is clear that aboveground-belowground
interactions can have serious ecological consequences for
all parties involved. Field studies have shown that the presence
of small belowground herbivores, such as plant pathogenic
nematodes, may have significant effects on large-scale processes
such as plant succession (De Deyn et al., 2003). Manipulative
studies in greenhouses or mesocosms also demonstrate that
the presence of specific root herbivores may have significant
effects on the performance of chewing or sucking aboveground
herbivores (van Dam et al., 2005; Wurst and van der Putten,
2007; Kaplan et al., 2008; Hol et al., 2010; Erb et al., 2011; Johnson
et al., 2012). For chewing herbivores, the performance is mostly
assessed in terms of weight gain or survival, whereas for aphids
population growth is the most relevant performance parameter
(Bezemer et al., 2005; Wurst and van der Putten, 2007; Hol et al.,
2013). The advantage of using population growth as a measure
is that it is relatively natural: the herbivores can choose where to
feed on the plant and it will include density-dependent effects,
such as the emergence of winged adults at high aphid densities.
However, it is hard to obtain reliable counts of aphids over a
substantial period of time on sufficient numbers of replicates, as
the populations of these insects may grow very rapidly and can
produce hundreds of individuals per plant within a period of a
few weeks (Hughes, 1963). A complementary approach to gain a
more detailed insight in aboveground-belowground interactions
would be to look at individuals, e.g., confined to clip cages, to
obtain precise estimates of life-history parameters such as pre-
reproductive period, longevity, and reproductive rates (e.g., Ellis
et al., 1996; Stafford et al., 2012; Tariq et al., 2013). To scale these
more precise, yet local and often short-term, estimates of life-
history parameters up to effects on the population level, the data
can be used to parameterize models that simulate population
growth over time. Comparisons of simulated and actual
population growth can indicate whether effects of belowground
organisms can be fully explained by changes in individual
life history parameters of aboveground herbivores or whether
alternative explanations apply. Similar model simulations based
on parameters obtained from greenhouse experiments have been
used successfully to test highly complex interactions between
above- and belowground organisms associated with plants
(Meyer et al., 2009a). Using models to analyze such interactions
has the advantage that sample size and statistical power can be
increased to levels that are hard to attain in experimental set-ups
(Meyer et al., 2009b).

In this study, we apply a combined experimental andmodeling
approach to analyze the effect of two types of root-feeding
endoparasitic nematodes on the population growth of the
specialist aboveground feeding aphid B. brassicae on the plant
species Brassica nigra. A field survey showed that B. nigra
plants in the Netherlands are commonly colonized by a range
of plant parasitic nematodes with Pratylenchus spp. occurring
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frequently and Meloidogyne spp. only incidentally (Table 1).
B. brassicae aphids are also commonly found on B. nigra
(Le Guigo et al., 2012; Bischoff and Hurault, 2013). First we
experimentally assessed the effects of two nematode species on
aphid population growth as well as on some critical life-history
parameters of aphids. Then, using a modeling approach, we
validated this effect by simulating the effects on aphid population
growth, thereby including published data on additional life
history parameters of B. brassicae. An individual-based model
was developed to simulate aphid population growth on B. nigra
under controlled greenhouse conditions, in the absence of natural
enemies such as predators or parasitoids, but including stochastic
effects for mortality and reproductive rate of the aphid. The
aim was to test whether the life history characteristics (daily
probability of reproduction, average number of offspring per day)
as determined in the life history experiment would be sufficient
to explain the observed differences in aphid population numbers
on plants with and without nematodes in the greenhouse
experiment. Finally, we analyzed the chemical composition, i.e.,
amino acids, sugars and sinigrin content, of the phloem of
B. nigra to gain insight in the nutritional mechanisms behind
the observed effect. Sinigrin is the main glucosinolate in B. nigra
which is known to serve as an inducible defense against a wide
range of generalist herbivores (Lankau, 2007). It is known to be
excreted in the nectar and transported in the phloem (Bruinsma
et al., 2014).

MATERIALS AND METHODS

Naturally Occurring Nematode
Communities on B. nigra
In three naturally occurring roadside populations nearby
Heteren, The Netherlands, five or six randomly chosen B. nigra
root systems were dug out as completely as possible. The roots
were severed from the shoots using clippers, and the remaining
bulk soil was removed by gently shaking the roots before bagging
them. After transport to the lab, the roots were cleaned from
remaining soil with tap water and cut into small pieces (2–4 cm).
The root pieces were placed in a mist chamber (van Bezooijen,
2006) and extracted for nematodes for 96 h. The samples were
stored at 4◦C until identification of the different species under
a reverse light binocular microscope [50–200 × magnification
(Brinkman et al., 2004)].

