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Abstract We construct an interactive ensemble of two different climate models to improve simulation
of key aspects of tropical Pacific climate. Our so-called supermodel is based on two atmospheric general
circulation models (AGCMs) coupled to a single ocean GCM, which is driven by a weighted average of the
air-sea fluxes. Optimal weights are determined using a machine learning algorithm to minimize sea surface
temperature errors over the tropical Pacific. This coupling strategy synchronizes atmospheric variability in
the two AGCMs over the equatorial Pacific, where it improves the representation of ocean-atmosphere
interaction and the climate state. In particular, the common double Intertropical Convergence Zone error
is suppressed, and the positive Bjerknes feedback improves substantially to match observations well, and the
negative heat flux feedback is also much improved. This study supports the concept of supermodeling as a
promising multimodel ensemble strategy to improve weather and climate predictions.

1. Introduction

Numerical models are the key to the projection of future climate. Through coordinated multimodel ensemble
experiments, they provide the scientific basis for the Intergovernmental Panel on Climate Change assessment
reports [Intergovernmental Panel on Climate Change, 2013]. Despite improving substantially, state-of-the-art
general circulation models (GCMs) exhibit significant systematic errors, often common to many models, that
have persisted across model generations: e.g., a double Intertropical Convergence Zone (ITCZ) and cold tongue
bias in the tropical Pacific, and the eastern equatorial Atlantic warm bias [Bellenger et al., 2014; Lloyd et al., 2011].
Ensemble averaging does not reduce these errors. Therefore, it is vital to explore other possibilities to improve
numerical simulation of the Earth’s climate.

Here we explore the supermodeling approach, in which multiple climate models are combined dynamically by
exchange of information during the simulation. In a previous study, the state vector of each of several imperfect
[Lorenz, 1963] models is nudged to the state vector of the other models, causing the different models in the
ensemble to synchronize their evolution. The relative strengths of the nudging coefficients are optimized to
bring the synchronized solution closer to the true evolution, in an attempt to match the attractor of the true
Lorenz system [van den Berge et al., 2011]. The supermodel with optimal coefficients is at least as good as the
best model in the ensemble. The ensemble of interconnected models is in fact a single dynamical system, a
“supermodel,” that exploits the strengths of the individual models. The supermodeling approach requires that
themodels synchronize on a common solution, as this allows systematic errors to be compensated continuously.

The synchronization of chaotic systems connected through only a few variables is a common phenomenon in
nonlinear dynamics [Pecora et al., 1997]. The phenomenon has been demonstrated in quasigeostrophic models
[Duane and Tribbia, 2001, 2004; Hiemstra et al., 2012] and in an atmospheric general circulation model (AGCM)
[Lunkeit, 2001]. Synchronizationmight similarly be established between coupled GCMs (CGCMs), bringing them
into agreement. Indeed, numerical weather prediction models are required to synchronize with reality, based
on sparse observations, in the data assimilation process [Abarbanel et al., 2009; Duane et al., 2006; Yang et al.,
2006]. In a supermodel as originally conceived [Duane, 2015; van den Berge et al., 2011], models effectively
assimilate data from one another. That synchronization among different models should facilitate
synchronization/attractor matching between the resulting supermodel and truth is an example of a common
relationship between internal and external synchronization [Duane, 2009, 2015].

Supermodeling requires real-time exchange of state information among themodels. This is technically challen-
ging when dealing with different models on different grids if we exchange the full state information. Here we
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generalize the related interactive ensemble construct to bypass these technical constraints. In a standard inter-
active ensemble, multiple realizations of an AGCM continuously interact with each other through coupling to a
single ocean model that is driven by ensemble mean air-sea fluxes. This construct has been implemented to
study aspects of ocean-atmosphere interaction as well as the mechanism of the El Niño–Southern Oscillation
(ENSO) [Kirtman and Shukla, 2002]. In the SUperMOdel developed here, which we call “SUMO,” two different
AGCMs are coupled to one ocean model. An optimal combination of air-sea fluxes of the two AGCMs improves
the simulation of the tropical Pacific. The current approach is effective only in this region, as only here strong
ocean-atmosphere interaction enables the AGCMs to approximately synchronize [e.g., Jansen et al., 2009];
variance is lost when this does not occur. It is effective because AGCMs are deficient in representing the
different air-sea fluxes to different degrees. Indeed, Kirtman et al. [2003] showed that by selecting heat and
momentum fluxes from different AGCMs (instead of averaging them) in an interactive ensemble context,
tropical Pacific climate could be improved.

