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LIAFA, Université Paris Diderot

8 place Aurélie Nemours, Paris, 75013, France.
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In two-party quantum communication complexity, Alice and Bob receive some classical
inputs and wish to compute some function that depends on both these inputs, while
minimizing the communication. This model has found numerous applications in many
areas of computer science. One notion that has received a lot of attention recently is the

information cost of the protocol, namely how much information the players reveal about
their inputs when they run the protocol. In the quantum world, it is not straightforward
to define a notion of quantum information cost. We study two different notions and
analyze their relation. We also provide new quantum protocols for the Inner Product

function and for Private Information Retrieval, and show that protocols for Private
Information Retrieval whose classical or quantum information cost for the user is zero
can have exponentially different information cost for the server.
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1 Introduction

In two-party communication complexity [1], Alice and Bob receive inputs and wish to compute

some function that depends on both these inputs, while minimizing the communication. This

model has found numerous applications in many areas of computer science. One question

that has received a lot of attention recently is whether it is possible to perform such protocols

without leaking much information.

In classical communication protocols, the information cost (or privacy loss) is defined as

the information that the transcript reveals to each player about the input of the other one.

In this model, one is interested in the information cost of a specific protocol and hence we
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182 Information cost of quantum communication protocols

only consider the case where the players honestly follow the protocol and not how they can

increase the information by deviating from it.

In quantum communication protocols [2], Alice and Bob receive classical inputs x and y

and wish to compute f(x, y) but they are allowed to use quantum communication and quan-

tum workspaces. We consider three quantum registers A,M,B that correspond to Alice’s

workspace, the message qubits, and Bob’s workspace. At each round of the protocol, one

player applies a unitary operation that depends on her input on her workspace and the mes-

sage qubits, and sends the message qubits to the other player, who continues the protocol. We

always assume that Alice starts the protocol. Since the message qubits can be reused through-

out the protocol and copying of the quantum states may be impossible, there is no clear notion

of a transcript. Hence, we know of no way to define notions of quantum information cost,

other than by a round-by-round definition.

We can see, by a chain rule argument, that the classical definition of information cost is

equivalent to a round-by-round definition where for each round, we calculate the information

that the current message reveals about the sender’s input to the receiver, who knows her

input and has kept a copy of all previous messages in her workspace.

Again, this definition is not readily applicable to quantum protocols, since the players may

not be able to copy the messages and continue the protocol at the same time. Nevertheless,

they have a quantum workspace, where, depending on the protocol, they may keep information

about previous messages. We would like to calculate how much information every new message

reveals to them, given that they already know their own input and have kept some information

in their quantum workspace according to the protocol.

There is one additional important issue to consider. Each player has a register where the

input is written in the beginning of the protocol. In the setting we consider here, this input is

always a classical one. One natural possibility is therefore to consider that the input register

is a classical register, meaning it stays unentangled with the workspaces and the message

space. The second possibility is to consider that the input is written in a quantum register,

which could be entangled with the players’ workspaces or even with the environment. We

discuss below in more details these two possibilities (formal definitions and more complete

discussion are given in Section 3).

Information cost with classical input registers. This is in fact the definition that has been

mostly used in the past [3, 4, 5]. In high level, it is defined in the following way: Alice

and Bob in the beginning of the protocol receive the classical inputs x, y according to some

input distribution in two classical registers X and Y . Then, they take turns applying some

unitaries on the quantum registers A,M,B controlled by the classical strings x, y. At each

round, we measure how much information is revealed by the message M about the sender’s

input register, given the receiver’s working space. This definition has also been used as a

measure of privacy of quantum protocols. We will denote Alice’s and Bob’s classical input

information cost for a protocol π by CICA(π) and CICB(π), respectively. Note that we split

the information cost into two separate informaiton costs, one for each player.

Information cost with quantum input registers. A new definition of quantum information cost

for quantum protocols, denoted in this paper by QICA(π) and QICB(π), was proposed by

Touchette [6]. This definition has nice properties, e.g., it is equal to the amortized quantum

communication complexity [6]. In this case, the input registers are initially purified through
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an external register (an environment, not accessible to the players). Then, the information

that is measured is with respect to this environment register and not the input registers of

the players.

Information cost as privacy. The information cost of a protocol measures the amount of

information about the inputs that is leaked during the protocol and hence can be seen as a

measure of privacy loss of the protocol. Note that we are not in a cryptographic scenario

with cheating players, rather we want to compute the privacy loss of the specific protocol

that computes the function (the players cannot deviate from the prescribed protocol). In

the case of quantum protocols, one could possibly define different notions of privacy for the

different notions of information cost. We argue that the most relevant definition of privacy is

the information cost with classical input registers, since it is the only one that measures the

privacy loss of the prescribed protocol. This notion of privacy with classical input registers

has previously been discussed for some classes of quantum protocols, for example in [4, 5].