Nematode and Insect Cultures
Ten to twenty B. brassicae individuals were collected in the
common garden of the Centre for Terrestrial Ecology, NIOO-
KNAW (Heteren, The Netherlands) and placed on B. nigra plants
in the greenhouse. The populations were maintained for at least
two generations before they were used for experiments.

A starting culture of P. penetrans was originally obtained from
HZPC Holland BV (Joure, the Netherlands) and maintained on
10 L containers with rye (Avena sativa) plants grown on plain
sand and Hoagland solution. Meloidogyne hapla was obtained
from the same source and maintained on tomato plants (c.v.
Moneymaker). M. incognita was originally obtained from the

laboratory of Nematology (Wageningen, The Netherlands) and
maintained on tomato plants (c.v. Moneymaker). Since the two
species of Meloidogyne that were used in the experiments were
very similar in their effects on aphids, we will uniformly refer to
these treatments as Meloidogyne treatments. Before infesting the
experimental plants, nematodes were extracted from roots and
sand in soil cores drawn from these pots (Brinkman et al., 2004).
Two days after extraction, root and soil extracts were pooled and
an aliquot was counted using a light microscope to determine
nematode density in the extract.

Empirical Aphid Population Development
Experiment – Effects of Nematode
Species
Brassica nigra seeds, collected from a population of open
pollinated plants (>10) grown in an experimental field in
Wageningen in 2004, were germinated on glass beads and water
in a climate cabinet set at 22◦C day/16◦C night, 16 h light. After
1 week, the seedlings were planted individually in tall 2.2 L pots
(11 cm × 11 cm × 21.5 cm) filled with gamma-radiated (>25
KGray, Isotron, Ede, The Netherlands) sterile sand and covered
with aluminum foil – except for a hole in the middle through
which the seedling could grow – to reduce water loss due to
evaporation. A∼4 cm long piece of a drinking straw was inserted
in the soil next to the seedling to facilitate nematode infestation
later on. The pots with seedlings were placed in a glasshouse
kept at 21◦C D/16◦C N under ambient light conditions that
were supplied with sodium lamps to maintain the minimum
photosynthetically active radiation at 225µmol.m−2.s−1 for 16 h
per day. The pots were supplemented with 3P Hoagland solution
andwater as described in van Dam et al. (2005) two or three times
a week to maintain 14% soil moisture (w/w) and optimize plant
growth. After 3 weeks of growth, the plants were either infested
with 400 P. penetrans or 400 M. incognita individuals per plant
(n = 22 per treatment group) by pipetting 5 ml of nematode
extract in the straw inserted next to the plant. Control plants
(n = 22) were mock inoculated with 5 ml of tap water. After
another 3 weeks, the pots and plants were enclosed individually in
hanging spherical nets (diameter 25 cm, height 1.5 m) that were
closed at the bottomwith a rubber band around the pot. Per plant,
five B. brassicae individuals of mixed ages were placed with a soft
paint brush on a fully expanded leaf via the zippered opening in
the side of the hanging net cages. The numbers of aphids were
counted at 3, 7, 10, 14 days after infestation with aphids. The
numbers of aphids per plant were square root transformed before
analysis to meet assumptions of normality and homogeneity
of variances. Two data points in the Pratylenchus treatment
were discarded as the SPSS outlier analysis indicated they were
significant outliers, leaving 20 replicates in this treatment group.
The remaining data were analyzed using Repeated Measures
ANOVA followed by protected contrast analysis (IBM SPSS
Statistics release 20.0.0).

Chemical analysis – The concentrations of amino acids and
sugars in the first two young fully expanded leaves and in the
phloem 2 and 5 weeks after aphid infestation were measured
according to van Dam and Oomen (2008) and Hol et al. (2013).
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TABLE 1 | Average numbers of all nematodes, the relative percentage of plant-parasitic nematodes, and numbers of specific groups of plant-parasitic
nematodes found in roots and rhizosphere soil samples of Brassica nigra.