In section 2 we explain the details of the model design and list observational products used, and in section 3
we demonstrate that SUMO has a more realistic mean state and ocean-atmosphere interaction as compared
to the individual models. Sensitivity tests are discussed in section 4, and final conclusions are presented in
section 5.

2. Models and Method

Our SUMO supermodel is based on the Community Earth System Models (COSMOS), which consists of
fifth generation European Centre/Hamburg (ECHAM5) (AGCM) and Max Planck Institute Ocean Model
(MPIOM) (ocean GCM), developed at Max-Planck-Institut für Meteorologie, Germany [Jungclaus et al., 2006].
We use two versions of the COSMOS model that differ only in the cumulus parameterization scheme:
COSMOS(N) uses the Nordeng [1994] scheme and COSMOS(T) the Tiedtke [1989] scheme. Although both
schemes favor convection in regions with maximum boundary layer moist static energy [Möbis and
Stevens, 2012], in COSMOS they produce different climatologies over the tropical Pacific Ocean and both have
substantial errors (section 3). We constructed SUMO by coupling the two versions of ECHAM5 to a single
MPIOM version: Both atmosphere models calculate the air-sea fluxes based on the same sea surface tempera-
ture (SST), and the ocean receives a weighted average of the air-sea fluxes. A different combination of
weights is used for each of the air-sea fluxes felt by the common ocean—energy, momentum, and freshwater
(precipitation� evaporation). The sum of the weights over the two AGCMs equals unity, for each type of air-
sea flux, maintaining conservation globally. The AGCMs employ T31 spectral resolution (i.e., ~3.75°) and 19
vertical levels; and the ocean employs a rotated curvilinear grid with an approximate 3° horizontal resolution
and 40 vertical levels.

The Nelder-Mead [Nelder and Mead, 1965] machine learning algorithm, also known as the simplex method,
was applied to optimize the weights for each of the air-sea fluxes. Its advantage is that it can find a local
minimum of a cost function in multidimensional domain without having to compute gradients of the cost
function. The cost function is defined as the root-mean-square difference between simulated and observed
monthly mean SST climatology over the tropical Pacific region (160°E–90°W, 10°S–10°N) in the period
1948–1979. The model climatologies are computed from 30 year simulations by SUMO, and the observed
is computed from the period 1948–1979. This region is chosen as there is approximate synchronization only
over the tropical Pacific in our configuration (see Figure S1 in the supporting information). The cost function is
based on monthly mean data so as to reproduce the mean seasonal cycle, in a crude attempt to match the
attractor of the real climate. Starting from equal values, weights are adjusted iteratively according to the
simplex method. Each evaluation of the cost function involves a spin-up for 10 years and a simulation for
another 30 years to get a reasonable climatology. After optimization, requiring more than 300 model runs,
the averaged SST root-mean-square error over the tropical Pacific region was reduced to 0.69°C from 2.82°C,
4.98°C, and 3.76°C in the COSMOS(N), COSMOS(T), and supermodel with equal weights, respectively
(See Figure S2 for individual coupled model errors). The optimal weights are 0.43, 1.21, and 0.68 (0.57, �0.21,
and 0.32) for momentum, heat, and freshwater, respectively, for the Nordeng (Tiedtke) version of ECHAM5; sen-
sitivity to changes in the weights is discussed in section 4. The averaged correlation between the zonal wind
stress anomalies of the two AGCMs over the tropical Pacific increased from 0.19 for equal weights to 0.36 after
training, while themaximum correlation increased from 0.52 to 0.65. Note that the variability of AGCMs tends to
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cancel each other over nonsynchronized areas, thus reducing the ocean variability as well [Kirtman et al., 2005]
and causing a deterioration of model performance over the extratropical Pacific and Atlantic due to the loss of
wind variability; hence, the global performance dropped in the midlatitudes. The optimal SUMO solution is dis-
cussed in more detail in the next section.

