
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/155761

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/43604429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/155761

Concepts in K–9 Computer Science Education

Erik Barendsen
Radboud University &

Open University, Netherlands
e.barendsen@cs.ru.nl

Linda Mannila
Åbo Akademi University

Turku, Finland
linda.mannila@abo.fi

Barbara Demo
University of Turin

Turin, Italy
barbara@di.unito.it

Nataša Grgurina
University of Groningen
Groningen, Netherlands
n.grgurina@rug.nl

Cruz Izu
University of Adelaide

Adelaide, Australia
cruz@cs.adelaide.edu.au

Claudio Mirolo
University of Udine

Udine, Italy
claudio.mirolo@uniud.it

Sue Sentance
King’s College London

London, UK
sue.sentance@kcl.ac.uk

Amber Settle
DePaul University

Chicago, USA
asettle@cdm.depaul.edu

Gabrielė Stupurienė
Vilnius University
Vilnius, Lithuania

gabriele.stupuriene@mii.vu.lt

ABSTRACT
This exploratory study focuses on concepts and their as-
sessment in K–9 computer science (CS) education. We an-
alyzed concepts in local curriculum documents and guide-
lines, as well as interviewed K–9 teachers in two countries
about their teaching and assessment practices. Moreover,
we investigated the ‘task based assessment’ approach of the
international Bebras contest by classifying the conceptual
content and question structure of Bebras tasks spanning five
years. Our results show a variety in breadth and focus in
curriculum documents, with the notion of algorithm as a
significant common concept. Teachers’ practice appears to
vary, depending on their respective backgrounds. Informal
assessment practices are predominant, especially in the case
of younger students. In the Bebras tasks, algorithms and
data representation were found to be the main concept cat-
egories. The question structure follows specific patterns, but
the relative frequencies of the patterns employed in the tasks
vary over the years. Our analysis methods appear to be in-
teresting in themselves, and the results of our study give rise
to suggestions for follow-up research.

CCS Concepts
•Social and professional topics → Computer science
education; Student assessment; K-12 education; Com-
putational thinking;

Keywords
CS concepts; K–9 education; curricula; teachers; assessment;
Bebras

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITICSE-WGR’15, July 04-08, 2015, Vilnius, Lithuania
c© 2015 ACM. ISBN 978-1-4503-4146-2/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2858796.2858800

1. INTRODUCTION
Computer science (CS) is no longer a subject area only

relevant for a narrow group of professionals, but rather is a
vital part of general education that should be available to
all children and young people. CS “develops students’ com-
putational and critical thinking skills and shows them how
to create, not simply use, new technologies. CS provides
a fundamental set of concepts and skills needed to prepare
students for the 21st century, regardless of their ultimate
field of study or occupation.”1 Nevertheless, whereas digital
literacy seems to have become a natural component of K–
9 education, the extent to which CS concepts are included
varies greatly, ranging from CS being a compulsory or elec-
tive subject to not being covered at all.

Various alternative terms are in use to indicate the foun-
dational discipline or school subject called CS above, for
example Informatics and Computing. In this report we will
use the term CS uniformly, if necessary after explaining the
local names of the subject. In contrast, information tech-
nology (IT) refers to usage of technical infrastructure and
applications.

This report presents the results of an exploratory study.
We are interested in the CS content in K-9, i.e., topics and
ideas belonging to the subject matter, regardless of the spe-
cific skills or attitudes in which they appear. We will refer
to these topics and ideas as concepts. In addition, we will
focus on assessment of these concepts.

The aim of the report is hence to contribute to the dis-
cussion on what CS at K–9 level can entail. The report can
hence be used to guide teachers, teacher educators, and cur-
riculum developers in making informed decisions with regard
to teaching and assessing CS concepts and skills for this par-
ticular school level, characterized by critical developments of
pupils’ cognitive abilities.

More specifically, we address a selection of concepts in K–
9 CS education from a threefold standpoint: the intended
curriculum, emerging from an assortment of national rec-
ommendations; the implemented curriculum, which results
from teachers’ actual practice; the attained curriculum, as

1“Why K-12 computer science?” on http://code.org and
http://computinginthecore.org

85

attested by their assessment strategies. In addition, we an-
alyze both the concepts and the style of assessment implied
by the tasks assigned in the Bebras international competi-
tion. While focusing on the learning of CS concepts, indeed,
it is likewise important to consider what exactly and how is
assessed, in order to be able to make sense of the evidence
supporting the achievement of a specific concept as well as
to figure out the underlying characterization of the very idea
of “CS concept.”

We approach the two themes of CS concepts and assess-
ment from three perspectives: curriculum standards, teach-
ers’ practice and international competitions. The analytic
part of our research focuses on concepts and assessment in
curriculum documents, teachers’ practice, and Bebras tasks.
Section 2 provides the background for the study by dis-
cussing the aspects included in our analytic part. The sec-
tion also includes a brief review of the national situation of
CS at K–9 level in seven countries. Our research questions
are formulated in Section 3, followed by a more extensive
description of the situations in the countries involved in our
study in Section 4. Section 5 addresses our research meth-
ods. The results are organized according to the data sources
in sections 6–8. The results are discussed in section 9, which
ends with some final remarks.

2. BACKGROUND

2.1 CS at K–9 Level
As far as education in CS-related topics in the school is

concerned, relevant documents and programs are most com-
monly addressed to the whole K–12 cycle than specific to
K–9. We will mainly consider curricula with this broader
scope.

A recent trend in educational discussions is an increased
focus on the role and nature of CS in early education. Ini-
tiatives such as Hour of Code2 and Europe Codeweek3 are
promoting CS and programming among educators, parents
and students. Individual persons and large industries en-
gage in active discussions acknowledging the importance of
guaranteeing basic knowledge in CS for everyone. But if
we are to teach CS in K–9, the question arises what exactly
should be taught. After all, CS is a multifaceted field involv-
ing several dimensions in terms of concepts, capabilities and
skills. A few proposals have been made to characterize suit-
able concept matter, e.g., by the organizations Computing
at School (CAS) in England [2] and the Computer Science
Teachers Association (CSTA) in the USA [81].

The extent to which programming may be beneficial to de-
velop general problem-solving skills is still subject to debate,
see, e.g., [75, 59]. Feurzeig et al. argue, for instance, that
the need for rigorous thinking can be a reason to introduce
programming in schools [35], whereas other authors stress
the importance of creativity (e.g., [77]). An additional issue
is how to achieve “language independence”, often considered
a desirable feature to assess programming competences [87].

If on the one hand several educators agree that program-
ming is crucial for appreciating a computational perspective,
a major objection is that it may be unsuitable for lower lev-
els of education, as pointed out, e.g., in [63]. Duncan et al.
remark, however, that it would be beneficial to shape the

2http://hourofcode.com
3http://codeweek.eu/

children’s “attitudes to programming before it is too late”
[33]. Programming is indeed implied by all sorts of artifacts,
such as board games, visual programming tools, robots and
various toy logic devices. Furthermore, even the scope of
programming is now broader than it used to be: its practice
can be seen as a means of self-expression and social par-
ticipation [54, 80], a component of a new form of literacy
[18, 93], a tool for developing creativity [12], a way to widen
experience and experiment with personal ideas [11], and an
instrument to foster children’s metacognition [76].

Before high school, and especially at the primary level,
CS ideas can also be introduced in the classroom through
unplugged, or partly unplugged, approaches. This is the per-
spective of the CS Unplugged project [7], that has then in-
spired several educators and that we can also find in other
projects such as Informatik erLeben [69] and Abenteuer In-
formatik [40].

Regardless of the approach or tools used, Hubwieser et al.
point out that“there is a convergence towards computational
thinking as a core idea of the K–12 curricula” and that “pro-
gramming in one form or another, seems to be absolutely
necessary for a future oriented CSE” [50] (added emphasis).

Computational thinking (CT) was probably first intro-
duced in connection with children’s education by Seymour
Papert in his book Mindstorms, while referring to the initial
attempts to“integrate computational thinking into everyday
life” [72] (p. 182), and again in [73], a paper about the learn-
ing of mathematical ideas. More recently, Jeannette Wing
re-introduced the category of CT in her column [97], that
then turned out to be broadly influential. She later defined it
as those“thought processes involved in formulating problems
and their solutions so that the solutions are represented in
a form that can be carried out by an information-processing
agent” [98], a way of thinking characterized by different lay-
ers of abstraction. Although there is not full agreement on
how to define CT, a few organizations have tried to come
up with a more accurate characterization, notably [37, 38].

The CSTA [23] and the ISTE [53] have jointly developed
a definition of CT suitable for use in K–12 education, iden-
tifying nine essential concepts: data collection, data anal-
ysis, data representation, problem decomposition, abstrac-
tion, algorithms, automation, parallelization and simulation.
Skills related to these concepts are not limited to CS, nor
even to STEM, but can be practiced and developed within
all disciplines, which is crucial for broadening participation.
The ISTE has also proposed an operational definition for
CT as a problem-solving process with CS features.

Among other contributions coming from educators, Lee
et al. [60] identify abstraction, automation and analysis as
the key features in order for young pupils to deal with novel
problems. They then suggest three possible approaches to
introduce CT for the K–8 levels. As observed by Hu, how-
ever, we should be careful since if “the mainstream of com-
putational thinking is thinking about process abstraction,
then Jean Piaget’s Stages of Cognitive Development may
suggest that this thinking skill cannot be effectively taught
until adolescence age” [49].

Further approaches to infuse CT in early education in the
light of learning theories are also considered, in for instance
[22, 49] and a broad survey of the CT perspective in the
context of K–9 education can be found in [65]. Due to its
cross-curricular nature and allround skill set, computational
thinking (CT) constitutes an interesting perspective for K-9

86

CS education.
Following the approach suggested in [65], the definition of

CT used in this report is the one developed by the CSTA and
the ISTE, which introduces the nine foundational concepts
mentioned above.

2.2 Curricula for K–9 CS Education
While the interest surrounding CS at K-9 level is rela-

tively new, CS at K-12 level has been a topic for discussion
for a longer period of time. The first ACM model curricu-
lum for K–12 CS was presented in 1993 and updated in
2003 [91]. The latter states that K–12 curricula should in-
clude “programming, hardware design, networks, graphics,
databases and information retrieval, computer security, soft-
ware design, programming languages, logic, programming
paradigms, translation between levels of abstraction, artifi-
cial intelligence, the limits of computation [...], applications
in information technology and information systems, and so-
cial issues.”

More recently, the CSTA has developed the CSTA K–12
CS Standards [81]. These standards contain five strands:
Computational thinking, Collaboration, Computing Prac-
tice and Programming, Computers and Communication De-
vices, and Community, Global and Ethical Impacts. The Ex-
ploring CS model curriculum [43] covers six areas: Human-
Computer Interaction, Problem Solving, Web Design, Intro-
duction to Programming, Computing and Data Analysis,
and Robotics. As K-9 is part of K-12, these guidelines can
also be considered part of the discussion on what to teach
at K-9 level.

CS has also been introduced in official national K-9 curric-
ula in several countries [34]. The situation in the countries
represented by the authors of this report are summarised
below:

Australia: The “F–10 Australian Curriculum: Technolo-
gies”, where F-10 stands for “from Foundation to 10
grade”, was fully developed and published on the Aus-
tralian Curriculum website4 by the end of 2013. This
curriculum covers areas ranging from logical sequenc-
ing and simple problem solving to programming, projects
and societal aspects.

Finland: Finland will get a new national curriculum for
general education (grades 1–9) in fall 20165, where spe-
cial attention has been paid to recognizing future com-
petence needs. The document emphasizes the need for
students to acquire basic knowledge about information
technology and also includes programming, as a means
to build understanding for central concepts and princi-
ples of how the technology lying behind the increased
digitalization works and how to use this technology to
create artefacts of their own.

Italy: The Italian curriculum includes topics referring to
two rather broad areas: (1) A cross-disciplinary key
citizenship digital competence area, including, for in-
stance, proficiency and critical attitude in the use of
ICT for work, life and communication. This area spans

4http://www.australiancurriculum.edu.au/
technologies/rationale
5http://www.oph.fi/ops2016/perusteet

the whole period of compulsory education. (2) A gen-
eral technology subject area, that includes, for instance,
use of ICT tools, programming and societal aspects.

Lithuania: As part of an education reform in 1997, the
Lithuanian core curriculum in Informatics (indicated
as CS from now on) went through a major revision,
which resulted in less focus on CS topics. Lithuanian
pupils do however get familiar with basic CS concepts
and skills in grade 5 or 6, when they take a Logo or
Scratch course. For grades 9 or 10 there are three op-
tional modules: Programming, Web design and Desk-
top publishing.

Netherlands: The learning objectives for primary educa-
tion in the Netherlands (ages 4–12) are summarized
in 58 general core objectives describing goals for the
Dutch, Frisian, and English languages, arithmetic/math,
world and personal orientation, arts and physical ed-
ucation [55]. Only 10 of these objectives contain as-
pects of CT. Recently, initiatives have been employed
to explore the possibilities of introducing elements of
Computer Science into K-9 education [89].

UK/England: England introduced a new subject called
Computing in September 2013 [31], after a period of
consultation following the disapplication of the previ-
ous ICT curriculum in January 2012. This was imple-
mented as part of a revised National Curriculum for
all subjects in September 2014. Computing has three
elements: CS, Information Technology and Digital Lit-
eracy.

United States: There is no national curriculum for K-9 CS
in the U.S., in part because the curricular standards
have to be approved at the state level. Many states in
the U.S. follow the Common Core Standard6. Several
groups have worked to put together curricula for K–12
that could be used by U.S. teachers (e.g. the CSTA
and Code.org).

Nevertheless, although there are several commonalities in
the informal and national curricula, there is still no consen-
sus with regard to what teaching CS in K–12 means. A
general picture about the state of CS education in several
countries is drawn in the special issue of TOCE on Comput-
ing Education in K–12 Schools [66].

2.3 Approaches to Assessment
Valid assessment is a crucial part of successful teaching

and learning activities. A major issue, however, is to design
assessment instruments that can be validated to actually as-
sess the intended learning outcomes (see, e.g., constructive
alignment [9]). In Tew and Guzdial’s words, while “many
STEM disciplines have standard validated assessment tools
[...], computer science does not have” similar “tools, and
practitioners must devise their own instruments each time
they want to investigate student learning” [87].

As a matter of fact, assessment practices seem to vary
a lot in the CS context. To this point, most assessment
research in CS has focused on programming concepts [29, 67,
87, 96] and, for understandable reasons, mainly at tertiary
level. Efforts have ranged from concept inventories [86] to

6http://www.corestandards.org/

87

the use of taxonomies [82, 84, 90] and specialized exams. A
cognitive assessment method for measuring problem solving
and program development skills has been proposed by Deek
et al. [30].

Another promising approach can be found in the inter-
national Bebras contest (www.bebras.org) in which CS con-
cepts are addressed using compact, well designed tasks. An
interesting question is how this “tasklet-based assessment”
works as well as how it can be applied to a wider range of
concepts. A more detailed introduction to Bebras is given
below (Section 2.5).

Many K–12 teachers reportedly use projects or practical
assignments [45]. This preference fits closely to the epistemic
view of CS as an engineering discipline [8]. Such teaching
methods clearly cover learning outcomes connected to, e.g.,
‘designing’ or ‘programming’.

Students are expected to use relevant concepts in design
tasks. There is also strong evidence, however, that the rela-
tion between conceptual knowledge and designing is recipro-
cal. In science subjects, pupils who are involved in design-
ing artefacts and are using relevant concepts and ways of
scientific reasoning (e.g., from structure to function) would
achieve deeper conceptual and technological understanding
[28, 39, 58, 94]. In particular, students learn about CS con-
cepts while working on programming assignments, e.g. [68].
It remains unclear, however, how to effectively assess and
monitor development of conceptual understanding in practi-
cal contexts without disturbing the authentic design setting
(by, e.g., letting students do a pencil and paper test).

Professional software developers constantly analyse and
test their intermediate products [17]. Testing such prelim-
inary results and explaining the reasoning steps appear to
be crucial for the learning process [6, 56] and are potential
starting points for assessment. Some promising exploratory
experiments in CS have been carried out, both based on
explanations and justification of intermediate products [46]
and on the results themselves [95].