Elderveld Heteren Zetten

51◦57′N,5◦52′E 51◦57′N,5◦45′E 51◦55′N,5◦43′E

Total number of nematodes per plant sample 348 848 563

(68–1250) (80–1485) (121-1859)

Percentage plant-parasitic nematodes of total 6.2% 72.8 47.2 %

(0–17.6) (46.6–90.0) (18.2-70.4)

Paratylenchus n.d. 51 229

(2–132) (11-891)

Ectoparasites rest 20 22 4

(0–121) (0–77) (0-11)

Pratylenchus spp. 6 370 108

(0–22) (23–1023) (0-407)

Tylenchidae 17 116 7

(0–99) (29–319) (0-11)

Meloidogyne spp. n.d. 20 n.d.

(0–55)

Heterodera n.d. 2 n.d.

(0–11)

The plants were collected in three Dutch populations (column headings give names plus geolocation; n = 5 plants per population, except Elderveld n = 6) in the summer
of 2004. Numbers between brackets give the range (minimum – maximum) for each count. n.d., not detected.

In the phloem, glucosinolate concentrations were measured
on pools of 3–4 samples (n = 2–3) to obtain samples with
detectable levels of sinigrin. The amino acids and sugars in
the leaves and phloem after 2 and 5 weeks were analyzed with
MANOVA, n = 7 for 2 weeks, n = 8–11 for 5 weeks. The
glucosinolate data from the pooled phloem samples were arcsine
square root transformed to obtain normality for the residuals.
To investigate to what extent pooling of phloem samples may
have affected the result, we performed a theoretical pooling of
the data from the amino acids and sugar concentrations in the
phloem by calculating the mean concentrations for the same sets
of plants whose phloem samples were pooled for the sinigrin
analysis.

Life History Parameters of Aphids on
Nematode-Infested Plants
Plants were grown on sterile sand as above, and infested with
400 P. penetrans (n = 23) or 400 M. hapla (n = 23) 3 weeks
after transfer to the pots. Another 22 plants served as uninfested
controls. After another 3 weeks, each plant received two clip cages
(5 cm diameter) on two fully expanded leaves. Each clip cage
contained one neonate B. brassicae. Neonates were obtained by
isolating adult aphids in individual Petri dishes 1 day before the
experiment started. When cages appeared empty 1 day later, the
neonates were considered to be lost or escaped and replaced.
This was accounted for in the calculations to assess “first day till
reproduction.” Thereafter, no replacements took place. Each day,
every single cage was checked for survival and reproduction up
till 16 days after the neonates were placed on the plants. After
the original neonates had started to reproduce, newly emerged
neonates were removed from the cages each day after they
had been counted. The numbers of nymphs produced per each
reproducing female per day from the second day of reproduction

onwards were averaged per treatment. Significant differences
between the treatment groups were identified using Wilcoxon
rank sum test with continuity correction using R 3.0.0. (R Core
Development Team, 2013) followed by correction for multiple
comparisons according to Holm (1979).

Aphid Population Growth Simulation
Model
We developed an individual individual-based computer model
of aphid population growth. The model was implemented
in C# with Microsoft Visual C# 2010 Express and the full
code of the model is available as Supplementary Material. The
model description follows the ODD (Overview, Design concepts,
Details) protocol for individual-based models (Grimm et al.,
2006, 2010).

Purpose
The model was developed to investigate whether individual life-
history parameters of aphids are sufficient to explain patterns of
aphid population growth.

Entities, state variables, and scales
The entities in the model are aphid individuals. State variables
are aphid age and livelihood, as well as aphid population size.
Scales include 1 day as time step and 24 days as temporal extent,
corresponding to the time frame of the empirical experiment. The
model is not spatially explicit.

Process overview and scheduling
Initialization of the aphid population is followed by age-
dependent mortality, age-dependent reproduction, and aging of
aphid individuals, as well as writing output and updating the time
step.
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TABLE 2 | Parameters used for the aphid population growth simulation model.

Name Unit Range Reference Details

Start population Individuals 5 Greenhouse Exp1

Start age days 10–25 Greenhouse Exp1 Drawn at random

Daily mortality Percentage 4 Pavela et al., 2004 Linear declining survival with age

Reproductive status Yes-no Life history Exp2 Age-dependent probabilitya

Reproduction Individuals 2.75–3.51 Life history Exp2
Ellis et al., 1996

Poisson distribution, age-dependentb

Power analysis: 2.75–3.45, in steps of 0.05

Maximum age Days 25 Hughes, 1963

Duration Days 14 Greenhouse Exp1

aProbability to reproduce is age-dependent, see Supplementary Table S1 in Supplementary Material 1 for parameterization.
bDaily reproduction is age-dependent and the maximum mean depends on nematode presence, see Supplementary Table S1 in Supplementary Material 1 for
parameterization.