Moreover, with the definition of QIC we do not measure the information revealed about

each player’s input but about the environment register R. Nevertheless, we will see that the

quantum information cost is a stronger technique for providing lower bounds on communica-

tion complexity.

Our results The main goal of this paper is to investigate quantum communication pro-

tocols under these two variants of information cost, and in particular study the differences

between information cost with classical input registers and information cost with quantum

input registers. In the present work, we first prove the following inequalities between these

definitions.

Result 1: CICA(π) ≤ QICA(π) and CICB(π) ≤ QICB(π) for any protocol π.

The details are given in Theorem 1 of Section 3. We then show that for some proto-

cols, the quantum information cost for one player can be arbitrarily higher than his classical

information cost, while the two notions of information cost for the other player are equal.

This is done by considering the Inner Product function. In addition, for Private Information

Retrieval we show that protocols whose classical or quantum information cost for the user is

zero can have exponentially different information cost for the server. In order to obtain these

gaps, we construct new quantum protocols for these tasks and analyze their informaiton cost.

We describe below in more details our results for the Inner Product function and for

Private Information Retrieval.

The information cost of Inner Product. We provide a protocol for Inner Product that shows

a gap between the two notions of information cost (see Theorem 2 in Section 4).

Result 2: There exists a quantum protocol for Inner Product over n-bit strings, which is

perfectly private for Bob and where Alice’s classical input information cost is only n/2+1/2.

We also show that for the protocol we contruct the quantum information cost is basically

n/2 for both parties, hence providing a gap between these notions.

The information cost of Private Information Retrieval. Private Information Retrieval has

been extensively studied so as to find the minimum communication necessary between the

user and one or more servers, while keeping the perfect privacy of the user. Here we consider
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the one-server setting: the server has for input a database x = x1 · · ·xn ∈ {0, 1}n, the user has
for input an index i ∈ {1, . . . , n}, and the goal is for the user to output xi. It is well known

that any classical protocol perfectly private for the user (i.e., in which the server obtains

no information about the index i) requires Ω(n) bits of communication [7]. Moreover, the

quantum communication complexity, as well as the quantum information costs are also Ω(n)

[8].

Recently, Le Gall [5] showed that there exists a quantum protocol for this task, perfectly

private for the user (according to Definition 1 in Section 3), with communication complexity

O(
√
n). This upper bound has then been improved to O(n1/3) by Ruben Brokkelkamp [9].

Here we ask the question: Can these upper bounds be further improved? Or, more specifically,

how much information does a single server have to leak about the database in any protocol

which is perfectly private for the user (with regard to the classical input information cost)?

We show the following surprising result (see Corollary 2 in Section 5).

Result 3: There exists a quantum protocol for Private Information Retrieval whose classical

input information cost is zero for the user and polylogarithmic on the size of the database for

the server.

The protocol is constructed explicitly and its communication cost is also polylogarithmic

in n, which is an exponential improvement over the prior works [5, 9] mentioned above.

Moreover, since any scheme whose quantum information cost is zero for the user must have

quantum information cost linear on the size of the database for the server, our result provides

the first exponential separation between the two notions of information cost of quantum

protocols (namely, classical input information cost versus quantum information cost).

The proof has two steps: first, we show how to take any ℓ-server classical PIR scheme and

translate it into a quantum one-server scheme, such that the index remains perfectly private.

Then, we use a classical PIR scheme with a logarithmic number of servers and polylogarithmic

communication [7], which implies that the information cost of the database is polylogarithmic,

since it is always less than the communication.

Finally, we improve the above upper bounds when the user and the server share prior

entanglement (see Theorem 4 in Section 6):

Result 4: There exists a quantum protocol for Private Information Retrieval using shared

prior entanglement whose classical input information cost is zero for the user and logarithmic

on the size of the database for the server.

The protocol is again constructed explicitly and its communication cost is O(log n), which

is optimal since, even with prior entanglement, the quantum communication complexity of

the Index Function is Ω(log n).

2 Preliminaries

In this paper we write, for a positive integer p, [p] := {1, 2, . . . , p} and, for two positive integer

p < q, write [p, q] := {p, p+ 1, . . . , q}.
In two-party communication complexity, Alice and Bob receive inputs x and y respec-

tively and wish to compute some function f(x, y) that depends on both these inputs, while

minimizing the communication cost, i.e., the number of exchanged bits. The communication
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complexity of a function is the least amount of communication possible in a protocol comput-

ing f . We refer to [10] for details about classical communication complexity, and to [11] for

asymmetric communication complexity.