Several assessment instruments are based on the SOLO
[10] and (revised) Bloom’s taxonomies [1]. The former con-
siders five levels of understanding: pre-structural, uni-struc-
tural, multi-structural, relational and extended abstract. The
latter addresses the abilities to remember, understand, ap-
ply, analyze, evaluate and create, as well as the knowledge
dimensions of factual knowledge, conceptual knowledge, pro-
cedural knowledge and metaknowledge. Meerbaum et al.
devised an assessment instrument addressed to middle-school
students learning to program in Scratch based on the SOLO
and Bloom’s taxonomies [68].

The relevance of devising assessment instruments is also
pointed out by Werner et al., in that efforts “to engage K–12
students in” CT “are hampered by a lack of definition and
assessment tools” [95]. The same is likely to hold also for
K-9 level. Among the few attempts made in this direction,
we can mention the framework in [12]. Moreover, according
to Grover and Pea [47], without “attention to assessment,”
CT “can have little hope of making its way successfully into
any K–12 curriculum.”

2.4 Teacher Practice and Teacher Knowledge
Teachers’ classroom practice is generally believed to be

influenced by their knowledge and beliefs, e.g. [16, 74], as
well as by their overall professional identity [71]. The re-
lationship between knowledge and practice appears to be

reciprocal: teacher knowledge is developed through an inte-
grative process of action and reflection (cf. [79]).

The notion of pedagogical content knowledge (PCK) was
introduced by Shulman [83] in order to try to describe the
features of the teaching practice in a particular subject mat-
ter. In this author’s view PCK is “the knowledge of teachers
to help others learn”, including “the ways of representing
and formulating the subject that makes it comprehensible
to others.”

In the model by Magnusson et al.[64], four aspects of PCK
with respect to a certain topic are distinguished: (a) knowl-
edge about learning goals and objectives connected to the
topic, (b) knowledge about students’ understanding of the
topic, (c) knowledge about instructional strategies for teach-
ing the topic, and (d) knowledge about ways to assess stu-
dents’ understanding of the topic.

Eliciting PCK from teachers is not easy, however, since it
tends to be tacit and usually the reasons motivating a par-
ticular instructional strategy are not explicitly articulated
or shared with colleagues [62]. Several methods have been
proposed, including interviews (e.g., [48]), Pedagogical ex-
perience Repertoires, PaP-eRs, [61], classroom observations
(e.g., [5, 41]) and reflective journals (e.g., [99]).

As pointed out in [87], PCK has mainly been investigated
for science education, whereas there are few studies in CS
related contexts. However, a PCK perspective appears to be
fruitful to explore the professional knowledge of CS teacher,
as demonstrated by a large German project on the teaching
of CS in schools [51], as well as by more focused investi-
gations in the areas of programming [78, 3, 32] and UML
design [57].

A promising instrument for the purpose of our study is
the Content Representation (CoRe) format [61], aimed at
capturing key ideas within a topic as well as the teachers’
knowledge about each idea. According to the authors, in-
deed, two main elements characterize the PCK: the Content
Representation (CoRe), i.e. an overview of the particular
content taught, and something related to a teacher’s Ped-
agogical and Professional-experience Repertoire (PaP-eR).
This kind of instrument is based on eight questions that
cover the PCK aspects addressed in [64]. In particular,
Loughran et al. [62] originally introduced the CoRe format
as an interview tool.

In the present study, questions from the CoRe tool ap-
peared useful to elicit information about teachers’ practice
(and potentially their underlying knowledge and beliefs) with
respect to concepts taught (cf. PCK aspect (a)) and assess-
ment (cf. PCK aspect (d)).

2.5 The Bebras Contest
Bebras is an international contest on problem solving and

CT, developed and initiated in 2004 in Lithuania7. The
goal of the contest is to promote and raise interest in CS in
general and CT in particular among teachers and students
of all ages.

In practice this is done through local annual contests (most-
ly arranged online), where pupils of different ages are pre-
sented with attractive and compact tasks (sometimes called
tasklets) that highlight one or more CS concepts. The in-
tention is, however, that the tasks can be answered without
prior knowledge of CS. In practice this indeed holds for the

7http://www.bebras.org

88

majority of tasks.
Some tasks are interactive (solved for instance by dragging

and dropping), but most are multiple-choice questions. For
the latter, the alternatives are carefully designed in order to
reveal any potential (and expected) misconceptions. This
task based assessment style employed in the Bebras contest
is interesting in itself [19].

To solve Bebras tasks, participants use algorithmic con-
cepts and are required to think about information, discrete
structures, computation, and data processing. Each Bebras
task can both demonstrate an aspect of CS and test the
CS experience and ability of the participant. For this rea-
son, the Bebras contest has also been studied as a basis for
PISA-like assessment of CS competencies [52].

The tasks are categorized according to age groups and
school levels as follows:

(0) Primary, 8-9 years (grade 3-4)

(I) Benjamin, 10-12 years (grade 5-6)

(II) Cadets, 13-14 years (grade 7-8)

(III) Junior, 15-16 years (grade 9-10)

(IV) Senior, 17-19 years (grade 11-13)

The Bebras contest follows a problem-solving approach to
CS, observing two leading principles: (1) Problem solving is
the individual capacity of using cognitive processes to com-
pare and solve real, cross-disciplinary situations where the
solution path is not immediately obvious [20], and (2) Inter-
est and engagement are very important in problem solving
[24, 25].

These principles have been translated into guidelines for
task construction [19]. For example, tasks should present
problems from various spheres of science and society, as close
as possible to everyday life. They should stimulate thinking
about efficient and effective use of applications of IT/ICT in
everyday experience. Moreover, the influence of IT/ICT on
culture and language should be emphasized, thus supporting
the idea that cognitive, social, cultural and cross-cultural
aspects are crucial in the use of technology.

The basic criteria for constructing Bebras tasks are: (1)
the task can be solved within 3 minutes; (2) the problem
statement is easy to understand; (3) the task can be pre-
sented in a single screen page; and (4) the task is indepen-
dent from specific systems.

Tasks can be of different types, starting from the most
common questions on IT/ICT and their applications in ev-
eryday life or including specific integrated problems related
to history, languages, arts, and, of course, mathematics. It
is also considered important to choose the problems so that
the participants in the competition are not influenced by
the digital tools (such as operating systems or the computer
programs) they are experienced with.

The topics of the Bebras contest [26] are as follows:

• Information (INF) – conception of information, its
representation (symbolic, numerical, graphical), en-
coding, encrypting;

• Algorithms (ALG) – action formalization, action
description according to certain rules;

• Computer systems and their application (USE)
– interaction of computer components, development,

common principles of program functionality, search en-
gines, etc.;

• Structures and patterns (STRUC) – components
of discrete mathematics, elements of combinatorics and
actions with them;

• Social effect of technologies (SOC) – cognitive,
legal, ethical, cultural, integral aspects of information
and communication technologies;

• CS and information technology puzzles (PUZ) –
logical games, mind maps, used to develop technology-
based skills.

This classification considers the tasks from the students’
(or the “normal task-solver”) point of view. Although other
themes are not excluded, the contribution of CT concepts
to Bebras topics is considerable.

3. AIM OF THE STUDY
In the analytic part of this study we investigate K–9 CS

education from three curriculum perspectives (cf. [44, 92]).
We will review the intended CS curriculum expressed in K–
9 standards and curricula recommendations. Moreover, we
will investigate the curriculum as it is actually implemented,
by exploring the concepts covered in practice. Furthermore
we address what is (provably) attained, by analyzing assess-
ment practices in schools. Finally we investigate Bebras
tasks, in particular to identify which concepts they address
and what type of assessment is involved.

Our research questions are as follows:

1. Which concepts are present in K–9 CS curriculum docu-
ments?

2. Which concepts are taught in practice? Which assess-
ment practices are used?

3. Which concepts are assessed in Bebras tasks? How can
the assessment format of these tasks be characterized?

In order to set the stage for the study, we next present
the context of the research and the methods used.

4. CONTEXT OF THE STUDY
We have addressed the research questions above in an

exploratory case study involving (1) curriculum documents
from England, the United States and Italy, (2) interviews
with teachers from England and Italy, and (3) Bebras tasks
from the contests between 2010 and 2014.

In Subsection 2.2 above, we briefly covered the main char-
acteristics of CS education at K-9 level in the countries rep-
resented by the authors. Below, we give a more thorough
review of the curricula used in England, the United Stated
and Italy. This information is intended as background in-
formation to understand and interpret the curricula analysis
and the context of the teacher interviews.

4.1 England
In England a Programme of Study for a new subject in

the curriculum, Computing, was unveiled in September 2013,
after a period of consultation following the disapplication of
the previous ICT curriculum in January 2012. This was
implemented as part of a revised National Curriculum for

89

UK Key Stage 1 2 3 4 5
Grades 1 2–5 6–8 9–10 11–12

Table 1: Key Stages

all subjects in September 2014. The changes in England
have been well documented recently, for example [14, 15].

The CS curriculum for England has the following aims.
Students:

• can understand and apply the fundamental principles
and concepts of computer science, including abstrac-
tion, logic, algorithms and data representation

• can analyse problems in computational terms, and have
repeated practical experience of writing computer pro-
grams in order to solve such problems

• can evaluate and apply information technology, includ-
ing new or unfamiliar technologies, analytically to solve
problems

• are responsible, competent, confident and creative users
of information and communication technology [31]

The new National Curriculum is interesting itself as it is
so short and there is no ‘fleshing out’. Assessment levels
have been removed. The Department of Education in Eng-
land is seeking to increase teacher autonomy by being less
prescriptive about how the curriculum is interpreted (in all
subjects).

Computing has three elements: computer science (first
two bullet points), IT (third bullet point) and Digital Lit-
eracy (fourth bullet point). One of the issues of the im-
plementation of this curriculum is how to incorporate all
three elements seamlessly. The three elements of Comput-
ing emanated from the Royal Society Report, Shut Down or
Restart [88]. There is a strong emphasis towards computa-
tional thinking in the programme of study.8

The English curriculum is implemented in Key Stages.
The relationship with other countries’ grades system can be
seen in Table 1.

There is a need for teacher development around the new
curriculum because the introduction of a new subject has
coincided with a political move towards a much less detailed
curriculum.

The Computing curriculum in England is based on and
heavily influenced by the Computer Science curriculum doc-
ument produced by Computing At School in 2012, which
was the result of two years’ work by Computing At School
(CAS) members around what should be taught in school if
Computing was ever introduced. The CAS curriculum has
influenced the new mandatory national programme of study
in England, and the pace of change has been very rapid.

Scotland, Northern Ireland and Wales have their own Ed-
ucation departments and their own curricula. Scotland and
Northern Ireland have their own awarding bodies. Scotland

8The programme of study can be found in full (it only runs
to 3/4 pages), at
https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-programmes-of-
study/
national-curriculum-in-england-computing-programmes-of-
study

has a Computing Science curriculum which it has had for
many years although this was reviewed and a new curricu-
lum launched in 2010. Scotland’s curriculum is very differ-
ent to the English curriculum, whereas Wales and Northern
Ireland teach ICT.

For readability and uniformity, we will use the term CS
to refer to the Computing subject from now on.

4.2 Italy
Since 2007, the Italian school system has undergone a

broad reform process, some aspects of which remain to be fi-
nalized. The reform is meant to change both the educational
approach and the curricular organization. The duration of
compulsory education in Italy is now up to 16 years of age,
that usually corresponds to the 2nd high school year (grade
10). Since a major discontinuity arises at the transition from
middle to high school, for the sake of this report we will fo-
cus on the first 8 grades. For grades K–8, CS and digital
technologies are not in the scope of a specific subject, though
some exposition to the ICTs should be part of a Technolo-
gies subject in the middle school (grades 6–8). The national
curricular recommendations state that these contents should
pertain to two rather broad areas:

• A cross-disciplinary key citizenship digital competence
area: proficiency and critical attitude in the use of
ICTs for work, life, communication; use of computer
to retrieve, assess, retain, produce, present, share in-
formation as well as to cooperate through the Internet.
This area spans over the whole period of compulsory
education. (The Italian Ministry for Education has in-
deed adopted the “Recommendation of the European
Parliament and of the Council” of 12/18/2006 on key
competences for lifelong learning – 2006/962/EC.)

• A general technology subject area, that includes the use
of the most common ICT tools and, “if possible,” some
computer and/or robot programming: proficiency and
critical attitude toward the psychological, social and
cultural impact of ICTs; if possible, introduction to
programming with simple languages, to create and de-
velop projects.

The reference to programming and robots is an attempt to
acknowledge several (seemingly) successful experiences pro-
moted by enthusiastic, self-motivated (as well as self-taught)
teachers.

An independent CS subject, taught by qualified teach-
ers, is only included in the curriculum of the first year(s)
of scientific and technical high schools, which as already
stated are not in the scope of this report. As to the basic
competences at the end of compulsory instruction for the
scientific-technological area, the national recommendations
merely state that “[...] beyond the mastery of ICT tools,
often acquired out of the school, it is necessary to develop a
critical attitude [...] w.r.t. their social and cultural impact,
some awareness of the relational and psychological implica-
tions of the way they are used, as well as of their effects for
the environment and health; this crucial educational task
is to be shared among the different disciplines” and that
“whenever possible, students can be introduced to simple
and flexible programming languages in order to develop a
taste for creation and for the accomplishment of projects
(interactive web sites, exercises, games, utility applications)

90

and in order to understand the relationships between source
code and resulting behavior.”

According to the general framework of the education of
pre-service teachers, drawn in 2010, prospective primary
school teachers, as well as middle school teachers of mathe-
matics and sciences and of technology, will learn only some
very basic digital literacy and are not prepared to properly
deal with CS fundamental concepts.

A novelty for K–8 education in Italy is the three-year min-
isterial project “Program your future” launched in Septem-
ber 2014 with two main objectives:

1. to “provide schools with a set of simple, playful and
easy-to-access tools in order for the students to learn
basic computer science concepts” and

2. to“experiment the structural introduction of basic com-
puter science concepts in the schools through program-
ming” in playful contexts, this being the simplest and
most enjoyable way to develop computational think-
ing. The activities are to a large extent drawn from
Code.org, with some additional online assistance of-
fered by CS teachers who volunteer to support their
colleagues engaged in K–9 education.

The project’s “ambition is that education in computational
thinking will be introduced” as a curricular school subject.
The objectives at the end of the third year include the in-
volvement of 25% of the primary schools in the Hour of
Code and of about 10% in some more advanced learning
paths. This should be accomplished by sharing tutorials on
selected CT topics (mostly algorithms and programming)
and by encouraging the creation of communities where to
find help and support. However, it rests almost entirely on
the volunteering work of self-motivated teachers, and it is
unclear if this initiative will be able to trigger long-lasting
changes in K–8 CS education.

4.3 United States
There is no national curriculum for K-9 CS in the U.S., in

part because the curricular standards have to be approved
at the state level. Many states in the U.S. follow the Com-
mon Core Standard9. The Common Core includes standards
for English and math10 and in those standards there are
mentions of technology literacy and mathematical reason-
ing skills that could be considered computational thinking.
Details of this were provided in the working group report
from 2014 [65].

Several groups have worked to put together curricula for
K–12 that could be used by U.S. teachers. Among them,
we can mention the CSTA and Code.org. Code.org has put
together materials for K–511 as well as teacher training op-
portunities. They also have training opportunities and mod-
ules for CS in science and CS in math at the middle school
level available12. The materials are intended to be aligned
with the Common Core to make them more accessible for
teachers. The CSTA materials are less detailed and include
articles and activities developed for K–813.

9http://www.corestandards.org/
10http://www.corestandards.org/read-the-standards/
11http://code.org/educate/k5
12http://code.org/educate/curriculum
13http://csta.acm.org/Curriculum/sub/CSK8.html

There is a national standard of sorts at the high school
level (grades 9–12) in the form of Advanced Placement com-
puter science. As of 2016 there will be two AP computer sci-
ence classes (one in Java programming and the other called
CS principles that includes a lot of CT). Both offer students
who complete the classes and earn a high enough grade on
the associated test college credit.