Design concepts: Basic principles
The model is based on the principle that simulated and real-
world experiments can be compared to expand the scope
of ecological conclusions from the real-world experiments
(Meyer et al., 2009b). Emergence – Aphid population
dynamics emerges from the model. Sensing – Individuals
have information on their own age and livelihood status
and, indirectly via changed parameter values, about the
presence of nematodes. Stochasticity – Initial aphid age is
randomly drawn from a uniform distribution. Mortality
and reproduction include stochasticity by comparing a
random number drawn from a uniform distribution with
the respective mortality or reproduction probability. Number
of offspring is randomly drawn from a Poisson distribution.
Observation – Aphid population size is collected at the end
of each time step and output is produced on total population
size at time of harvest (after 14 days). Simulation runs of
the model correspond to the replication of an empirical
experiment so that average daily population sizes can be
obtained for different levels of replication. Averages and
standard errors were calculated over 22 simulation runs
to assure comparability with the aphid population growth
experiment.

Initialization
The model is initialized with a population of five alive
aphids, each with an age that is drawn at random from a
uniform distribution between 10 and (including) 24 days. For
the greenhouse experiment adult aphids were selected from
a mixed population and thus we assume that the age of
the aphids at the start of the experiment may have varied
from 10 to 25 days. Aphid longevity of 25 days is also
derived from data on European B. brassicae aphids in Hughes
(1963) where adult lifespan ranged from 18.5 days at 17◦C
to 12.2 days at 23.8◦C. Given the average temperature of
20.9◦C during the greenhouse experiment, we estimated adult
longevity at 15 days and the duration of one generation
at 25 days since most individuals were reproducing at day
10.

Input data
The model does not contain any time-dependent input data.

Submodels
The mortality submodel is implemented with a simple stochastic
procedure comparing a random number from a uniform
distribution for each live aphid individual to an age-dependent
mortality probability (see Table 2 and Supplementary Table
S1 for reference parameter values). Mortalities were derived
from Pavela et al. (2004) and Lashkari et al. (2007) where
empirically assessed B. brassicae survival declined linearly with
age. This translates into a fixed mortality of 4% per day in
our model: each individual has a daily probability to die of
4% and any surviving individuals die the latest at day 25. The
reproduction submodel includes stochasticity in the same way
as the mortality submodel. Reproduction probability is age-
dependent and was derived from the life-history experiment
(Tables 2 and 3, Supplementary Table S1, Supplementary Figure
S1). If an individual is reproducing, the number of offspring
is drawn from a Poisson distribution with mean 2–3.51 aphids
per day, depending on age and also derived from the life-
history experiment (Table 2; Supplementary Figures S2 and S3).
In the empirical experiment, the mean number of offspring
per individual per day varied depending on the presence of
nematodes on the plant (Table 3). We use this range of variation
in our simulation experiments (see below) to indirectly include
the effect of nematodes on aphids. Based on Ellis et al. (1996), the
number of offspring is lower for aphids of 18–21 days and zero for
aphids older than 21 days (Supplementary Table S1). The aging

TABLE 3 | Effect of nematode infestation on survival and reproduction of
Brevicoryne brassicae on Brassica nigra plants infested with different
species of nematodes (Melodoigyne hapla, Pratylenchus penetrans) or
mock infested with water (Control).

Treatment % Drop % Dead Maturation Reproduction

Control 32 7 10.2 (0.2) 3.50 (0.13)a

M. hapla 32 4 10.0 (0.1) 3.51 (0.13)a

P. penetrans 30 4 10.3 (0.2) 3.08 (0.13)b

n = 20–22 per treatment. % drop = % of aphids that dropped during counting;
% dead = % aphids recorded dead on the leaf; Maturation = average number of
days from neonate till first reproduction (+SE); Reproduction = average number
of offspring per surviving aphid per day after the first day of reproduction (+SE).
Letters indicate significant differences between groups (Wilcoxon rank sum test
with continuity correction).
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FIGURE 1 | Average numbers of aphids (+SE) on plants infested with Pratylenchus penetrans (white squares), Meloidogyne incognita (gray triangles)
or mock infested with water (black circles). (A) Aphid population development in the greenhouse experiment. n = 20–22 Different letters indicate significant
differences in aphid population development (Repeated measures ANOVA followed by contrast analysis). (B) Aphid numbers in a simulation experiment,
parameterized to resemble the greenhouse experiment in 1A.

submodel increments the age of all aphid individuals by 1 day per
time step.