We use the following observational products. SST data are from Hadley Centre Sea Ice and Sea Surface
Temperature (HadISST) [Rayner et al., 2003]; precipitation from Global Precipitation Climatology Project (GPCP)
[Adler et al., 2003]; and surface wind stress and heat fluxes are from the National Centers for Environmental
Prediction (NCEP) atmospheric reanalysis [Kalnay et al., 1996]. Data for the period 1979–2012 are used to assess
model performance, while SUMO is trained using SST observations for the independent period 1948–1979.

3. Mean State and Bias

The SUMO supermodel dramatically improves the simulation of the tropical Pacific mean state as compared to
the COSMOSmodels, with the SST and precipitation agreeing better with observations (Figure 1). The cold ton-
gue does not extend west of the International Date Line, indicating that SUMO maintains a west Pacific warm
pool similar to observations. This is unlike the situation in either of the COSMOSmodels (Figure S2), which both
simulate excessively strong cold tongues extending too far west. Consequently, this error remains pronounced
in the mean of the two COSMOS models (Figure 1). SUMO improves quantities not directly optimized, with a

Figure 1. The (left column) climatological SST (scale in °C) and (right column) precipitation (scale in mm/d) in observations and models. The SST is from HadISST
(1948–1979, the period used for the training set), and precipitation is from GPCP (1979–2012, due to availability of data). With improved representation of SST
over the equator in SUMO, there is one ITCZ in SUMO.
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more realistic simulation of the entire
tropical circulation associated with the
reduced SST bias. Most strikingly,
SUMO largely mitigates the double
ITCZ error found in both COSMOS
models (Figures 1, S2 and S3) and in
most climate models. Nevertheless,
SUMO still exhibits substantial mean
errors (e.g., it is too wet in South
Pacific Convergence Zone).

No ex post facto weighted combina-
tion of COSMOS(N) and COSMOS(T)
outputs has comparable performance
to the SUMO result. In a Taylor diagram
we compare the spatial correlation
between model and observed SST, as
well as the spatial standard deviations,
for SUMO and the various weighted
model combinations (Figure 2). SUMO
has almost the same spatial standard
deviation of SST as observed, unlike
any of the models, with equal or

unequal weights, and the correlation coefficient is higher. Similar results are found for precipitation
(Figure S4). Thus, allowing the models to interact during run time yields better results than any average of their
individual outputs.

Ocean-atmosphere interaction in the tropical Pacific is also greatly improved in the SUMO supermodel. To
show this we use linear regression to assess two of the most important feedbacks in the equatorial Pacific:
the Bjerknes positive feedback and the short-wave negative feedback [Bellenger et al., 2014]. In the
Bjerknes feedback, a positive (negative) central-eastern equatorial Pacific SST anomaly leads to a westerly
(easterly) surface zonal wind anomaly over the central western Pacific, reinforcing the initial SST anomaly.
Although this feedback is complex, linear regression is a common and effective method to estimate the
strength of the resulting relation. SUMO is able to reproduce the observed dynamical relation very well, while
both COSMOS(N) and COSMOS(T) underestimate the relation by around a factor of 2 (Figure 3a). The short-
wave negative feedback, a positive (negative) SST anomaly in the central-eastern Pacific, leads to a reduction
(increase) of incoming short-wave radiation, countering the initial SST anomaly. All three models strongly