5. METHOD
In this exploratory study, we have analyzed the concep-

tual content of curriculum documents and teachers’ school
practice, as well as the ways this content is assessed in school
practice and the Bebras competition. To this end, we per-
formed a document analysis, conducted interviews with K–9
teachers, and completed a conceptual analysis of a collection
of Bebras tasks.

We will describe our method in more detail below, orga-
nized by the data sources used.

5.1 Curriculum Documents
In order to analyze the concepts and ideas, we constructed

a classification of CS subjects into knowledge categories.
Our classification is based on the ‘knowledge areas’ in the
ACM/IEEE Computer Science Curricula report [91]. Al-
though these guidelines are meant for higher education, the
description of the content areas is useful for our classifi-
cation, since they contain a recent overview of the field,
certainly covering secondary school topics. Moreover the
ACM/IEEE document contains detailed specifications of the
knowledge areas, which was valuable for the analysis process.

We have clustered the knowledge areas into a conveniently
small number of categories suitable to classify CS content
for K–9 education, providing enough detail to distinguish
variations in content. This approach has proved to be use-
ful in analyzing teachers’ survey responses with curricu-
lum suggestions [4] and analyzing curriculum guidelines [85].
Our classification differs only slightly from the one used by
Barendsen et al. [4].

Table 2 gives an overview of the knowledge categories,
referring to the ACM/IEEE document for more detailed de-
scriptions. Note that the knowledge area Software Develop-
ment Fundamentals (SDF) is spread over four categories.

The documents analyzed in this preliminary report are

• CSTA curriculum [81], K–9 part

• CAS curriculum [2], K–9 part

• English (EN) national curriculum [31], K–9 part

• Italian (IT) guidelines [70], K–8 part

In the first phase, each document was subjected to open
coding [21], extracting literal concepts and ideas from the
curriculum texts. In the second (more axial, cf. [21]) cod-
ing phase similar codes were merged into one, slightly more
abstract, code. Then the resulting codes were grouped into
the general knowledge categories mentioned earlier. For the
coding of the CAS and CSTA documents we have made use
of Steenvoorden’s [85] work.

To get a global idea about the focus of the documents, we
looked at the number of occurences of codes in each category.
We view the distribution of occurences over the categories
as an indication of the relative importance of the categories.

91

knowledge cat-
egory

included ACM/IEEE knowledge areas

Algorithms Algorithms and Complexity (AL)
Parallel and Distributed Computing
(PD)
Algorithms and Design (SDF/AL)
Remark: concepts about data struc-
tures are covered by Data

Architecture Architecture and Organization (AR)
Operating Systems (OS)
System Fundamentals (SF)

Modeling Computational Science (CN)
Graphics and Visualisation (GV)

Data Information Management (IM)
Fundamental Data Structures
(SDF/IM)

Engineering Software Engineering (SE)
Development Methods (SDF/SE)
Remarks: also contains ideas on col-
laboration; concepts without an engi-
neering component are covered by Pro-
gramming

Intelligence Intelligent Systems (IS)
Mathematics Discrete Structures (DS)
Networking Networking and Communication (NC)
Programming Programming Languages (PL)

Platform Based Development (PBD)
Fundamental Programming Concepts
(SDF/PL)

Security Information Assurance and Security
(IAS)
Remark: concepts about privacy are
covered by Society

Society Social Issues and Professional Practice
(SP)

Usability Human-Computer Interaction (HCI)

Table 2: Knowledge categories for curriculum anal-
ysis

We then explored the document contents through a more de-
tailed analysis with respect to selected categories, using the
frequencies and codes as pointers to relevant text segments.

5.2 Teacher Interviews
The aim of this part of the study was to establish some

pointers to the nature of the implemented curriculum and
the achieved curriculum, by conducting interviews about
teachers’ practice in terms of some of the concepts and ideas
and also their assessment strategies with reference to these
concepts.

To draw on some concrete and detailed examples, we de-
cided to conduct a number of interviews with practising
teachers, using the CoRe methodology described in section
2 [62], originally intended to identify aspects of pedagogical
content knowledge [83]. For this exercise, it was important
to focus on teachers where there was an actual curriculum in
place at K–9; we surmised that working with a small num-
ber of teachers who were actively engaged with teaching CS
with this age group was important to compare with what
has been identified earlier in the intended curriculum.

Based on the analysis of curriculum documents, we se-
lected three knowledge areas to focus on for the purpose of
our interviews: Algorithms, Programming and Security. The
two former ones are fundamental to CS and it was expected
that many teachers would have experience from teaching
these, hence providing us with comparable and rich data.
Security was chosen as the third area since it is a rather
new topic and we wanted to see if and in that case to what
extent it is present in teachers’ practice.

England was chosen for one group of teachers because the
Programme of Study for CS [31] has been taught in schools
across England since at least September 2014 and teach-
ers can speak directly about their practice in delivering the
intended curriculum. Italy was chosen as an alternative cur-
riculum because there are teachers with experience of teach-
ing at this level, despite the CS curriculum not being manda-
tory.

We interviewed the following teachers in England:

• 1 KS1 teacher (Grades K-1);

• 3 KS2 teachers (Grades 2-5);

• 1 KS3 teacher (Grades 6-8).

And correspondingly in Italy:

• 3 elementary school teachers (K-5);

• 3 middle school teachers of Mathematics and Science
(K6-8), one of whom is also teaching CS topics in pri-
mary school;

• 2 high-school teachers, one with experience of teach-
ing in elementary and middle school, the second being
involved for several years in teacher training as well as
in (K-13) educational projects.

Following the CoRe methodology [62], for each of the cho-
sen categories, we presented the teacher with the concepts
found in the preliminary analysis. The teachers were asked
to indicate which concepts appear in their lessons and to
select three “Big Ideas”.

The CoRe methodology uses 8 questions for a concept to
determine the nature and extent of a teachers’ pedagogi-
cal content knowledge (PCK). Because the focus of the re-
search was on concepts and assessments only, we considered
only learning goals (questions 1–3) and assessment (question
8). We therefore omitted questions 4–7 which directly asked
about teaching. Thus, our questions were the following:

CoRe Question 1: What do you intend the students to
learn about these concepts?

CoRe Question 2: Why is it important for students to
know this?

CoRe Question 3: What else do you know about this
concept (that you do not intend stu-
dents to know yet)?

CoRe Question 8: What are the specific ways of ascer-
taining students’ understanding or
confusion around these concepts?

Given the limited number of teachers that could realisti-
cally be interviewed, it was not possible to achieve a rep-
resentative sample. Indeed, the K–9 range has many age

92

Year Total tasks Level 0-II
2010 139 65
2011 126 99
2012 124 84
2013 150 120
2014 129 101
All 668 469

Table 3: Overall number of Bebras tasks and corre-
sponding number covering K-9 level

groups, and it is likely to be the case that teachers have
different levels of content knowledge about CS. Instead, in
this study we focused on two different national frameworks
and interviewed a group of teachers with teaching experience
covering a reasonable range of age groups. This in-depth
approach provided a means to explore practices, issues and
problems, and allowed us to test our PCK-based elicitation
method.

In England the interview processes followed the ethics
guidelines of the British Educational Research Association
[13]. Teachers took part in interviews voluntarily and were
provided with full information with respect to the study and
use of their data. They gave permission for audio recordings
to be made and transcribed. The process was less formal in
Italy, but also the Italian teachers voluntarily accepted to
participate in the interviews and had essentially the same
preliminary information about the study and our approach.

The interview transcripts were used for a qualitative anal-
ysis. We used the concepts identified in the curriculum com-
parison analysis as initial codes in an analytic coding process
[42] and added new codes where necessary until a complete
code system was obtained. The teachers’ responses related
to assessment were analyzed by an inductive approach start-
ing with an open coding phase. The open codes were then
grouped into more general types of assessment, thus obtain-
ing the final analytic codes [21, 42].

5.3 Bebras Task Analysis
For this report we considered Bebras tasks between 2010

and 2014. We obtained all of the recommended and elective
tasks for each of those years, and Table 3 shows the total
number of tasks by year as well as the breakdown by level
of task relevant to this report. All tasks from the five years
have been analysed.

In this work we are interested in considering two things
regarding the Bebras tasks:

• What type of concepts are assessed in the tasks?

• What type of assessment is used in the tasks?

Because of the recent interest in CT we focus on using CT
terms to classify the Bebras tasks. Regarding assessment it
is important to keep in mind that a large part of Bebras
tasks are multiple-choice questions. Using multiple-choice
questions to assess CT concepts can be challenging so we
consider the issue of how the Bebras contest organizers have
structured the questions.

5.3.1 Classification of CT Concepts
When classifying the type of CT found in each Bebras

task, we used a deductive process. The nine concepts as

defined by the ISTE and CSTA (see section 2) were used
as the starting point of an analytic coding procedure (cf.
[21, 42]). Team members independently coded each Bebras
task assigning one or more concepts. This coding was then
reviewed by another team member, who marked any dis-
agreements regarding the classification. The disagreements
were discussed until the conflicts could be resolved. The re-
sult of the discussion was the production of an operational
definition of each CT term. Table 4 gives for each CT con-
cept a short operative description used to identify where the
concept applies in particular Bebras tasks.

In most cases, the operational definitions we use are iden-
tical or nearly identical with the characterizations provided
by the CSTA and the ISTE. In some cases we provided more
elaboration on the concepts, which may have extended the
tasks to which the terms can be applied. There were no
tasks that introduced CT terminology not represented in
the CSTA and ISTE document. However, it should be noted
that Bebras tasks sometimes address pure ICT literacy, and
those questions were marked as such.

5.3.2 Classification of Task Structure
When classifying the structure of the tasks, we decided to

focus on one CT concept, namely algorithms. There were
several reasons for this. First, the term is broad and allows
the inclusion of a variety of tasks. However, since so many
Bebras tasks involved algorithms in one form or another,
it was necessary to limit the scope of the classification in
order to be feasibly completed. We therefore limited our
classification to Bebras tasks that involved only the category
of algorithms. Tasks that were classified with multiple CT
terms were not considered.

We used an inductive process (cf. analytic coding, [21,
42]) when considering the structure of Bebras tasks involv-
ing purely algorithms concepts. A member of the team read
each task in the relevant years and produced a classification
for the questions, including a description for the classifica-
tion. The classification scheme was discussed with other
team members and slightly refined before all of the tasks
were classified (Table 5). The classification of each relevant
task was completed by one team member and then reviewed
by at least one other team member. Conflicts were resolved
during a discussion period before the final classification for
the task was determined.

6. RESULTS: CURRICULUM DOCUMENTS
The distribution of code occurrences found in the doc-

uments is displayed in Table 6. These absolute numbers
reflect the respective sizes of the documents. For example,
the English national and Italian documents are written in a
more compact style than the CAS curriculum. To facilitate
comparisons, table 7 gives the relative weights of the respec-
tive categories. The distribution of concept occurrences for
the K–9 documents is visualized in Figure 1.

The global concept distribution suggests that all four K–
9 documents give substantial attention to algorithmic as-
pects, especially CAS, EN and IT. Programming is seen in
the documents in comparable fractions. The engineering as-
pect is absent in the Italian guidelines, and does not play
an important role in EN either. CSTA seems to have more
emphasis on societal aspects than the other two documents.
For instance in CAS, societal aspects are not very promi-
nent, in favour of the more technical aspects (Engineering,

93

CT category Definition Operational definition for Bebras
Data collection The process of gathering ap-

propriate information.
Find a data source for a problem area.

Data analysis Making sense of data, find-
ing patterns, and drawing
conclusions.

Take data and transform it to solve a problem. Often
there is some statistical analysis involved in the transfor-
mation, although the statistics do not have to be sophis-
ticated.

Data representation Depicting and organizing
data in appropriate graphs,
charts, words, or images.

Take data and put it into a specified format. Includes
descriptions of data that involve particular structures. It
may involve understanding the implications of graphs or
other representations on the solution of a problem.

Problem decomposition Breaking down tasks into
smaller, manageable parts.

Breaking a problem or task into smaller pieces to enable
an easier or better solution.

Abstraction Reducing complexity to de-
fine main idea.

Problems that ask for the creation of a formula. The dis-
tillation of broader ideas out of narrower concepts. Find-
ing rules that apply to a given problem. Finding a pat-
tern to model some behavior. Identifying essential facts
about a structure or problem to verify correct answers.

Algorithms & procedures Series of ordered steps taken
to solve a problem or achieve
some end.

Solving maximization, minimization, or other optimiza-
tion problems. Following a step-by-step procedure. Ver-
ifying potential solutions as valid or invalid. Encoding
or encryption/decryption problems, including the appli-
cation of an encryption scheme to a sample set of data.
Debugging solutions and finding errors in a solution. Ap-
plying a set of rules to determine specific values. Choos-
ing or verifying pseudocode or code.

Automation Having computers or ma-
chines do repetitive or te-
dious tasks.

No instances found.

Parallelization Organize resources to simul-
taneously carry out tasks to
reach a common goal.

Scheduling problems.

Simulation Representation or model of a
process. Simulation also in-
volves running experiments
using models.

Tasks that are interactive and involve building and ex-
ploring a solution.

Table 4: Operational description of CT concepts in Bebras tasks.

K-‐9	 EN	

Preliminary	 Results:	 Documents	
K-‐9	 IT	

Algorithms	
Engineering	
Architecture	
Society	
Programming	
Intelligence	
Modelling	
Math	
Security	
Data	
Graphics	
Networking	
Usability	
Rest	

K-‐9	 CAS	 K-‐9	 CSTA	

Figure 1: Visualization of concept distributions.

94

Question
structure

Description

Constraint A description of some rules (possibly
with a diagram about the rules) and the
addition of a constraint on those rules
along with a listing of possible scenarios
that achieve that constraint

Formula
identification

A description of a problem that in-
volves a formula and a question that
asks for a specific answer involving the
underlying formula

Optimization A set of rules (and possibly a diagram
relevant to those rules) along with a op-
timization question (minimize or maxi-
mize) and then a listing of possible val-
ues

Ordering A list of objects and properties of ob-
jects with a definition of the relation-
ship between those properties and then
a listing of possible orderings of the ob-
jects

Procedures A set of procedures and a situation
involving the procedures along with a
goal to achieve or a set of commands
given and then a listing of the possible
ways the goal can be achieved or the re-
sults that the commands produced. It
may involve debugging the procedures

Sequencing A description of a situation along with
a sequence of actions that occur in that
situation and then a list of possible re-
sults of the sequencing

Verification A description of a problem and then a
listing of possible solutions to the prob-
lem with a request to verify which is
correct/incorrect

Table 5: Classification categories for Bebras tasks.

CSTA CAS EN IT
Algorithms 14 36 15 16
Engineering 13 13 1 0
Architecture 12 26 5 3
Society 10 2 3 3
Programming 9 17 7 6
Intelligence 6 1 0 0
Modelling 6 0 2 3
Mathematics 5 1 1 8
Security 5 2 1 1
Data 2 24 7 13
Graphics 2 0 0 0
Networking 2 32 7 0
Usability 1 0 1 0
Rest 0 0 0 0
Total 87 154 50 53

Table 6: Occurrences of codes within the knowledge
categories

CSTA CAS EN IT
Algorithms 16% 23% 30% 30%
Engineering 15% 8% 2% 0%
Architecture 14% 17% 10% 6%
Society 11% 1% 6% 6%
Programming 10% 11% 14% 11%
Intelligence 7% 1% 0% 0%
Modelling 7% 0% 4% 6%
Mathematics 6% 1% 2% 15%
Security 6% 1% 2% 2%
Data 2% 16% 14% 25%
Graphics 2% 0% 0% 0%
Networking 2% 21% 14% 0%
Usability 1% 0% 2% 0%
Rest 0% 0% 0% 0%

Table 7: Distribution of codes over the knowledge
categories (relative frequencies)

Networks). These categories appear to be the main differ-
ences between CAS and EN. Hardware (architecture) and
Networks receive relatively much attention in the CAS cur-
riculum, whereas the Mathematics contribution in IT ap-
pears to be large compared to others (e.g.: truth values and
propositions, language of logic and probability, links with set
theory, geometry, mathematical models. . .).

Below, we will explore the Algorithms category in some
detail and discuss a selection of the other categories in a
more global way.