Simulation experiments
We conducted simulation experiments with 22 and 50 runs
each, corresponding to the level of replication of an empirical
experiment, for three different scenarios. The scenarios differed
in their parameterization to represent the two nematode
treatments and the control treatment from the life history
experiment (Table 3). We compared model and experiment
outputs to validate the model and to find out whether individual
life history characteristics can explain aphid population dynamics
under the influence of nematodes. For 1000 simulation
experiments we tested with ANOVA whether or not the
difference between control and Pratylenchus treatment would be
significant. Power was calculated as the number of significantly

different outcomes/1000. We conducted this power analysis for
22 and 50 replicates to demonstrate the required replication
to obtain significant differences in a real-world experiment,
all else being equal to the experimental setup of this study.
Data available from the Dryad Digital Repository (Hol et al.,
2016).

RESULTS

When aphids grew on nematode-infested plants in the
greenhouse, their numbers per plant after 14 days of infestation
varied depending on nematode species (Figure 1A). Aphid
population development differ significantly between the different
treatment groups (Repeated measures ANOVA time∗treatment
effect F2,61 = 3.689, P = 0.031). Eventually, the numbers
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FIGURE 2 | Concentrations of amino acids, sugars and glucosinolates on plants with nematodes and aphids after 2 and 5 weeks. con, control; PP,
P. penetrans; MI, M. incognita, aphids, Brevicoryne brassicae. (A) Average (+SE) concentration of amino acids and sugars in phoem (n = 7 for 2 weeks,
n = 8–11 for 5 weeks). Asterisks indicate a significant (∗∗P < 0.001, ∗P < 0.05) aphid treatment effect. For complete statistical results see Table 4. (B) Average
(+SE) concentration of sinigrin in pooled phloem samples (n = 2–3). For statistical results see Supplementary Table S2.
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TABLE 4 | MANOVA table showing the results from the analysis of the chemical composition of the phloem for amino acids and soluble sugar
concentrations.

Df SS MS F P

Amino acids

Intercept 1 13.64 13.64 154.42 0

Nematodes 2 0.10 0.05 0.59 0.55

Aphids 1 1.93 1.93 21.87 <0.001

Harvest 1 0.49 0.49 5.51 0.02

Nema∗Aphids 2 0.05 0.02 0.26 0.77

Nema∗Harvest 2 0.21 0.11 1.21 0.30

Aphids∗Harvest 1 0.30 0.30 3.37 0.07

Nema∗Aphids∗Harvest 2 0.06 0.03 0.34 0.71

Error 79 6.98 0.09

Total 90 10.68

Soluble sugars

Intercept 1 4.04 4.04 167.92 0

Nematodes 2 0.02 0.01 0.49 0.61

Aphids 1 0.56 0.56 23.23 <0.001

Harvest 1 <0.01 <0.01 0.15 0.70

Nema∗Aphids 2 0.03 0.01 0.55 0.58

Nema∗Harvest 2 0.05 0.03 1.06 0.35

Aphids∗Harvest 1 0.04 0.04 1.47 0.23

Nema∗Aphids∗Harvest 2 0.04 0.02 0.84 0.44

Error 79 1.90 0.02

Total 90 2.72

n = 7 at harvest 2 weeks and n = 8–11 at harvest 5 weeks.

of aphids at the end of the experiment were significantly
lower on plants with P. penetrans than on plants infested
with M. incognita (Figure 1A). The life-history experiment
showed that the maturation time, i.e., the number of days
until first reproduction of B. brassicae was not significantly
different between treatments (Table 3). Most females produced
their first offspring between day 8 and 10 and continued
to reproduce until day 16, when the experiment was ended
(Supplementary Figure S1). In contrast, the daily reproduction
per aphid was significantly lower for neonate aphids confined
to a plant with P. penetrans in comparison to those reared
on plants with M. hapla or control plants without nematodes
[Table 3, Wilcoxon rank sum test, Control vs. Pratylenchus,
P (after Holm’s correction for multiple comparisons (Holm,
1979) = 0.048; Meloidogyne vs. Pratylenchus, P = 0.042; Control
vs. Meloidogyne, P = 0.93]. For aphids reared on control
plants or M. hapla infested plants, the daily reproduction
per aphid was on average around 3.50 nymphs per female
per day, whereas on plants infested with P. penetrans the
females produced on average 3.08 offspring per female per day
(Table 3).