Figure 2. Taylor diagrams of the climatological SST pattern, showing both
correlation with observations and standard deviation over the tropical
Pacific region for COSMOS(T) (red circle), COSMOS(N) (red star), COSMOS(E)
(red dot), traditional weighted ensembles (blue dots) with different weights
(from �1 to 2), SUMO (black dot), and “observations,” as given by NCEP
Reanalysis (black dot marked “Ref”).
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Figure 3. (a) The Bjerknes feedback, as described by the relation between the east Pacific SST anomaly (over 5°S–5°N, 150°
W–90°W, Niño 3 region) and the remote wind stress over the west Pacific (5°S–5°N, 160°E–150°W, Niño 4 region); (b) the
thermodynamic damping over the Niño 3 area, as described by the relation between the east Pacific SST anomaly and
the short-wave radiation anomaly.
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overestimate this thermodynamic relation, but SUMO reproduces it best, with a more than 30% weaker
relation than the two COSMOS models (Figure 3b).

The improvements in ocean-atmosphere interaction result from the compensation of errors in the individual
model feedbacks, by optimal weighting of air-sea fluxes. Changes in the momentum flux, for fixed SST, from
the weighted combination of the two models redefine the Bjerknes feedback in SUMO. The Tiedtke scheme
is favored in SUMO with a weight of 0.57, as compared to 0.43 for the Nordeng scheme. For the short-wave
feedback, it is the heat flux weights that determine the combination of feedback relations. The Nordeng
scheme is favored in SUMOwith a heat fluxweight of 1.21, while the Tiedtke scheme is strongly disfavoredwith
a weight of�0.21. The use of weights outside the range [0,1] in SUMO allows extrapolation beyond the range of
the two separate models, so that even if the feedback relations for the separate models lie on the same side of
the observed relation, the supermodel feedback can approach the observed relation more closely.

SUMO also improves the representation of tropical Pacific climate variability. ENSO-related SST, surface
winds, and precipitation anomalies in SUMO are in closer agreement with observations than either of the
COSMOS models (Figure 4). In observations and SUMO the anomalous SST is stronger in the east and hardly
extends west of the International Date Line; whereas in COSMOS(N) and COSMOS(T) the anomalies extend
across the whole equatorial Pacific. SUMO captures the strength of variability well: The Niño3 SST standard
deviation is 0.88, 0.66, 1.78, and 1.65 in observations, SUMO, COSMOS(N), and COSMOS(T), respectively. As
in observations, the ENSO-related westerly winds and precipitation anomalies in SUMO are situated over
the central equatorial Pacific; they are situated much farther west in the COSMOS models. Nevertheless,
SUMO exhibits clear deficiencies: it exhibits spurious SST anomalies in the North Tropical Pacific, and the
ENSO-related precipitation and wind anomalies are too strong. The overall improvements in structure and

Figure 4. ENSO anomalies in SST (contours), precipitation (shading), and 10m wind velocity (vectors). These patterns are obtained by linear regression against the
SST anomaly over the Niño 3 region. (The three observables are taken from the same data set, NCEP Reanalysis 1, in order to maintain consistency).
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strength of ENSO-related variability are consistent with better simulation of the climatological state and
ocean-atmosphere interaction in SUMO. We leave further analysis of simulated variability in supermodels
to future studies employing models with increased resolution.

4. Sensitivity Tests

Themean state of the model is only a footprint of the nonlinear dynamical system and cannot provide the reason
for the improvedperformance. The detailedmechanism throughwhich supermodeling improves simulation of the
tropical Pacific climate was examined by perturbing the weights of the air-sea fluxes. This shows not only the role
played by each of the air-sea fluxes in ocean-atmosphere interaction but also the properties of the air-sea fluxes in
individual AGCMs. Perturbing parameters is generally a good way to understand the form of the attractor and the
mean state of a nonlinear system [Nayfeh, 2008; Ostrovsky and Gorshkov, 2000]. Experiments were conducted with
the weights of heat, momentum, and mass fluxes perturbed separately by ±10%. SUMO’s good simulation of the
equatorial Pacific cold tongue is controlled by the weights of momentum and heat (Figures 5a, 5c, and 5e).
Perturbing momentum fluxes impact oppositely the SST east and west of 170°W, with the largest effects around
150°W. The change of heat flux source mainly affects SST west of the International Date Line, with little effects to
the east (Figure 5e). Perturbing the mass flux hardly impacts equatorial SST (not shown).