The codes assigned in this category during the second
phase are:

CSTA: algorithm, search algorithm, algorithm sharing, in-
struction set, abstraction, multiplicity, information shar-
ing, complexity, decomposition, instruction sequence,
resource, sort algorithm, parallelization.

CAS: input, instruction, task, sequence, steps, multiplic-
ity, repetition, problem solving, algorithm representa-
tion, concurrency, ambiguity, decision, selection, com-
ponent, abstraction, data processing, algorithm, out-
put, precision, decomposition, instruction set.

EN: abstraction, algorithm, data processing, decomposi-
tion, input, instruction, output, problem solving, rep-
etition, searching, selection, sequence, sorting.

IT: sorting, sequencing, plan description, order, problem
solving, procedures, decision trees, algorithmic proce-
dures, top down, problem solving trees, finding paths
in graph, algorithm, combinatorial algorithms, prob-
lem formalization, problem decomposition.

The K–9 documents mention algorithmic building blocks
(such as steps, sequence, choice, selection):

“Algorithms are sets of instructions for achieving
goals, made up of pre-defined steps” (CAS);

“Algorithms can include selection (if) and repe-
tition (loops)” (CAS);

“Describe and analyze a sequence of instructions
being followed” (CSTA).

Algorithms are connected with problem solving aspects
such as decomposition and abstraction:

95

“Problem formalization and problem decomposi-
tion into subproblems” (IT);

“Use abstraction to decompose a problem into sub
problems” (CSTA).

The CSTA and Italian document moreover indicate spe-
cific types of algorithms, such as searching and sorting:

“Act out searching and sorting algorithms”(CSTA);

“[. . .] design of simple combinatorial algorithms”
(IT);

“Simple algorithmic procedures (sorting, calculat-
ing, logical relationships in real situations)” (IT).

For the English national curriculum, searching and sorting
are optional subjects.

Finally, the CSTA and CAS curricula refer to paralleliza-
tion aspects:

“Describe the process of parallelization as it re-
lates to problem solving” (CSTA);

“Computers can ‘pretend’ to do more than one
thing at a time, by switching between different
things very quickly” (CAS).

The Italian guidelines do not contain Engineering as-
pects such as specifications, debugging and testing. The
CAS document appears to focus on ‘technical’ aspects such
as requirements, verification, and testing:

“Programs are developed according to a plan and
then tested. Programs are corrected if they fail
these tests” (CAS).

The CSTA curriculum focuses on general aspects (design-
ing, evaluating) and emphazises development of artifacts in
a team:

“Problem statement and exploration, examination
of sample instances, design, implementing a so-
lution, testing, evaluation” (CSTA);

“Collaboratively design, develop, publish, and present
products” (CSTA);

“[. . .] using collaborative practices such as pair
programming [. . .]” (CSTA).

With respect to Programming, CAS, EN and CSTA
mention program elements like variables and control struc-
tures, CSTA being the most elaborate of the three:

“The difference between constants and variables
in programs” (CAS);

“[. . .] work with variables” (EN);

“They can use a variety of control structures”
(CAS);

“Implement problem solutions using a program-
ming language, including: looping behavior, con-
ditional statements, logic, expressions, variables,
and functions” (CSTA).

The CAS curriculum points at different kinds of program-
ming errors:

“Understanding the difference between errors in
program syntax and errors in meaning” (CAS).

The Italian guidelines do not explicitly mention program
elements, but only contain suggestions on a higher language
level, such as “pseudocode”. None of the K–9 documents
refers to the concept of recursion.

In the Data category, the CAS curriculum stresses the
distinction between data and information:

“There are many different ways of representing a
single thing in a computer” (CAS);

“Many different things may share the same rep-
resentation” (CAS).

The CSTA curriculum refers to representation details only
in the grade 9–12 part. However, K–9 students should be
able to:

“[. . .] represent data in a variety of ways”(CSTA).

The Italian guidelines approach this category from the
point of view of application areas and users:

“Representation of knowledge: building and read-
ing double-entry tables” (IT);

“Simple notions about the digital representation
of non- textual information (sound, images, etc.)”
(IT);

“Linguistic applications: inflection and concor-
dance tables (nouns and adjectives, articles and
prepositions, articles and prepositions)” (IT);

“Family trees” (IT).

Several aspects related to CS and Society are covered in
the K–9 curricula. The CSTA curriculum is most explicit,
including technology impact, career, ethical and legal issues,
and privacy:

“Identify interdisciplinary careers that are enhanced
by computer science” (CSTA);

“Describe ethical issues that relate to computers
and networks (e.g., security, privacy, ownership,
and information sharing)” (CSTA).

The CAS and English national curriculum refer to societal
impact in a more global way, including general keywords
such as ethics and privacy:

“Social and ethical issues raised by the role of
computers in our lives” (CAS).

“[. . .] including protecting their online identity
and privacy” (EN).

The Italian guidelines and English national curriculum
concern responsible use of the internet:

“Rules and guidelines for a responsible and cor-
rect use of the information available on the web;
netiquette for web navigation and e-mail” (IT).

“[. . .] recognise inappropriate content, contact
and conduct, and know how to report concerns”
(EN).

96

7. RESULTS: TEACHER INTERVIEWS

7.1 England
Teachers were asked for some basic information about

their teaching experience and then presented with a list of
topics taken directly from the Algorithms and Programming
sections of the National Curriculum [31] at KS1–KS3. No
questions were asked about security as this is not included
in the English Programme of Study in the form categorised
as security within the ACM curriculum. There are some
elements of privacy and internet safety within the English
Programme of Study that do not fall into the security cat-
egory as defined in the above section on curriculum. Table
8 gives an overview of the teachers initially interviewed in
England. Between them they teach the whole K–9 curricu-
lum but none of them teaches all of it. They have a variety
of backgrounds in CS. Anna, Beatrice and Fiona are class
teachers in primary school and teach CS as one of many
other subjects; David is a CS coordinator in a primary school
who teaches all the children from 4–11 in the school, mostly
team teaching with the class teacher. Eliza is a secondary
school teacher who has been teaching CS to children from
16–18 for 11 years and has gradually introduced CS lower
down the school over the last few years as the curriculum
has changed.

Teachers were asked to look at a list of topics provided
from the CS programme of study and asked to identify what
they do and do not teach and this information is shown in
Table 8. They were also asked to select three topics that
they were happy to talk about in more depth, and these are
indicated by shading in the table. It would be expected that
Eliza teaches at least the bottom half of the list and that
Anna only teaches a few items from the beginning of the
list, as the list moves from KS1 to KS3. On the whole this
is true, although David claims to teach the material that is
in the curriculum for 11–14 year olds although he teaches
in a primary school. The curriculum includes the fact that
students should learn about computational abstractions at
Key Stage 2 (age 7–11) and some of the teachers were not
sure what this meant.

Teachers were asked to choose topics that they felt they
wanted, or felt confident, to talk about. Optionally they
were able to elect their own topics to talk about — following
the idea of Big Ideas from the CoRe methodology (Loughran
et al, 2014). From the table it can be seen that 3 of the
5 teachers wanted to talk about creating simple programs,
and three out of 5 wanted to talk about either debugging
programs or detecting errors in algorithms. This indicates
firstly that these areas are those they feel they are competent
to talk about, but also has the side-effect of skewing our data
to be in the area of simple programming and debugging. It
is therefore not surprising that all teachers then mentioned
debugging when it came to asking them the CoRe questions.

One of the teachers with a strong background in CS chose
her own areas — Decomposition and Algorithms Design and
Planning — as the ones she wanted to discuss, according to
the CoRe methodology.

When coding the data we used the codes that were al-
ready established by the examination of the curricula from
different countries. The teachers then responded to the ques-
tions in the areas that they had chosen and Table 9 shows
the occurrence of different themes in their data, once coded.
We added more categories as we came across them, but in

essence our new categories were around teachers’ beliefs and
practices relating to pedagogy (these are discussed later in
this section).

Teachers’ Characteristics
The teachers interviewed had different backgrounds and at-
titudes towards the new curriculum.

Anna is an experienced teacher who not only teaches her
own class, but has also participated in national initiatives to
support primary teachers in England. Based on her exten-
sive experience as IT developer, Anna holds firm beliefs on
importance of teaching rigorous work flow, (represented by,
e.g. the concept of decomposition) at the outset in Grades
K–5. For each problem, she wants her students to “slow
down, break it up, and look at each bit” rather than “just
bash the buttons” or “just do things”. She teaches her stu-
dents concepts she considers important for all of CS while
considering what the students will learn in subsequent key
stages.

Beatrice is relatively new to teaching but enthusiastic
about learning to teach CS:

“As a new teacher I am still learning a lot about
these topics. I am the only teacher in my school
who understands anything about CS so I don’t
think there is a lot of confidence around about
teachers in schools.”

Beatrice does not know anything more about the subjects
she discussed than her KS2 students. When asked about the
importance of learning about these concepts, she reiterates
the importance of learning the CS concepts well and em-
phasizes the importance for students to understand them in
order to be better equipped in their everyday life. She does
not refer to the CS curriculum as a whole and the ground-
work that is being laid in KS2 for the coming CS education
in subsequent key stages.

David is a specialist primary CS teacher who has respon-
sibility for CS teaching across the whole school. The model
adopted at his school is for him to “team teach” with class
teachers so that they can learn to teach CS from his model.
He has expertise beyond what he is teaching the chldren
and believes that an important aspect of delivering the cur-
riculum content is resilience children can potentially build
up through learning to debug. He also uses a range of as-
sessment techniques to try to capture the learning of the
students.

Eliza is an experienced CS teacher who has an industry
background and has taught CS up to grade 12 for 11 years.
Eliza has a clear picture of the whole of the CS curriculum
for all the key stages and beyond. She intends to equip
her students well for the learning and understanding of CS
in coming key stages and plans and designs her teaching
accordingly. In her words,

“I think it is important that you don’t miss any
foundations in their training because that’s what
creates the gaps” (Eliza).

Fiona is an experienced teacher who is relatively new
to CS but is undergoing training to become a primary CS
specialist. While Fiona considers it important to teach her
students good problem solving skills, she is not sure as to
what exactly to teach them:

97

Name A
n

n
a

D
a
v
id

B
e
a
tr

ic
e

F
io

n
a

E
li
z
a

Age group taught 4-7 4-11 7-11 7-11 11-14 (18)
CS knowledge (Strong/Middle/Weak) S M W W S
Hours teaching CS/week 1 10+ 2–3 1 10+
Years teaching 10 6 2 10 11
Years teaching CS 10 2 2 2 11

Algorithms
Implementing algorithms as programs Yes Yes Yes Yes Yes
Following precise and unambiguous instructions Yes Yes Yes Yes Yes
Using logical reasoning to explain how simple algorithms work Yes Yes Yes Yes Yes
Detect and correct errors in algorithms Yes Yes Yes Yes Yes
Design and use computational abstractions Yes Yes Not yet No Not sure
Understand key algorithms that reflect computational thinking
(eg sorting and searching)

Yes Yes Yes No Yes

Programming
Create simple programs Yes Yes Yes Yes Yes
Debug simple programs Yes Yes Yes Yes Yes
Use sequence in programs Yes Yes Yes Yes Yes
Use selection in programs No Yes No Yes Yes
Use repetition in programs Yes Yes Yes Yes Yes
Write programs that control physical systems Yes Yes No No Yes
Write programs that simulate physical systems Yes No No No No
Use two or more programming languages (one of them textual) No Yes No No Yes
Make appropriate use of data structures such as lists or arrays No Yes No No No
Use procedures and functions in programs No Yes No No Yes

Specific (Algorithms)
Decomposition (chosen by Anna) Yes
Algorithm Design and Planning (chosen by Anna) Yes

Table 8: What teachers do and do not teach in England.

98

Name A
n

n
a

D
a
v
id

B
e
a
tr

ic
e

F
io

n
a

E
li
z
a

Total

ALG algorithm Y Y Y Y Y 5
ENG debugging Y Y Y Y Y 5
ALG instruction Y Y Y Y 4
PRO program Y Y Y Y 4
ALG decomposition Y Y Y 3
ALG output Y Y Y 3
ALG sequence Y Y Y 3
ENG correctness Y Y Y 3
ENG design Y Y Y 3
ALG logic Y Y 2
ALG precision Y Y 2
ALG problem solving Y Y 2
ALG repetition Y Y 2
ALG steps Y Y 2
ENG testing Y Y 2
PRO logic error Y Y 2
PRO syntax error Y Y 2

Table 9: The occurrence of different themes in
teachers’ data (England).

“I do wonder whether debugging may change into
creating the bugs themselves, [. . .] we have to be
careful with what we are equipping them with [. . .]
we have had children in the past by the time they
reach the end of Key Stage 2 have been able to
bypass certain security systems that we have in
school” (Fiona).

She believes children need to learn CS to be able to un-
derstand technology rather than only use it. She does not
mention content knowledge beyond what she teaches the
students.

Themes
It can be seen in Table 9 that all five teachers discuss the
terms algorithm and instruction and talk about debugging
to some degree. Next, we look at some particular themes
emerging from the interviews in terms of concepts teachers
discuss under these headings:

• Algorithms

• Programming

• Debugging and the notion of correctness

Learning about Algorithms
All teachers discussed algorithms at some level. For ex-
ample, with the youngest children, Anna described that
“the word algorithm has something to do with steps and in-
structions and getting something right.” For Anna, just the
familiarity with the word is what is needed at this early
stage. . .“so we talk about an algorithm for making a Lego
structure or making a drink. It’s a word that I’m trying to
get them to be aware of in their general vocabulary.” Anna

refers to the Bloom’s taxonomy and the importance of knowl-
edge and terminology as a lower-level skill for young chil-
dren.

With children who are slightly older, the teachers describe
that they use both the words algorithm and instructions and
ask children to show their understanding by being able to
identify the outcome of the algorithm:

“so they need to be able to understand what the
algorithm is for, so what the instructions are for,
what the outcome is” (Beatrice).

David is the only teacher who linked the teaching of algo-
rithms directly to computational thinking:

“. . . how it helps with their computational think-
ing and how it will help them see things more
logically and be able to develop their own algo-
rithmic thinking better and all of those sorts of
things” (David).

At the secondary level, there is more expectation that chil-
dren should be familiar with algorithms for particular tasks
such as sorting and searching. Eliza describes a range of
algorithms that she introduces her students to, and is aware
that there are many different algorithms and that students
should try to understand them.

“So personally I would go quite slowly and do a
lot of different algorithms so I would do the Intel-
ligent Piece of Paper with the noughts and crosses
and then sorts of things like that. . . ” (Eliza).

Eliza then discusses established algorithms that she would
or would not introduce students to before the age of 14
(Grade 8):

“There are lots of nice searches and sorts in pro-
gramming that are quite structured and you can
build from one to the next one. . . I might do a
binary search with a key stage 3 group if it was
a quick group, but I might stick with the linear
search. Sorting – will do a bit sorting with them
but nothing complicated like quicksort algorithms
or anything like that. Probably I wouldn’t even
go as far as a bubble sort just do a simple inser-
tion sort or something like that – with a pack of
cards” (Eliza).

Debugging and the Concept of Correctness
Debugging was mentioned frequently throughout the inter-
views. It is clearly a skill that teachers feel is important for
children to master.

“They need to know what debugging means, so de-
bugging is obviously correcting the algorithm and
making the program correct so that it works cor-
rectly” (Beatrice).

Teachers are also able to see the cross-curricular benefits
of being able to debug for other subject areas, and as a wider
skill, as shown in this comment by David:

“And for me on a child development level I sup-
pose that’s a much bigger win, that’s why debug-
ging is a really useful thing for them to have”
(David).

99

The teacher teaching the youngest children, Anna, was
very enthusiastic about getting children to design and plan
before working and not tinker, and linked this to the diffi-
culties that teachers have with debugging:

“When I’m talking to teachers and they say it’s a
nightmare when it comes to debugging I ask them
do you have an algorithm for them to go back to?
And they go ‘a what’” (Anna).

Another of the primary teachers wants her students to
be able to understand an algorithm sufficiently to be able
to predict if it would or would not run — some notion of
correctness — and thus be able to debug before running:

“. . . before they run that code, be able to identify
whether there may be errors in it straightaway”
(Fiona).