In the experiments, the concentrations of amino acids and
sugars in the phloem were strongly increased in the presence
of aphids (Figure 2A, Table 4). This started already at the first
harvest (after 2 weeks), with trends for sugars, and became very
clear at the final harvest (after 5 weeks). Also the glucosinolate
sinigrin was induced by the presence of aphids (F1,17 = 6.47
P = 0.02, Figure 2B, Supplementary Table S2). Pooling of

the samples probably did not affect the outcome except for a
decrease in statistical power, since the results were comparable
between pooled and unpooled data for the amino acids and
sugars (compare Figure 2A and Supplementary Figure S4).
Nematodes did not significantly impact any of the measured
chemical parameters and also the two nematode species did not
differ in their effects on chemical parameters. The concentrations
of amino acids, sugars and glucosinolates in the leaves did
not differ significantly between treatments (Supplementary Table
S3).

The experimentally assessed life-history parameters were used
in an individual-based simulation model for aphid population
growth. The model revealed that the differences in reproduction
rate per female were sufficient to result in a similar pattern
as was found in the experiments: with all other parameters
equal, modeled aphid populations developed the slowest on
plants infested with P. penetrans compared to the control and
Meloidogyne plants (Figure 1B). After 10 days the numbers
of aphids counted in the experiment and obtained in the
simulation model were similar in magnitude (approximately 50
aphids per plant). After this time point, the numbers of aphids
in the simulation model increased much faster than in the
greenhouse experiment (Figure 1B). A power analysis of the
simulation models showed that it is hard to detect a significant
difference in aphid population numbers after 14 days, assuming
a difference between control and nematode treatments in daily
reproduction of 0.42 nymphs per day and using 22 replicates
(Figure 3).
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FIGURE 3 | Power analysis as a function of daily reproduction of
Brevicoryne brassicae on plants with Pratylenchus in comparison to a
Control treatment without nematodes, with a daily reproduction of
3.50 nymphs per day. Daily reproduction on plants with Pratylenchus is
varied from 2.75 to 3.45. Shown is the proportion of significant ANOVAs
(P < 0.05) out of 1000 simulations for n = 22 and n = 50 per treatment. The
arrow indicates the expected statistical power when daily reproduction of
aphids on plants with Pratylenchus equals those observed in the experiment
(3.08 nymphs/day).

DISCUSSION

Our results showed that the effect of nematodes on B. brassicae
population depends on the nematode species; aphids populations
developed more slowly on plants infested with the migratory
endoparasitic nematode P. penetrans, but were not affected
by the inoculation with the sedentary endoparasitic nematode
M. incognita. Negative effects of Pratylenchus spp. on aphid
numbers have been found before (Wurst and van der Putten,
2007), but the same applies to Meloidogyne spp. (Sell and Kuo-
Sell, 1990) and other sedentary endoparasitic nematodes (Kaplan
et al., 2011; Hol et al., 2013) on a range of plant species and
various aphids. Here we explicitly compared the effects of two
nematodes on a single wild plant species infested with one
of its natural herbivores. Thus in this case the difference in
feeding strategy of the two nematodes species is more likely the
explanation for their different effects on B. brassicae.

The lower number of aphids on Pratylenchus-infested plants
could be caused by a decrease in fecundity, delayedmaturation or
increased mortality. In the life-history experiment the fecundity
(nymphs·reproductive female−1·day−1) was the only parameter
that differed between Pratylenchus and control plants. With
the simulation model we could demonstrate that this small
difference, 0.42 nymphs per female per day or a ∼13% decrease,
in fecundity would lead to significant differences in population
numbers in about 60% of the cases. To detect this small difference
in fecundity in 95% of all cases, the number of replicates would
have to be around 50. In line with Peck (2004) and Meyer et al.
(2009a), this demonstrates how a combination of short-term life
history experiments with a model could be useful for developing
a powerful experimental design. In addition, comparison of the
outcome of the model with the actual aphid population size can
also indicate the likelihood of other parameters being important
to explain the effects. In our case, the model suggests that changes
in fecundity alone would lead to exponential growth, rather
than the linear population development that was observed in
the greenhouse experiment. The difference between the model
output and the results from the greenhouse experiment could