In COSMOS and SUMO the equatorial zonal wind stress is much stronger than the atmospheric reanalysis, and it
is even stronger in the eastern Pacific in SUMO, despite the model’s warmer SST (Figures 5a and 5b). In the per-
turbation experiments the changes in equatorial upwelling are consistent with the equatorial SST changes
(Figure 5b). However, the changes in strength of the equatorial surface zonal wind alone cannot directly explain
the changes in ocean surface upwelling, as mostly stronger (weaker) winds appear to drive weaker (stronger)
upwelling in the east (Figure 5e). Rather increasing the momentum flux from Nordeng (Tiedtke) atmosphere

Figure 5. Equatorial (2oS-2oN) balances in control and perturbation experiments. Climatology (1948–1979) (a) SST and (b) zonal wind for COSMOS(E) (dotted), SUMO
(dashed), and observations (solid; from HadISST and NCEP Reanalysis). (c, d) Differences in SST and in surface zonal wind between SUMO and the perturbed-
momentum cases (more momentum flux from Nordeng atmosphere (blue solid) or from Tiedtke atmosphere (blue dashed)). The associated difference in ocean
upwelling at 50m deep is superposed (in red, in Figures 5c and 5d). (e, f) Differences in SST and in surface zonal wind between SUMO and the perturbed-heat cases
(more heat flux from Nordeng atmosphere (solid) or from Tiedtke atmosphere (dashed)).
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drives changes in the off equatorial winds that drive a surface ocean circulation with increased (decreased)
surface equatorial convergent flow; this weakens (strengthens) the oceanic shallow tropical cell causingwarmer
(cooler) equatorial SST, as well as introducing changes in the meridional SST gradient within 8° latitude of the
equator (see Figure S5). Perturbing the surface heat flux has less impact on the surface wind stress, explaining
the limited impact on equatorial eastern Pacific SST (Figures 5a and 5f).

5. Conclusions and Discussion

This work demonstrates that a climate supermodel (approximately synchronized suite of models trained for
attractor matching with historical data) can be used to reduce well-known systematic error in CGCMs, even
with incomplete synchronization of AGCMs. The tropical Pacific was targeted because approximate synchro-
nization was found over that region. A set of weights was found by a simplex method that gives an optimal
mean state in the tropical Pacific. In future work, the region of synchronization, and of supermodeling skill,
will be extended by introducing upper atmospheric connections that would tend to bring the models into
agreement in the midlatitudes.

The supermodeling method used here is a generalization of flux correction [Sausen et al., 1988] to dynamical
corrections provided by another model, rather than temporally constant corrections to a single model based
on observations. When supermodeling is effective, the models are synchronized, and thus the correction
terms are small and do not violate substantially the dynamics of each model. This is in contrast to the effect
of constant offset introduced by a flux correction. Additionally, only a single weight is required for each flux,
rather than an entire field. Seasonally and spatially varying weights might lead to better results, as different
convection schemes might represent convective behavior in different seasons and regions better. However,
the task of robustly optimizing weights would be computationally more demanding. Better performancemay
also result if model is trained to reduce errors in SST and wind stress climatology, rather than only SST.

The benefit in the case examined was associated with the large improvement in the Bjerknes positive and
short-wave negative feedbacks. It is in such higher-order quantities, where nonlinearities are important, that
supermodeling is expected to improve over output averaging. These improvements are also consistent with
an improved mean state. Perturbing the relative weights of the air-sea fluxes from the two atmospheres
shows that equatorial SST over the east Pacific is sensitive to wind stress rather than heat flux, and altering
the source of heat flux only has an impact over the west Pacific. The optimal combination gives improvement
of equatorial Pacific dynamics and the ENSO-induced anomalies. It is in this manner that supermodeling can
be hopefully used both to expeditiously improve climate prediction/projections and to give insight as to how
to improve the separate models.
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