The idea of developing skills in predicting errors is com-
mented on by other teachers:

“I want children to be able to look at work, whether
it’s their own or somebody else’s, be able to see
what the output of it is and when there are errors
be able to work back from the output to be able to
find the errors and hopefully correct them. So
there may be some logical errors in there, there
may be some syntactical errors and be able to
tweak those so that they can then get a program
function” (David).

This is actually quite a difficult skill for the primary school
students to master, depending of course on the complextiy
of the algorithm; overall the emphasis on debugging and cor-
rectness can support children in developing some resilience
and ability to keep trying when something is not successful:

“And I see the debugging element of CS as a re-
ally good way of developing their resilience and
their determination skills” (David).

Programming
All teachers talked about programming at some level. For
the youngest age group, Jane talked about programming
robots such as the BeeBot. Other primary teachers men-
tioned children using Scratch from age 7–11, with secondary
school using a combination of Scratch and a text-based lan-
guage. Teachers are clear that programming is important,
as Beatrice comments:

“I just think it’s important in this day and age
when everything is programmed that they under-
stand what it means and what goes on behind it
in order for them to understand the world around
them” (Beatrice).

In terms of programming concepts, only one of the teach-
ers mentioned variables or assignment. One teacher chose to
talk about teaching sequence as a concept. Three teachers
said that they taught selection but only one mentioned it
in their interview. In contrast all teachers of all age groups
taught repetition, to some degree.

Teachers had differing opinions on the extent to which
children should tinker and explore when learning program-
ming or whether they should always plan and design. For ex-
ample, Anna feels strongly that even young children should
design an algorithm before any hands-on work with BeeBot
or whatever tool they are using:

“That’s what I want them to learn: don’t just go
for the hacking. Sit back and have a little think
about what you can work out that you want it to
do and how it might work. . . if they’re in literacy
they write a plan. In DT they do their plan. In
science they do a plan. Perhaps in art they don’t,
but even then we make them think about it. Why
do we let them do it in CS?” (Anna).

In contrast, Beatrice feels that exploring is a better way
for children to learn concepts such as repetition:

“We use repeat, we use forever — I give them
the opportunity to experiment with the different
ones. I think that they should . . . be given an
outcome and then they can figure out what all
the different coding and all the different colours
mean . . . only by just experimenting — otherwise
— if they don’t learn it themselves. . . that ‘for-
ever means that that can always keep happening’
— if they don’t experiment with that — I don’t
think I could just teach them like ‘Look you use
Forever, this is what it means’ — they need to
experience it” (Beatrice).

However, Beatrice has been identified as having less con-
tent knowledge. Some teachers have developing content
knowledge as new primary teachers of CS; the result is that
it is difficult for them to clearly express what children learn
with respect to programming with appropriate technical lan-
guage.

“. . . and they need to understand the coding, and
how the coding works, in all the different colours,
to be able to create the program, and understand
how it works” (Beatrice).

Teachers working at primary school discuss visual envi-
ronments as a suitable tool for teaching programming, with
David reporting that he does not feel that text-based pro-
gramming is appropriate at primary school. At secondary
school, it is felt that text-based programming is more ap-
propriate, as Eliza reports:

“So really at KS3 I want them to be exposed to
the syntax of a language, to be exposed to the
structures of a language” (Eliza).

However she explains that visual environments have their
uses at the beginning of secondary school as long as they are
taught with constructs that map easily on to a text-based
language.

Assessment
Teachers were asked, for each topic that they chose: “What
are the specific ways of ascertaining students’ understanding
or confusion around this idea.” A range of strategies were

100

Name A
n

n
a

D
a
v
id

B
e
a
tr

ic
e

F
io

n
a

E
li
z
a

Total

Observation Y Y Y Y Y 5
Open-ended task Y Y Y Y Y 5
Questioning Y Y Y Y Y 5
Giving buggy code Y Y Y Y 4
Screenshots of code Y Y Y 3

Table 10: Teachers’ assessment strategies (England).

suggested — we have summarised them as shown in Table
10.

As can be seen in the table all teachers talk about ob-
serving the children to find out how much they have learned
about algorithms and programming:

“The ones that make more progress are the ones
who sit back and map it out. A lot of it is just
watching and giving them activities”(Anna, teach-
ing age 4–7).

At all ages, observation is a key formative assess-
ment tool: “Just by going and looking at what
they are creating” (Beatrice, teaching age 7–11).

Another key mechanism being used to assess childrens’
progress is through talking to them, questioning them and
asking them to talk about their own progress:

“Talking to them. . . and saying what can you see
that’s working, which bits do you think are work-
ing and which bits do you think aren’t working,
why that might be and why do you think and us-
ing some of those probing or open ended ques-
tions can be quite a useful way of judging their
understanding” (David).

“Asking them how they would code a program.
How would they put the algorithm and coding
together to make something work. From asking
them those questions I would definitely be able to
identify whether they knew what they were talk-
ing about, they would know the colours of instruc-
tions that they would need to use. I think I could
easily assess them by talking to them about what
they have created and how they did it” (Beatrice).

Another strategy used is self and peer assessment:

“I want children to be able to look at work, whether
it’s their own or somebody else’s, be able to see
what the output of it is and when there are errors
be able to work back from the output to be able to
find the errors and hopefully correct them. So
there may be some logical errors in there, there
may be some syntactical errors and be able to
tweak those so that they can then get a program
function” (Eliza).

Giving them opened-ended tasks and then asking them
questions are key aspects of formative assessment:

“Why are you doing that? Do you have one of
these?” (Anna).

Teachers used open-ended tasks or programming tasks to
help children practice the skills they needed and implement
algorithms as programs:

“I have a lot of task-based sheets – we teach a
topic and then we give them a task to do on that
topic, so there’s an awful lot of. . . here’s a little
algorithm go away and write it. . . here’s a little
algorithm, have a go at that one” (Eliza).

In terms of summative assessment, teachers talking about
photographic evidence of what the children have achieved
at primary school, and having some multiple-choice tests
or homework at secondary school, but across all interviews
there was a greater emphasis on formative assessment or
assessment in order to support students’ progress.

“We did take photos of things that they’d fixed or
things they had broken and bits and pieces like
that and again sort of throw that up on the blogs”
(David).

“I do the multiple choice exercises and I do tests
and I set the homeworks where they write in Python
and when they do bug-checks – so I’m trying to
cover all different angles to get a grip on which
bits they didn’t understand of each task. But
they are all different – each individual will misun-
derstand something in their own individual way”
(Eliza).

Fixing errors is an other activity that can lead to assess-
ment as it enables teachers to see how good children are
at trouble-shooting: four out of the five teachers mentioned
this:

“I think giving them bad stuff has got a really
valuable place to play. In terms of their assess-
ment you are then looking at whether they are
able to rectify the problems and I suppose that
blurs into the debugging skills. . . ” (David).

In summary, teachers focus on trying to ascertain chil-
drens’ understanding to a large extent without formal test-
ing:

“It’s when a child gets that lightbulb moment —
that’s when the real power comes — being able to
capture those, in assessment terms” (David).

Teachers are obviously able to employ a range of assess-
ment strategies to this end. Processes for summative as-
sessment at primary level are less evident in the teachers
interviewed.

7.2 Italy
The Italian teachers who accepted to take part in the in-

terview received an outline with the general areas and the
intended questions a few days before the appointment. To-
gether with the interview scheme, they were also given a few
notes about the following curricular material:

• the (thin) national recommendations on digital compe-
tence and technology areas, see Section 2;

101

• a tentative document with more comprehensive poten-
tial guidelines for (Italian) compulsory education;

• the ACM/CSTA models of CS curricula [81];

• the recent national CS curricula of UK [36].

(Only one teacher hadn’t had a chance to look at them until
the interview).

Two primary school teachers were interviewed together;
all the other individually, either directly or via Skype. At the
beginning of the conversations, the teachers described their
experience. Then each interview proceeded according to the
proposed scheme. The teachers could however interpret the
questions freely, to some extent, in the light of their actual
views. The interviews lasted from 1 hour and 15 minutes to
about 2 hours and a half.

Teachers’ Characteristics
The teachers came from a very wide area of Northern Italy.
In conformity with the national education systems, teachers
are usually able to teach at only one of three levels: primary
(K–5), lower secondary (6–8), or high school (9–13). Some
of them, however, have been able to teach at different levels
within special institutional or inter-institutional cooperation
projects.

Most of the teachers do not have a strong background in
CS, but have learnt what they know about this subject for
instructional purposes. The information in the header of
Table 11 roughly characterizes the sample of teachers inter-
viewed in Italy.

Alessandro and Roberto are experienced primary school
teachers. They introduced Logo in the mid-80s and have
since then been interested in introducing programming in
elementary education. Sonia is a young primary school
teacher. She completed her degree five years ago with a
teacher internship program on CS topics given to 5th graders,
that included programming in Scratch and Logo. Then she
continued to cooperate with her colleagues on this subject.

Francesco, Lorenzo and Martina are middle school
teachers of Mathematics and Science. Francesco regularly
teaches a variety of CS-related topics, including program-
ming in Scratch, BeeBot and Lego robots both to his stu-
dents (grades 6-8) and, in team teaching, to elementary
school children (K-5). Lorenzo teaches some CS: an intro-
duction to miscellaneous CS topics and an extracurricular
(elective) Scratch lab. Martina is an enthusiastic teacher,
who has been responsible for the information/web services
used in her school for about 15 years. Besides being involved
in basic digital literacy programs (word processing, spread-
sheet, presentation programs, use of browsers, construction
of web pages), at present she works in cooperation with a
team of scholars in computer science education.

Maurizio is an experienced high-school teacher in CS,
with a very strong background in the subject. He has also
been teaching CS topics in primary and lower secondary
schools for the last 6 years (special projects), namely using
Scratch (mostly grade 5, but also lower grades), Lego robots
(grade 8) and GIS (grade 7). Finally, Giuseppe worked for
several years as a teacher of Mathematics and Physics in the
high school, where he introduced CS subjects since the 80s,
within the National CS Project (PNI) initiative that gave
him the opportunity to develop a broad knowledge of the
foundations of CS. He then turned to teacher training and

to the study of pedagogical issues arising in mathematics and
CS at all levels of instruction, which led him to cooperate
in educational projects with elementary and middle school
teachers.

In the Italian context where the national recommenda-
tions are quite vague, the main concern of teachers appears
to be the potential of CS topics and abilities to attain gen-
eral, trans-disciplinary educational objectives.

As the teachers remark:

“Primary school has usually taken a pre-disciplinary
approach, in contrast to the lower secondary level
[...]. And above all, in my view, primary school
should limit as far as possible any ‘formalization’
of the disciplines” (Alessandro).

“My aim is not to train prospective computer sci-
entists or experts about robots. I don’t care at all
about this. I care that [pupils] see what there is in
the world and are able to choose. And that they
learn some method. Teamwork is fundamental
for me, this is essential. And the fact that they
have a logic in the work they do, that they can
explain what they do” (Francesco).

“The important [aspects] are fondness, enthusi-
asm [...], discovery, curiosity [...]. And [...], as
usual but important, cooperation, teamwork. And
I might add respect for the work of others” (Mau-
rizio).

The sample of teachers interviewed in Italy have quite di-
verse backgrounds, namely: Science of Education, as usual,
to teach in the elementary school; Agricultural Science, Bi-
ology, Computer Science, Mathematics and Physics in the
case of middle and high school. The paths that led them to
choosing to teach a bit of CS and programming are varied
and often interesting. Alessandro, for instance, looks back
to his first experiences:

“The educational, pedagogical approach [of Pa-
pert’s ‘constructionism’] has really changed my
perspective. In the mid-80s I had the opportunity
to work in one of the first schools [...] that created
a Logo lab, with the Commodore 64. [...] Thus, I
had one of the very first experiences in my area
and, I think, in Italy too. I came back in my
school [...] and I suggested to develop a lab also
there. [...] I learned Logo by myself, and then I
started to explore with the children [the potential
of Logo]” (Alessandro).

Alessandro explains the role of CS in his pedagogical view:

“In primary school the approach surely cannot be
rigid. [...] It should be an ‘immersive’ approach,
in some respect, i.e.: I build a challenging envi-
ronment, I bring you within this environment, I
encourage you to formulate projects and I help
you — I’m a mentor, I give you advice. [...]
Scratch is the real descendant of Logo, in terms
of educational philosophy. [...] What it has actu-
ally added is the ‘2.0’ social environment. That
was the big step forward” (Alessandro).

Sonia, on the other hand, follows a more standard, struc-
tured approach, but cares about the children’s attitude to-
ward the devices:

102

“I’ve noticed that the children at the computer
tend to be passive. They see the computer as
something ‘intelligent’, something far out of their
grasp, and they don’t know that it is some peo-
ple who wrote the programs, who made it work”
(Sonia).

To mention also a couple of meaningful excerpts concern-
ing the middle school, Francesco seems to take an ‘engineer-
ing’ perspective:

“I want them to realize what it means to design,
the difference between production and design. [...]
And then the technical report in which they ana-
lyze the starting point, the problem, the solution,
the project” (Francesco).

And Martina cares about the implications of the evolution
of ITs for her subject:

“Looking at what’s going on, for example, around
3D printing [...] I came across a problem: well,
I must change the approach to teaching solid ge-
ometry, since by doing it in the standard way,
the boys won’t be able to deal with something so
nice, so creative, potentially, [...] something that
will be in their houses” (Martina).

Themes
Tables 11 and 12 report the “big ideas” — or sometimes
“relevant abilities” — explicitly suggested by the teachers
(shading) or simply emerging from the analysis of the tran-
scripts (white background). It should be noticed that the
listed “ideas” are those deemed to be most important by
the interviewed teachers, but are by no means exhaustive of
their learning objectives (consequently, the option“No”does
not appear in the table cells). Of course, the teachers were
unaware of the choices of their colleagues.

As an overall picture, we can see that not all the items in-
dicated by the Italian teachers can be categorized precisely
as “ideas”. On one hand, they do not appear to care much
about specific disciplinary concepts. Rather, they are in-
terested in the development of mental structures, general
competences and abilities with trans-disciplinary potential
that cannot be easily formalized. On the other hand, they
tend to propose operational tasks, that may result in con-
crete experiences for their pupils and tangible products.

Moreover, as far as the “security” area is concerned, the
teachers are mostly interested in social and individual safety
issues, rather than in its technical implications that fall in
the corresponding category of the ACM/IEEE curricular
models [81] — see Table 12.

The Italian data were also coded using the concepts iden-
tified in the curriculum comparison analysis as well as a few
additional categories taking into account the teachers’ be-
liefs and pedagogical practices. The occurrence of different
themes is summarized in table 13.

Learning about Algorithms
All teachers discussed algorithms in some respect and, in
particular, considered this broad category from the view-
points of procedural thinking, problem solving and design.
A selection of the teachers’ comments follows.

In the earliest stages of instruction the focus is on chil-
dren’s active, bodily experience. In Giuseppe’s words:

“In the elementary school children, before con-
ceiving any algorithm, should be educated to fol-
low procedures, to concretely ‘do’ such things.
[...] For the children of first and even second
grade there are several prerequisites. Otherwise
they won’t be able to think of a real algorithm.
They’ll struggle” (Guiseppe).

Indeed, according to Roberto, usually kids’ approach to
(their) procedures is not mindful:

“In terms of children’s experience, I see that they
don’t use an algorithm because they proceed by
trial and error. [...] They go there, they begin to
tinker, they do... but they aren’t aware of what
they have done. [...] So they don’t have an algo-
rithm” (Roberto).

Teachers appear to be especially concerned with the con-
nections of algorithms with problems and problem solving
practice.

“A first important idea, a basic one, which is in
my opinion at the root of algorithms, is to iden-
tify the problem. [...] To distinguish the problem
from its variables items. [...] That is, to recog-
nize the problem in itself, the core of the problem,
I don’t know, what is common to problems that
may look different” (Martina).

“I think it’s fundamental to figure out what’s the
problem to be addressed” (Francesco).

“I would say that the primary school should en-
deavor to find the situations, the tasks, the en-
vironments in which, for example, children are
led to distinguish between those problems that can
be solved by an algorithm and those that cannot.
[...] Because often the kids get confused in this
respect” (Alessandro).