be due to density-dependent effects that occur in real aphid
populations (Menendez et al., 2013), which are not incorporated
in the model and may have affected life history parameters as
well. The life-history experiment was performed with only two
reproducing adults per plant, with daily removal of nymphs, and
thus the plants were always exposed to a low density of aphids.
In the aphid population experiment plants were infested with five
individuals, which after 10 days already became 50 individuals.
The rapid increase in numbers may have crossed a threshold
causing induced defense, which might not have happened in
the life history experiment due to the low densities. Additional
experiments, with assessments of life-history parameters on
already aphid-infected plants are needed to test this, potentially
in combination with corresponding model scenarios.

Induced responses indeed may play a role in this experiment.
Analysis of sinigrin levels in the phloem showed that aphids
increased sinigrin concentrations. Nematodes alone showed no
significant effects on sinigrin concentrations; they appeared to
reduce the increase in sinigrin levels on plants with aphids but
this was not supported by the statistical analysis. B. brassicae
being a specialist on Brassicaceae is known to store glucosinolate
in its body for its own defense (Hopkins et al., 2009).
Consequently, for this species it may rather serve as a feeding
stimulant than a feeding deterrent. Thus, if induced defense
played a role, it must have been via other defense mechanisms
than the glucosinolates, e.g., flavonoids, camalexin or callose
depositions in sieve elements (Kuśnierczyk et al., 2008; Mewis
et al., 2012). The effect of aphids on sinigrin concentrations in the
phloem was unaffected by nematode presence and thus changes
in induced defense are not a causal explanation for the differences
between Pratylenchus and Meloidogyne on aphid numbers.
Alternatively, nematodes species could have differentially altered
source-sink relations in the plant. Aphids apparently created a
strong sink, increasing sugars and amino acid level in the phloem,
but this was again not affected by nematode presence. This is in
line with Kaplan et al. (2011), who found that M. incognita did
not affect M. persicae sinks. Here we could show that the same
applies to a nematode species with a different feeding strategy,
the migratory endoparasite Pratylenchus and to the specialist
aphid B. brassicae. It remains an open question why those two
nematode species, which did not differ in their impacts on the
measured chemical parameters, still had such diverging effects
on aphid numbers. Among the factors known to affect aphid
fecundity are nitrogen (Zarghami et al., 2010; Stafford et al.,
2012), vitamin C (Kerchev et al., 2013), and moisture (Tariq
et al., 2012). Nematodes can reduce nitrogen concentration and
moisture content in plants (Hol et al., 2013), yet to our knowledge
there is no evidence yet for differences between Pratylenchus and
Meloidogyne in those effects.

It is well-known that greenhouse experiments may differ from
what happens in the field (Vandegehuchte et al., 2010). For
our study system it is known that Pratylenchus spp. commonly
occur on B. nigra plants in the field, and thus it is quite
likely that B. brassicae will encounter plants which are already
infested with nematodes. The observed negative effect of root-
lesion nematode presence on aphid numbers might not occur
if aphids are able to avoid nematode-infected plants, if possible
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(Soler et al., 2009). Even if the aphids do not discriminate
between nematode-infested and uninfested plants, this does not
guarantee that nematode infested plants in the field will have
smaller aphid populations than uninfested plants. The presence
of other aphid species or higher trophic levels could modify the
negative effect of nematodes on aphids. Competition between
M. persicae and B. brassicae does depend on host plant quality
(Stacey and Fellowes, 2002) and thus may depend on nematode
presence. Some predators prefer to target plants with the highest
aphid densities (Chaplin-Kramer et al., 2011) and thus aphids on
nematode-infested plants might suffer less predation.

CONCLUSION

By combining an experimental and modeling approach we could
show relatively small differences in reproductive output caused
by two nematode species with different feeding strategies, are
sufficient to explain differences in aphid population development.
Both nematode species had similar effects on chemical plant
quality and eliminate a straightforward mechanistic role
of sinigrin, amino acids and sugars in mediating these
effects.
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