The relationships between algorithms and problems in-
clude the idea that one can explore different algorithms to
solve the same problem and then it is important to ask, as
suggested for instance by Giuseppe,

“if I can get the same result by a different proce-
dure, in a different way, by following a different
path” (Guiseppe).

Another aspect on which the teachers insist is the need of
precision, accuracy:

“In an algorithm there is a sequence of operations
to be carried out in a strict, inescapable order, in
the sense that if you change the sequence, you get
a different result. That is, you cannot do things
in a haphazard way, you have to choose the right
sequence of operations to get a correct output”
(Martina).

Interestingly, algorithms are also viewed as a means to
devise models,

“intended as a simplified representation of a com-
plex system. [...] The most important thing is
that [children] understand that in order to deal
with a complex situation they have to build a model”
(Maurizio).

103

Name A
le

ss
a
n
d

ro

R
o
b

e
rt

o

S
o
n
ia

F
ra

n
c
e
sc

o

L
o
re

n
z
o

M
a
rt

in
a

M
a
u

ri
z
io

G
iu

se
p

p
e

Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19)
CS knowledge (Strong/Middle/Weak) M M M M M M S S
Hours teaching CS/week (average) 1 < 1 (3) 4–5 < 1 1 18 n.a.
Years teaching (approximately) 30 30 5 10 10 15 20 30
Years teaching CS (approximately) 30 30 3 5 5 10 20 30

Algorithms: procedures
Practicing procedural tasks (K-3) Yes Yes
Introspection and verbalization of procedures (K-8) Yes Yes
Sequencing the operations in the right order (K-8) Yes Yes Yes Yes Yes
Understanding the logic of algorithms (K-8) Yes Yes
Understanding conditional and iteration (K6-8) Yes
Thinking in terms of whole strategy (K-5) Yes

Algorithms: problem solving
Decomposing problems into smaller parts (K-8) Yes Yes Yes Yes
Problems that can/cannot be solved by algorithms (K-5) Yes
Generalizing to several problem instances (K4-8) Yes Yes Yes Yes
Different procedures can lead to the same result (K4-5) Yes Yes Yes
Logical relationships between processed data (K-8) Yes

Algorithms: design
Providing a clear ‘workflow’ to follow (K-5) Yes
Modeling simple behavior (K6-8) Yes Yes
Describing algorithms in different languages (K6-8) Yes
Compactness and effectiveness of a solution (K-5) Yes Yes Yes Yes

Programming: language
Knowing the typical basic operations (K-8) Yes
Building blocks and syntax of a formal language (K-5) Yes Yes
Universality of the main constructs (K-5) Yes
Using different languages (K-8) Yes Yes Yes

Programming: coding
Formalizing accurately and precisely (K-8) Yes Yes Yes Yes Yes
Modifying code for self-expression (K-5) Yes Yes
Programming to implement models of behavior (K6-8) Yes
Coping with debugging tasks (K-8) Yes Yes Yes

Programming: design patterns
Understanding the role of control structures (K-8) Yes Yes Yes Yes Yes
Procedure parameters (K-5) Yes Yes Yes
Using a counter (K-5) Yes
Absolute assignment vs. operator assignment (K6-8) Yes

Data: representation
Knowing that there are different types of data (K6-8) Yes Yes
Representation of spatial information (K6-8) Yes Yes
Data coding in files (K6-8) Yes

Data: interpretation
Data vs. information (K6-8) Yes
Knowing reliable sites (K-5) Yes
Evaluating data sources (K-8) Yes Yes Yes Yes Yes

Data: collection and organization
Basic use of a search engine (K6-8) Yes Yes Yes
Logical organization of data (K6-8) Yes Yes
Organization of files and folders (K6-8) Yes
Architecture of digital documents (K6-8) Yes

Table 11: What Italian teachers focus on; Giuseppe is a teacher trainer. (To be continued in tab. 12.)

104

Name A
le

ss
a
n
d

ro

R
o
b

e
rt

o

S
o
n
ia

F
ra

n
c
e
sc

o

L
o
re

n
z
o

M
a
rt

in
a

M
a
u

ri
z
io

G
iu

se
p

p
e

Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19)

Security: technical issues
Saving a backup copy of work done (K-8) Yes
Issues related to password and authentication (K6-8) Yes Yes
Treatment of network data (K6-8) Yes

Security: personal safety ad social issues
How to behave in digital environments (K-8) Yes Yes Yes
Protecting personal identity and data (K6-8) Yes Yes
Positive vs. negative behavior in social networks (K6-8) Yes
Being aware of cyber-bullying (K-8) Yes Yes
Copyright and licensing implications (K6-8) Yes Yes

Other topics
Basic operations of an operating system (K6-8) Yes
Cooperation in virtual communities (K-8) Yes Yes
Caring about enthusiasm-cooperation-respect (K-8) Yes

Table 12: What Italian teachers focus on. (Continued from tab. 11)

Programming
A variety of reasons are mentioned to account for the ed-
ucational value of programming. According to Alessandro,
programming is important, first of all, because “it is a form
of self-expression.” For Roberto, “the child is usually moody,
emotional, [...] impulsive,” so programming“should help him
be rational.”

“Learning a programming language, from a cer-
tain point of view, allows you to better under-
stand the world. You have an additional tool for
understanding the world” (Maurizio).

Only one teacher seems to be a little skeptical about the
role of standard formal programming in early education:

“When it comes to connections between language
structures and some reality — because problem-
solving is essentially this — with children and
pupils [...] we have to start from the language
structures that are more familiar to them. [...]
We made a mistake, when we started using Logo
in the elementary school, because [...] the lan-
guage syntax was too strict, with spacing, with
brackets, and so on. [...] It wasn’t a simple lan-
guage for them” (Giuseppe).

Often, in primary school, programming is introduced as
‘storytelling’:

“There is much programming work before. So:
What story do I invent? What I want to do?
What is the main character? Where?. . . The plot,
in short. And that’s programming for me”(Roberto).

Next, we present a few excerpts addressing a selection of
the various aspects discussed by teachers.

To begin with, the features of precision and accuracy of
a programming language have been taken into account by
most of the teachers. For instance:

“Precision of language. And correctness of the
language, too: If you swap those two things you
don’t get the same result” (Roberto).

Quite unexpectedly, we can find frequent remarks about
the benefits of being exposed to more than one programming
language.

“About programming my concern is that they un-
derstand that there are languages with which you
can give instructions to a machine. And you can
do it using Logo, using Scratch, or using any lan-
guage” (Sonia).

“About programming my concern is that they learn
to use different languages, that they understand
what are the very key elements of programming”
(Francesco).

“Important idea: to understand terms and syn-
tax of a formal language, a visual one and a tex-
tual one — to see both examples. [...] To have
an idea of a textual one is important as well, in
my opinion, in order to develop abstraction, and
then to get to the point. [...] And also knowing
different numbering systems has the same logic”
(Martina).

Variables are considered to be a hard topic, both for pri-
mary and middle school. As stated by Lorenzo,

“In Scratch, for example, you have two instruc-
tions: to assign a value and to increment (decre-
ment) it.”

However, pupils find it difficult “to understand in what
circumstances to assign a value” and in what circumstances
to change it. So, according to the teachers, the main use of
variables is in order to represent procedure parameters.

Also the educational potential of debugging is worth con-
sidering, particularly in the middle school:

105

Name A
le

ss
a
n
d

ro

R
o
b

e
rt

o

S
o
n

ia

F
ra

n
c
e
sc

o

L
o
re

n
z
o

M
a
rt

in
a

M
a
u

ri
z
io

G
iu

se
p

p
e

Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19) Total

ALG: algorithm Y Y Y Y Y Y Y Y 8
PRO: program Y Y Y Y Y Y Y 7
ALG: sequence/order Y Y Y Y Y 5
ALG: abstraction/generalization Y Y Y Y Y 5
ALG: precision/formalization Y Y Y Y Y 5
ENG: design Y Y Y Y Y 5
PRO: control structure Y Y Y Y Y 5
DAT: data Y Y Y Y Y 5
OTH: evaluation of data source Y Y Y Y Y 5
ALG: problem decomposition Y Y Y Y 4
ENG: evaluation/efficacy Y Y Y Y 4
PRO: variable Y Y Y Y 4
PRO: language Y Y Y Y 4
ENG: pair programming/team work Y Y Y Y 4
DAT: data organization Y Y Y Y 4
ALG: procedural task Y Y Y 3
ALG: algorithm logic Y Y Y 3
ENG: testing/debugging Y Y Y 3
NET: search engine/data collection Y Y Y 3
MOD: modeling/simulation Y Y 2
ALG: input/output Y Y 2
ENG: exploration/heuristics Y Y 2
PRO: implementation/coding Y Y 2
PRO: syntax/program structure Y Y 2
DAT: data representation Y Y 2
DAT: type Y Y 2
DAT: table Y Y 2
ALG: selection/repetition Y 1
ALG: problem solving/feasibility Y 1
ALG: algorithm representation Y 1
ENG: work plan Y 1
ALG: instruction set Y 1
PRO: constant Y 1
DAT: data vs. information Y 1

Table 13: The occurrence of different themes as teachers’ focus (Italy).

106

“An important aspect is ‘debugging’. Once you
have written the program, you have run it. . . Well,
you don’t have to take the fact that it doesn’t work
as a defeat. It is a starting point anyway, to be
able to solve the problem, that is, to see what was
wrong. Debugging is important from the educa-
tional, pedagogical viewpoint. . . There is a proce-
dure, you have tried to formalize it, may be the
procedure is wrong or maybe the formalization is
wrong, isn’t it? [...] Just as an approach to prob-
lems, to difficulties. The real problems are like
that” (Martina).

Italian teachers, like their English colleagues, do not fully
agree on the implications of explorative tinkering vs. more
rigorous planning when learning to program. In Roberto’s
perspective, for instance, a major educational objective is
precisely to overcome the trial-and-error approach, whereas
Maurizio reports:

“I also allow the boy [...] to proceed by trial-and-
error, to tinker, possibly without much reasoning.
Somehow heuristically” (Maurizio).

Finally, although all teachers agree on the need of fostering
cooperation among pupils, they show contrasting opinions as
to the actual implementation of pedagogical strategies such
as pair-programming or the like.

“I read the results of some research according to
which the children perform better if they work in
group in front of a single iPad. I totally disagree
about this. [...] Collaborative learning must be
a choice as well as an achievement. That is, if
I have to work with others, and I must be in a
group with others, [...] I may do everything my-
self or [...] leave it all to the others. If I have
already made my own experiences, I have some-
thing to say, then I can choose to join others
and share my knowledge, my skills with them”
(Alessandro).

“Usually the children do these activities in pairs,
or in larger groups of 4–5 people. A child is never
working alone to develop a program, to figure out
an algorithm. Usually we apply cooperative learn-
ing” (Sonia).

Assessment
The teachers mentioned a range of possible assessment strate-
gies, which are summarized in table 14. Their effort to view
the implications of CS education (at the considered level of
instruction) from a more abstract educational perspective
seems interesting to consider.

Relative to primary school, the observations span several
elements, including some aspects of the pupil’s behavior:

“Assessment is always global, not just of the final
product. You take into account all aspects, at
least in elementary school” (Sonia).

Or:

“The assessment is not about what they produce,
but about what is their way of behaving in differ-
ent situations” (Roberto).

“If I have to assess a child’s learning about pro-
gramming, I have to know whether and how often
he makes debugging. [...] For example, if a pro-
gram doesn’t work, does he drop it and restart?
Or does he apply some techniques, some strate-
gies in order to try to find the errors? [...] Does
he usually borrow pieces of code from other projects
in order to develop his own projects? This is a
usual [helpful] practice today” (Alessandro).

In middle school, on the other hand, the assessment tends
to be more formal and to address technical features, even
for an open-ended task:

“I assess the pupils on the final project, for ex-
ample. That is by using a structured evaluation
grid. For the final project I use an evaluation
grid, that I also give them for self-assessment”
(Francesco).

There are also attempts to evaluate students’ ability to
decompose a problem into smaller parts:

“You assign a problem that has been discussed,
that has already been broken down, and you can
see if the student is able to do the same thing
again. And then you assign a problem that may
look completely different to him, but such that the
underlying algorithm is actually similar. . . But I
would assess precisely his ability to break it down”
(Martina).

Maybe by proceeding in the opposite direction, and asking
students:

“Try to envisage a problem whose solution can be
represented by this structure” (Martina).

Finally, an example of summative assessment of debugging
skills:

“Debugging can be assessed. Just give him a sim-
ple little program, maybe of 4, 6, 20 lines of code,
and see how they behave. Maybe one of the tasks
is straightforward to do on paper; then something
that requires a couple of additional steps; and in
the third case, instead, the task is more complex
because, maybe, you have to stop the program at
different points, to split it up. . . ” (Martina).

8. RESULTS: BEBRAS TASKS ANALYSIS

CT Concepts Classification
Table 15 shows the distribution of CT concepts in the 2010,
2011, 2012, 2013, and 2014 Bebras tasks. Note that any
individual task could be coded using more than one CT term
so that the percentages total to more than 100.

For the purposes of this report we are interested in the
tasks assigned to lower grades, so in Table 16 we show the
CT classification for tasks in levels 0 through II (aimed at 8
- 14 year old pupils) .

The relative importance of the various CT concepts in
each year can be seen in the charts in Figure 2.

Since there were many terms that occurred together, for
example algorithms and data representation, it was useful to

107

Name A
le

ss
a
n
d

ro

R
o
b

e
rt

o

S
o
n
ia

F
ra

n
c
e
sc

o

L
o
re

n
z
o

M
a
rt

in
a

M
a
u

ri
z
io

G
iu

se
p

p
e

Age group taught 6–11 6–11 6–11 6–14 11–14 11–14 8–19 (6–19) Total

Observation (process, result, product) Y Y Y Y Y Y 6
Questioning (teacher’s/peers’ questions) Y Y Y Y 4
Questionnaire/quiz/test Y Y Y 3
Structured task Y Y Y 3
Open-ended task (individual/group work) Y Y 2
Contest Y Y 2
Report (project/lab) Y 1
Problem-solving test (transdisciplinary) Y 1
Code Y 1
Giving buggy code Y 1

Table 14: Teachers’ assessment strategies (Italy).

CT term 2014 % 2013 % 2012 % 2011 % 2010 % 2010–14
abstraction 6 5% 27 18% 37 30% 26 21% 11 8% 16%
algorithms 99 77% 118 79% 87 70% 75 60% 59 42% 66%
data analysis 6 5% 4 3% 3 2% 7 6% 8 6% 4%
data collection 1 < 1% 0 0% 0 0% 0 0% 2 1% 0%
data representation 70 54% 46 31% 33 27% 33 26% 71 51% 38%
parallelization 2 2% 2 1% 2 2% 2 2% 0 0% 1%
problem decomposition 7 5% 3 2% 0 0% 3 2% 8 6% 3%
simulation 7 5% 18 12% 3 2% 15 12% 6 4% 7%
literacy 1 <1% 3 2% 6 5% 17 14% 15 11% 6%
Total tasks 129 150 124 126 139

Table 15: Distribution of CT concepts in the 2010–2014 Bebras tasks.

CT term 2014 % 2013 % 2012 % 2011 % 2010 % 2010–14
abstraction 3 3% 20 17% 20 24% 18 18% 6 9% 14%
algorithms 77 76% 96 80% 59 70% 57 58% 29 44% 68%
data analysis 5 5% 4 3% 3 4% 5 5% 2 3% 4%
data collection 1 <1% 0 0% 0 0% 0 0% 1 2% 0%
data representation 56 55% 38 32% 19 23% 26 26% 35 54% 37%
parallelization 2 2% 2 2% 0 0% 1 1% 0 0% 1%
problem decomposition 4 4% 1 <1% 0 0% 2 2% 4 6% 2%
simulation 5 5% 17 14% 2 2% 14 14% 2 3% 9%
literacy 0 0% 2 2% 6 7% 14 14% 6 9% 6%
Total tasks 101 120 84 99 65

Table 16: Distribution of CT concepts in the 2010–2014 Bebras tasks, Levels 0–II only (8-14 year olds).

108

Abstrac(on+

Algorithms+

Data+analysis+

Data+collec(on+

Data+
representa(on+

Paralleliza(on+

Problem+
decomposi(on+

Simula(on+

Literacy+

2010$Task$Categories$

Abstrac(on+

Algorithms+

Data+analysis+

Data+
representa(on+

Paralleliza(on+

Problem+
decomposi(on+

Simula(on+

Literacy+

2011$Task$Categories$

Abstrac(on+

Algorithms+

Data+analysis+

Data+
representa(on+

Simula(on+ Literacy+
2012$Task$Categories$

Abstrac(on+

Algorithms+

Data+analysis+

Data+
representa(on+

Paralleliza(on+

Problem+
decomposi(on+

Simula(on+

Literacy+
2013$Task$Categories$

Abstrac(on+

Algorithms+

Data+analysis+Data+collec(on+

Data+
representa(on+

Paralleliza(on+

Problem+
decomposi(on+ Simula(on+

2014$Task$Categories$

Abstrac(on+

Algorithms+

Data+analysis+

Data+collec(on+

Data+
representa(on+

Paralleliza(on+

Problem+
decomposi(on+

Simula(on+Literacy+

201022014$totals$

Figure 2: Distributions of types of CT for the earlier (0–II) school/age levels by year.

109

Figure 3: Overlap of CT term for the earlier (0–II)
school/age levels for all four years.

consider groups of CT categories. To capture that informa-
tion all possible tuples of categorizations were considered.
The following lists show all of the possible tuples organized
by complexity.

Pairs:

• algorithms, abstraction

• algorithms, data analysis

• algorithms, data representation

• algorithms, parallelization

• algorithms, problem decomposition

• algorithms, simulation

• abstraction, data representation

• data analysis, data representation

• data analysis, problem decomposition

• data collection, data representation

• data representation, problem decomposition

• data representation, simulation

Triples:

• algorithms, data analysis, problem decomposition

• algorithms, data representation, abstraction

• algorithms, data representation, simulation

• algorithms, problem decomposition, simulation

Table 17 shows the differences in distributions of groups
of CT tasks by year for the earlier levels (0–II). There were
many tuples that were infrequent, so any tuple that con-
stituted less than 4% of the data in all years considered
was discarded. Put another way, the only rows that are dis-
played are those that included at least one year that had the
indicated tuple in at least 4% of the data. Figure 3 shows
the intersection between the three top categories for the K–
9 level (0–II) tasks of all four years. We should note that
many tasks describe navigational problems, i.e. find a path
in a maze, or the shortest way to reach a given point, which
most students will find familiar in real life. Hence, this is
reflected in the high frequency (100 tasks over 4 years) that
have both Algorithms and Data representation.

Question Structure Classification
All of the Bebras tasks in years 2010, 2011, 2012, 2013,
and 2014 that had been labeled with the CT concept of
algorithms were classified for problem structure. Table 18
shows the task classification for all years, including all levels
(0–IV).

The bar graph in figure 4 shows the distribution of the
types of algorithms questions found in the 2010, 2011, 2012,
2013, and 2014 Bebras contests. For this graph, only tasks
categorized as algorithms tasks have been considered. Tasks
belonging to more than one question type have not been
included. Similarly, only the younger groups (0–II) were
considered since that is the focus of this report.

9. CONCLUSIONS AND DISCUSSION
The exploratory study presented in this report focused on

key concepts and their assessment in K–9 CS education. The
analytic part of the study focused on the following research
questions:

1. Which concepts are present in K–9 curriculum documents?

2. Which concepts are taught in practice? Which assess-
ment practices are used?

3. Which concepts are assessed in Bebras tasks? How can
the assessment format of these tasks be characterized?

Question 1
The following patterns emerge from the analysis of the na-
tional recommendations and guidelines. From a global per-
spective, there is a significant difference in broadness, with
the CSTA model at one extreme, covering a variety of top-
ics, and the Italian informal guidelines at the other ex-
treme, mainly focusing on few, somewhat “traditional” ar-
eas, namely algorithms, programming, and their relation-
ships with maths and data.

The CAS curriculum, on the other hand, is character-
ized by an emphasis on technical concerns, specifically in
the areas of programming, engineering (proceduralization of
tasks), architectures and networking.

Algorithms represent a significant concern in all consid-
ered documents. However, whereas all documents mention
the general ideas about algorithms, there is considerable dif-
ference in the number and variety of suggested examples.

Programming, overall, is given a similar relative weight in
terms of reported items. The CAS recommendations appear
to stress the technical aspects of programming more than
others.

Societal issues are most prominent in the CSTA model,
whereas security is hardly considered in all documents.

The concept classification procedure turned out to be quite
useful to analyze and compare curriculum documents writ-
ten in a variety of styles. It will be interesting to apply our
method to other curriculum documents. For example, we
intend to apply the classification method in the future to
compare the conceptual content of K–9 curricula to those
intended for grades 10–12 (e.g., in countries that only have
a CS curriculum for higher grades like the Netherlands and
France).

The coding was done by three researchers. Some parts
were coded by two researchers independently, who later com-
pared their classifications. These comparisons showed a high

110

CT tuple 2014 % 2013 % 2012 % 2011 % 2010 %
(abstraction, algorithms) 1 1% 11 9% 7 8% 8 8% 0 0%
(abstraction, data representation) 2 2% 4 3% 0 0% 5 5% 2 3%
(algorithms, data representation) 37 37% 23 19% 12 14% 10 10% 13 20%
(algorithms, simulation) 0 0% 10 8% 1 1% 7 7% 1 2%

Table 17: Most common groupings of CT concepts in the 2010–2014 Bebras tasks, Levels 0–II only.

Question structure
2014 2013 2012 2011 2010

0-IV 0-II 0-IV 0-II 0-IV 0-II 0-IV 0-II 0-IV 0-II
constraint 9 6 10 9 5 5 11 7 4 1
formula identification 2 1 3 2 0 0 0 0 4 2
optimization 10 8 17 12 10 9 6 6 7 3
procedures 5 4 3 2 10 5 0 0 5 2
verification 2 2 21 19 19 15 16 13 11 5
sequencing 9 7 4 3 3 3 4 4 0 0
ordering 2 1 1 0 2 1 0 0 0 0

Table 18: Question structure classifications for algorithms tasks in 2010–2014 for all levels and for (0-II)
levels only.

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

20"

Constraint" Formula"
iden6fica6on"

Op6miza6on" Procedures" Verifica6on" Sequencing" Ordering"

N
um

be
r'o

f'q
ue

s,
on

s'

2010" 2011" 2012" 2013" 2014"

Figure 4: Distribution of the structure of algorithms questions found in the 2010–2014 Bebras contests.

111

inter-coder agreement. In a follow-up analysis we intend to
investigate reliability in a more formal way.

Question 2
Our findings suggest that, at least in England, the intended
curriculum is becoming the implemented curriculum to a
large extent. Teachers are able to select areas of algorithms
and programming that they are teaching at an appropriate
level.

Depending on subject knowledge, education and any ex-
perience working in the IT industry, teachers’ answers vary.
We observed that it was necessary for a teacher to have a
good content knowledge to be able to see the big picture of
the whole of the CS curriculum and to see the direction the
teacher was heading with their CS education. Some teachers
recognize the importance of the subject in the future lives
of their students rather than the importance of learning a
particular concept in relation to the rest of the curriculum.

By the same token, some teachers cannot see beyond the
level at which they are teaching because of their burgeoning
content knowledge; others are able to see the boundary be-
tween what can be taught above and below the age of pupils
they are teaching.

A variety of assessment strategies are being used (e.g. ob-
servations, questioning and test), which are age appropriate.
The teachers feel comfortable with these forms of assess-
ment. For many of them it is more difficult to assess the un-
derstanding of algorithms than programming abilities. The
older the students, the more formal assessment methods and
tests get employed.

The fact that the Italian national recommendations are
still quite vague might be an explanation for the variety of
concepts taught by Italian teachers, besides the differences
in the teachers’ backgrounds. The main concern of teachers
appears to be the potential of CS topics and abilities to
attain general, trans-disciplinary educational objectives.

The small sample of teachers can be seen as a limitation
of the study. The data elicited by the four CoRe questions
is surprisingly rich, however, which provided us an in-depth
view about the teachers’ beliefs and reasoning underlying
their classroom practice (cf. [3]). We intend to pursue this
direction of analysis further. Moreover, we think it will be
worthwhile extending this part of the research to investigate
teachers’ practice in other countries.

Question 3
The most common CT concepts in the Bebras tasks are al-
gorithms. Questions classified using the term algorithms
represented, e.g., 77% of all tasks and 76% of lower-level
tasks in 2014. The next most common CT concept was data
representation with 54% of all tasks and 55% of lower-level
tasks in 2014. Abstraction and simulation were also popular
concepts, although they were not seen as consistently across
all years as the other two concepts. There were no consis-
tent or noticeable differences between the CT classifications
for all tasks versus lower-level tasks.

There was an interesting decline in the popularity of liter-
acy-related tasks through the years analysed. Literacy tasks
were common in the earlier years (e.g., 10.8% in 2010) and
became much less frequent in later years (e.g., <1% in 2014).
We hypothesize that this is related to the stronger interest
in CT skills in schools during the time period considered.

When combinations of CT terms are considered, the most

common tuples involved abstraction, algorithms, and data
representation. The most commonly paired terms were al-
gorithms and data representation, in part because the rep-
resentation of the data for a problem can have an impact on
the algorithmic approach used in a problem. Abstraction
and algorithms, abstraction and data representation, and
algorithms and simulation were other popular pairings, al-
though the importance of each tuple varied a bit through the
years. Part of the reason why simulation was somewhat in-
consistently represented was related to the use of interactive
exercises in the Bebras question sets. In some years these
interactive questions were more common than in others, and
interactive questions were more likely to be classified as sim-
ulations by the team members. Again, no large or consistent
differences are visible between the classifications for all tasks
versus the classifications for lower-level (0 – II) tasks.

We have constructed a classification for question types.
Among the algorithms-related tasks verification questions
were the most common in all years except for 2014. In 2014
the most common type of algorithms question was optimiza-
tion, which was quite popular in other years ranking second
for 2010, 2012, and 2013. Constraint questions were also
popular, ranking second for 2011, tied for third in 2012, and
third in both 2013 and 2014. It was interesting to note that
tasks classified as procedures were relatively uncommon ex-
cept in 2012.

It makes some sense that verification questions are popu-
lar for a contest structured around multiple-choice questions.
Providing participants with a description of a problem and
then asking them to choose among possibilities for the cor-
rect answer or scenario is natural in that format. It’s also
easy to understand why optimization questions would be
popular since many computing problems ask for the min-
imization or maximization of particular values. What is
more surprising is the relatively uncommon use of proce-
dures questions, given how important programming is in the
later curricula in schools and universities. That the Bebras
tasks do not emphasize this more suggests that the contest
organizers may be focusing more broadly on CS concepts
and trying to deemphasize programming-specific tasks.

Our findings regarding assessment practice showed that
teachers find it difficult to assess students’ understanding
of the concept of algorithm. The predominant presence of
algorithmic aspects in Bebras tasks might make this ‘tasklet
based assessment’ interesting for K–9 teachers.

We expect that the Bebras community might benefit from
our analysis of tasks from previous contests. For instance,
the classification system might be useful to future task de-
velopers. Moreover, it would be interesting to investigate
whether our task classification can be used to refine existing
transnational comparative studies such as [27].

Final Remarks
The results presented in this report provide a multifaceted
view of CS concepts in K-9 education and their assessment.
This small scale study has shown that the selected analysis
methods are promising and follow-up studies could benefit
teachers and teacher trainers, curriculum developers and the
Bebras community.

10. ACKNOWLEDGEMENTS
Many thanks to Tim Steenvoorden for his help in ana-

112

lyzing the curriculum documents and to the teachers taking
part in the interviews, providing us with valuable informa-
tion.

11. REFERENCES
[1] L.W. Anderson and D.R. Krathwohl. A taxonomy for

learning, teaching, and assessing: A revision of
Bloom’s taxonomy of educational objectives. Longman,
New York, 2001.

[2] Computing at School Working Group. Computer
science: A curriculum for schools, March 2012.
http://www.computingatschool.org.uk/data/uploads/
ComputingCurric.pdf.

[3] E. Barendsen, V. Dagiene, M. Saeli, and C. Schulte.
Eliciting computing science teachers’ PCK using the
content representation format: Experiences and future
directions. In Proceedings of ISSEP, pages 71–82,
September, 22–24 2014.

[4] E. Barendsen, P. Fisser, J. Krüger, and J. Tolboom.
Herziening van het Nederlandse informaticacurriculum
havo-vwo, 2014. Paper presented at ORD 2014,
Groningen.

[5] E. Barendsen and I. Henze. Teacher knowledge versus
teacher practice: reflecting on classroom instruction
and interaction through PCK-related observation. In
Proceedings of NARST, 2012.

[6] E. Baumgartner. Designing inquiry: Contexualizing
teaching strategies in inquiry-based classrooms. In
Proceedings of the Annual Conference of the American
Educational Research Association, April, 22 1999.

[7] Tim Bell, Jason Alexander, Isaac Freeman, and Mick
Grimley. Computer Science Unplugged: School
students doing real computing without computers.
The New Zealand Journal of Applied Computing and
Information Technology, 13(1):20–29, 2009.

[8] Anders Berglund and Raymond Lister. Introductory
programming and the didactic triangle. In Proceedings
of the Twelfth Australasian Conference on Computing
Education - Volume 103, ACE ’10, pages 35–44,
Darlinghurst, Australia, Australia, 2010. Australian
Computer Society, Inc.

[9] J. Biggs. Enhancing teaching through constructive
alignment. Higher Education, 32:347–364, 1996.

[10] J.B. Biggs and K.F. Collis. Evaluating the Quality of
Learning: The SOLO Taxonomy (Structure of the
Observed Learning Outcome). Academic Press, 1982.

[11] Russell Boyatt, Meurig Beynon, and Megan Beynon.
Ghosts of programming past, present and yet to come.
In Benedict du Boulay and Judith Good, editors,
Proceedings of the 25th Annual Workshop of the
Psychology of Programming Interest Group – PPIG
2014, pages 171–182, 2014.

[12] K. Brennan and M. Resnick. New frameworks for
studying and assessing the development of
computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research
Association, 2012.

[13] British Educational Research Association. Ethical
guidelines for Educational Research. Technical report,
BERA, 2013.

[14] Neil C. C. Brown, Sue Sentance, Tom Crick, and
Simon Humphreys. Restart: The resurgence of

computer science in UK schools. Trans. Comput.
Educ., 14(2):9:1–9:22, June 2014.

[15] Neil Christopher Charles Brown, Michael Kölling,
Tom Crick, Simon Peyton Jones, Simon Humphreys,
and Sue Sentance. Bringing computer science back
into schools: Lessons from the UK. In Proceeding of
the 44th ACM Technical Symposium on Computer
Science Education, SIGCSE ’13, pages 269–274, New
York, NY, USA, 2013. ACM.

[16] S. Brown and D. McIntyre. Making sense of teaching.
Open University Press, Buckingham, 1993.

[17] L. Bucciarelli. Designing engineers. MIT Press,
Cambridge, MA, 1994.

[18] Quinn Burke. The markings of a new pencil:
Introducing programming-as-writing in the middle
school classroom. Journal of Media Literacy
Education, 4(2):121–135, 2012.

[19] Antonio Cartelli, Valentina Dagiene, and Gerald
Futschek. Bebras contest and digital competence
assessment: analysis of frameworks. International
Journal of Digital Literacy and Digital Competence,
1(1):24–39, 2010.

[20] Patrick J. Casey. Computer programming: A medium
for teaching problem solving. Computers in the
Schools, 13(1–2):41–51, July 1997.

[21] Louis Cohen, Lawrence Manion, and Keith Morrison.
Research methods in education. London, New York:
Routledge, 2013.

[22] Stephen Cooper, Lance C. Pérez, and Daphne Rainey.
K–12 computational learning. Commun. ACM,
53:27–29, November 2010.

[23] CSTA – Computer Science Teachers Association.
http://csta.acm.org/.

[24] V. Dagiene. Information technology contests –
introduction to computer science in a attractive way.
Informatics in Education, 5(1):37–46, 2006.

[25] V. Dagiene and J. Skupiene. Learning by
competitions: Olympiads in informatics as a tool for
training high grade skills in programming. In T. Boyle,
P. Oriogun, and A. Pakstas, editors, Proceedings of the
2nd International Conference on Information
Technology: Research and Education, pages 79–83,
Washington, DC, 2004. IEEE Computer Society.

[26] Valentina Dagienė and Gerald Futschek. Bebras
international contest on informatics and computer
literacy: Criteria for good tasks. In Proceedings of the
3rd International Conference on Informatics in
Secondary Schools - Evolution and Perspectives:
Informatics Education - Supporting Computational
Thinking, ISSEP ’08 – LNCS 5090, pages 19–30,
Berlin, Heidelberg, 2008. Springer-Verlag.

[27] Valentina Dagiene, Linda Mannila, Timo Poranen,
Lennart Rolandsson, and Pär Söderhjelm. Students’
performance on programming-related tasks in an
informatics contest in Finland, Sweden and Lithuania.
In Proceedings of the 2014 conference on Innovation &
technology in computer science education, pages
153–158. ACM, 2014.

[28] M. J. De Vries. Concept learning in technology
education. Journal of Technical Education (JOTED),
1(1):147–151, 2013.

113

[29] A. M. Decker. How Students Measure Up: An
Assessment Instrument for Introductory Computer
Science. PhD thesis, University at Buffalo (SUNY),
Buffalo, NY, 2007.

[30] Fadi P. Deek, Starr Roxanne Hiltz, Howard Kimmel,
and Naomi Rotter. Cognitive assessment of students’
problem solving and program development skills.
Journal of Engineering Education, 88(3):317–326,
1999.

[31] Department for Education. National Curriculum for
England: Computing programme of study. Technical
report, Department for Education, 2013.

[32] S. Doukakis, A. Psaltidou, A. Stavraki,
N. Adamopoulos, P. Tsiotakis, and S. Stergou.
Measuring the technological pedagogical content
knowledge (tpack) of in-service teachers of computer
science who teach algorithms and programming in
upper secondary education. In K. Fernstrom, editor,
Readings in Technology and Education: Proceedings of
ICICTE 2010, pages 442–452, 2010.

[33] Caitlin Duncan, Tim Bell, and Steve Tanimoto.
Should your 8-year-old learn coding? In Proceedings of
the 9th Workshop in Primary and Secondary
Computing Education, WiPSCE’14, pages 60–69.
ACM, 2014.

[34] European Schoolnet. Computing our future:
Computer programming and coding – Priorities,
school curricula and initiatives across Europe (Update
2015), October 2015.

[35] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and
C. Solomon. Programming-languages as a conceptual
framework for teaching mathematics. SIGCUE
Outlook, 4(2):13–17, April 1970.

[36] British Department for Education. Computing
programmes of study: key stages 1 and 2. national
curriculum in england, 2013.
http://www.computingatschool.org.uk.

[37] Committee for the Workshops on Computational
Thinking; National Research Council. Report of a
Workshop on The Scope and Nature of Computational
Thinking. The National Academies Press, 2010.

[38] Committee for the Workshops on Computational
Thinking; National Research Council. Report of a
Workshop on the Pedagogical Aspects of
Computational Thinking. The National Academies
Press, 2011.

[39] D. Fortus, R.C. Dershimer, J. Krajcik, R.W. Marx,
and R. Mamlok-Naaman. Design-based science and
student learning. Journal of Research in Science
Teaching, 41(10):1081–1110, 2004.

[40] Jens Gallenbacher. Abenteuer Informatik. Springer
Spektrum, Heidelberg, 2012.

[41] Gess-Newsome, J. et al. Impact of educative materials
and transformative professional development on
teachers’ PCK, practice, and student achievement. In
Proceedings of the Annual Meeting of the National
Association for Research in Science Teaching, pages
79–83, April 6 2011.

[42] Graham R. Gibbs. Analysing qualitative data. Sage,
2007.

[43] J. Goode and G. Chapman. Exploring Computer
Science. http://exploringcs.org.

[44] J.I. Goodlad. The scope of the curriculum field. In
Curriculum inquiry, pages 17–41. New York:
McGraw-Hill, 1979.

[45] Nataša Grgurina, Erik Barendsen, Bert Zwaneveld,
Klaas van Veen, and Idzard Stoker. Computational
thinking skills in dutch secondary education:
Exploring pedagogical content knowledge. In
Proceedings of the 14th Koli Calling International
Conference on Computing Education Research, Koli
Calling ’14, pages 173–174, New York, NY, USA,
2014. ACM.

[46] Shuchi Grover. Robotics and engineering for middle
and high school students to develop computational
thinking. Paper presented at the Annual Meeting of
the American Educational Research Association, New
Orleans, LA, 2011.

[47] Shuchi Grover and Roy Pea. Computational thinking
in k–12: A review of the state of the field. Educational
Researcher, 42(1):38–43, 2013.

[48] I. Henze, J.H. Van Driel, and N. Verloop.
Development of experienced science teachers
pedagogical content knowledge of models of the solar
system and the universe. International Journal of
Science Education, 30(10):1321–1342, 2008.

[49] Chenglie Hu. Computational thinking: what it might
mean and what we might do about it. In Proceedings
of the 16th annual joint conference on Innovation and
technology in computer science education, ITiCSE ’11,
pages 223–227, New York, NY, USA, 2011. ACM.

[50] Peter Hubwieser, Michal Armoni, Michail N.
Giannakos, and Roland T. Mittermeir. Perspectives
and visions of computer science education in primary
and secondary (k-12) schools. Transactions on
Computing Education, 14(2):7:1–7:9, 2014.

[51] Peter Hubwieser, Marc Berges, Johannes Magenheim,
Niclas Schaper, Kathrin Bröker, Melanie Margaritis,
Sigrid Schubert, and Laura Ohrndorf. Pedagogical
content knowledge for computer science in German
teacher education curricula. In Proceedings of the 8th
Workshop in Primary and Secondary Computing
Education, WiPSE ’13, pages 95–103, New York, NY,
USA, 2013. ACM.

[52] Peter Hubwieser and Andreas Mühling. Playing PISA
with Bebras. In Proceedings of the 9th Workshop in
Primary and Secondary Computing Education,
WiPSCE ’14, pages 128–129, New York, NY, USA,
2014. ACM.

[53] ISTE – International Society for Technology in
Education. http://www.iste.org/.

[54] Yasmin B. Kafai and Quinn Burke. The social turn in
K–12 programming: Moving from computational
thinking to computational participation. In Proceeding
of the 44th ACM Technical Symposium on Computer
Science Education, SIGCSE ’13, pages 603–608. ACM,
2013.

[55] KNAW. Digitale geletterdheid in het voortgezet
onderwijs. Technical report, Koninklijke Nederlandse
Akademie van Wetenschappen, 2012.

[56] J.L. Kolodner. Case-based reasoning. In K.L. Sawyer,
editor, The Cambridge handbook of the learning
sciences, pages 225–242. Cambridge University Press,
2006.

114

[57] H. Koppelman. Pedagogical content knowledge and
educational cases in computer science: An exploration.
In Proceedings of the Informing Science & IT
Education Joint Conference (InSITE), pages 125–133,
Santa Rosa, CA, June 22-25 2008. Informing Science
Institute.

[58] J.S. Krajcik and P. Blumenfeld. Project-based
learning. In K.L. Sawyer, editor, The Cambridge
handbook of the learning sciences, pages 317–333.
Cambridge University Press, 2006.

[59] D. Midian Kurland, Roy D. Pea, Catherine Clement,
and Ronald Mawby. A study of the development of
programming ability and thinking skills in high school
students. J. of Educational Computing Research,
2(4):429–458, 1986.

[60] Irene Lee, Fred Martin, and Katie Apone. Integrating
computational thinking across the k–8 curriculum.
ACM Inroads, 5(4):64–71, December 2014.

[61] J. Loughran, A. Berry, and P. Mulhall. Understanding
and Developing Science Teachers’ Pedagogical Content
Knowledge. Sense Publishers, Rotterdam, The
Netherlands, 2006.

[62] J. Loughran, P. Mulhall, and A. Berry. In search of
pedagogical content knowledge in science: Developing
ways of articulating and documenting professional
practice. Journal of Research in Science Teaching,
41(4):370–391, 2004.

[63] James J. Lu and George H.L. Fletcher. Thinking
about computational thinking. In Proceedings of the
40th ACM Technical Symposium on Computer Science
Education, pages 260–264. ACM, 2009.

[64] S. Magnusson, J. Krajcik, and H. Borko. Nature,
sources, and development of pedagogical content
knowledge for science teaching. In J. Gess-Newsome
and N. G. Lederman, editors, Examining pedagogical
content knowledge: The construct and its implications
for science education, pages 95–132. Kluwer, 1999.

[65] Linda Mannila, Valentina Dagiene, Barbara Demo,
Natasa Grgurina, Claudio Mirolo, Lennart
Rolandsson, and Amber Settle. Computational
thinking in K–9 education. In Proceedings of the
Working Group Reports of the 2014 on Innovation &
Technology in Computer Science Education
Conference, ITiCSE-WGR ’14, pages 1–29, New York,
NY, USA, 2014. ACM.

[66] R. McCartney and J. Tenenberg, Eds. Trans. on
Computing Education – Special Issue on Computing
Education in K–12 Schools, 14(2), June 2014.

[67] Jerry Mead, Simon Gray, John Hamer, Richard James,
Juha Sorva, Caroline St. Clair, and Lynda Thomas. A
cognitive approach to identifying measurable
milestones for programming skill acquisition. In Proc.
of the 11th Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’06), 2006.

[68] Orni Meerbaum-Salant, Michal Armoni, and
Mordechai (Moti) Ben-Ari. Learning computer science
concepts with Scratch. In Proceedings of the Sixth
International Workshop on Computing Education
Research, ICER ’10, pages 69–76, New York, NY,
USA, 2010. ACM.

[69] Roland Mittermeir, Ernestine Bischof, and Karin
Hodnigg. Showing core-concepts of informatics to kids

and their teachers. In ISSEP 2010, volume 5941 of
LNCS, pages 143–154. Springer, 2010.

[70] MIUR. Syllabus di elementi di informatica la scuola
dell’obbligo – anno 2010, December 2010. Working
document.

[71] Lijun Ni and Mark Guzdial. Who am I?:
understanding high school computer science teachers’
professional identity. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,
SIGCSE ’12, pages 499–504, New York, NY, USA,
2012. ACM.

[72] Seymour Papert. Mindstorms: Children, Computers,
and Powerful Ideas. Basic Books, Inc., New York, NY,
USA, 1980.

[73] Simon Papert. An exploration in the space of
mathematics educations. International Journal of
Computers for Mathematical Learning, 1(1):95–123,
1996.

[74] Soonhye Park and Jee Kyung Suh. From portraying
toward assessing pck: Drivers, dilemmas, and
directions for future research. In A. Berry,
P. Friedrichsen, and J. Loughran, editors,
Re-examining pedagogical content knowledge in science
education, pages 104–119. Routledge Press, London,
2015.

[75] Roy D. Pea and D. Midian Kurland. On the cognitive
effects of learning computer programming. New Ideas
in Psychology, 2(2):137–168, 1984.

[76] Mitchel Resnick et al. Scratch: programming for all.
Communications of the ACM, 52:60–67, 2009.

[77] Ralf Romeike. What’s my challenge? the forgotten
part of problem solving in computer science education.
In Proceedings of the 3rd International Conference on
Informatics in Secondary Schools - Evolution and
Perspectives: Informatics Education - Supporting
Computational Thinking, ISSEP ’08, pages 122–133,
Berlin, Heidelberg, 2008. Springer-Verlag.

[78] M. Saeli. Teaching programming for secondary school:
a pedagogical content knowledge based approach. PhD
thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 2012.

[79] D.A. Schön. The reflective practitioner: How
professionals think in action. Basic Books, New York,
US, 1983.

[80] Carsten Schulte. Reflections on the role of
programming in primary and secondary computing
education. In Proceedings of the 8th Workshop in
Primary and Secondary Computing Education, WiPSE
’13, pages 17–24, New York, NY, USA, 2013. ACM.

[81] Deborah Seehorn, editor. K-12 Computer Science
Standards – Revised 2011: The CSTA Standards Task
Force. ACM, October 2011. Deborah Seehorn, Chair;
CSTA - Computer Science Teachers Association.

[82] Judy Sheard, Angela Carbone, Raymond Lister, Beth
Simon, Errol Thompson, and Jacqueline L. Whalley.
Going SOLO to assess novice programmers. In
Proceedings of the 13th Annual Conference on
Innovation and Technology in Computer Science
Education, ITiCSE ’08, pages 209–213, New York,
NY, USA, 2008. ACM.

[83] Lee S. Shulman. Those who understand: Knowledge
growth in teaching. Educational Researcher,

115

15(2):4–14, 1986.

[84] Christopher W. Starr, Bill Manaris, and RoxAnn H.
Stalvey. Bloom’s taxonomy revisited: specifying
assessable learning objectives in computer science. In
Proceedings of the 39th SIGCSE technical symposium
on Computer science education, SIGCSE ’08, pages
261–265. ACM, 2008.

[85] T. Steenvoorden. Characterizing fundamental ideas in
international computer science curricula. Master’s
thesis, Radboud University, The Netherlands, 2015.

[86] C. Taylor et al. Computer science concept inventories:
past and future. Computer Science Education,
24(4):253–276, 2014.

[87] Allison Elliott Tew and Mark Guzdial. Developing a
validated assessment of fundamental CS1 concepts. In
Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE ’10, pages
97–101, New York, NY, USA, 2010. ACM.

[88] The Royal Society. Shut down or restart? The way
forward for computing in UK schools. London: The
Royal Society, 2012.

[89] A. Thijs, P. Fisser, and M. Van der Hoeven. 21ste
eeuwse vaardigheden in het curriculum van het
funderend onderwijs. Enschede: SLO, 2014.

[90] Errol Thompson, Andrew Luxton-Reilly, Jacqueline L.
Whalley, Minjie Hu, and Phil Robbins. Bloom’s
taxonomy for CS assessment. In Proceedings of the
Tenth Conference on Australasian Computing
Education - Volume 78, ACE ’08, pages 155–161,
Darlinghurst, Australia, Australia, 2008. Australian
Computer Society, Inc.

[91] Allen Tucker, editor. A Model Curriculum for K-12
Computer Science: Final Report of the ACM K-12
Task Force Curriculum Committee. ACM, New York,

NY, USA, October 2003. Allen Tucker, Chair; CSTA -
Computer Science Teachers Association.

[92] J.J.H. Van den Akker. Curriculum perspectives: An
introduction. In J.J.H. Van den Akker, W. Kuiper,
and U. Hameyer, editors, Curriculum landscapes and
trends, pages 31–10. Springer, 2003.

[93] Annette Vee. Understanding computer programming
as a literacy. Literacy in Composition Studies,
1(2):42–64, 2013.

[94] K.B. Wendell and H.-S. Lee. Elementary students
learning of materials science practices through
instruction based on engineering design tasks. Journal
of Science Education and Technology, 19(6):580–601,
2010.

[95] Linda Werner, Jill Denner, Shannon Campe, and
Damon Chizuru Kawamoto. The fairy performance
assessment: Measuring computational thinking in
middle school. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education,
pages 215–220. ACM, 2012.

[96] Jacqueline Whalley and Raymond Lister. The
BRACElet 2009.1 (wellington) specification. In
Margaret Hamilton and Tony Clear, editors, Eleventh
Australasian Computing Education Conference (ACE
2009), volume 95 of CRPIT, pages 9–18. Australian
Computer Society, Inc. (ACS), 2009.

[97] Jeannette M Wing. Computational thinking.
Communications of the ACM, 49(3):33–35, 2006.

[98] Jeannette M. Wing. Computational thinking: What
and why? The Link Magazine, 2011.

[99] D. Wongsopawiro. Examining science teachers’
pedagogical content knowledge in the context of a
professional development program. PhD thesis, Leiden
University, Leiden, The Netherlands, 2012.

116