In two-party quantum communication complexity, the players are now allowed to exchange

quantum bits. The standard model consists of three quantum registers: A, M and B. Here A

and B are private workspaces of Alice and Bob respectively, while M is used to communicate

qubits and is sent from one player to the other one. Additionally, Alice and Bob hold a

register (classical or quantum), say X and Y respectively, where they store their respective

input. At every round, one player applies a unitary operation on their workspace and the

message qubits (that also depends on their input) and sends the message qubits to the other

player who continues the protocol. Note that in general protocols, the unitary operation

could modify the player’s input register. However in this paper we will be interested only in

protocols where the players never modify their input registers. In other words, we consider

that the players always keep a safe copy of their inputs, which seems reasonable since they

want to compute a certain function of these inputs.

In the above setting, the Inner Product (IP) problem consists in computing f(x, y) =

x · y :=
∑

i xi · yi. In [12], it is proved as a particular case of the bounded error setting, that

computing classically and perfectly IP requires a communication of n, and the same holds for

quantum protocols [13].

Another well studied problem is Private Information Retrieval (PIR): a user, whose input

is an index i ∈ [n], interacts with a server holding a database x = (xj)j∈[n] ∈ {0, 1}n. The

goal for the user is to learn xi in such a way that the server does not learn his index i.

In [14, 7], it is shown that the communication complexity of this problem is Ω(n). The

same paper also shows that it is possible to improve the communication complexity if the

user can interact with several independent servers: in this setting it is possible to obtain a

communication polylogarithmic in n. In [5], the author gives a quantum protocol using a single

server and only O(
√
n) qubits of communication, which yields a quadratic improvement over

what is possible classically. This upper bound has then been improved to O(n1/3) by Ruben

Brokkelkamp [9]. In both cases the protocol is perfectly private for the user (as long as the

server follows exactly the prescribed scheme). If we allow the players to create superpositions

of inputs or act as specious adversaries, then it is known that the communication from the

server must be linear [8, 15].

The information cost will be analyzed with information theoretical tools. More precisely,

S(X) will denote the entropy of X, that is S(X) is equal to −∑

x px log(px) if X is a classical

random variable taking value x with probability px, or to −Tr(ρX log(ρX)) if X is a quantum

register whose state is denoted by ρX . If A,B and C are either classical random variables or

quantum registers, the mutual information between A and B (resp. the mutual information

between A and B conditioned on C) is defined by I(A : B) = S(A) + S(B) − S(AB) (resp.

I(A : B|C) = I(AC : B) − I(C : B) = S(AC) + S(BC) − S(C) − S(ABC), which can be

interpreted as the knowledge that A gives about B provided that we already knew C).

3 Definitions of Information Cost for Quantum Protocols and their Relation

In classical communication protocols, the information cost of a protocol is defined as the

information that the transcript Π of the communication reveals to each player about the
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input of the other one. Using a chain rule argument, it is not hard to see that the classical

definition of information cost is equivalent to a round-by-round definition where for every

round k, we calculate the information that the message at round k reveals about each player’s

input to the other player, who already knows his input and has kept a copy of all previous

messages in his workspace:

I(Π : X|Y ) =
∑

k: odd

I(Mk : X|Y,M1, . . . ,Mk−1), (1)

I(Π : Y |X) =
∑

k: even

I(Mk : Y |X,M1, . . . ,Mk−1). (2)

Note that we define the information cost of each player separately, since their input sizes or

their privacy considerations can be different. For example, for Private Information Retrieval,

we will look at protocols which are perfectly secure for the user (whose input has size log n)

and leak a logarithmic amount of information about the database (whose size is n).

In quantum communication protocols, since there is no notion of transcript, we define

notions of privacy or quantum information cost by a round-by-round definition. As we said, we

will also differentiate between the case where the input registers contain classical or quantum

inputs.

We will try to provide a unified view of the two definitions of information cost. Let us

denote the input distribution by µ. We start by assuming that a third party creates the

following state
∑

x,y

√

µ(x, y)|x〉XR
|y〉YR

|x〉X |y〉Y . (3)

He keeps the registers XRYR = R to himself and sends the registers X and Y to Alice and

Bob respectively. Hence, Alice and Bob receive in their registers classical inputs x, y with

probability µ(x, y), while R holds a purification of the inputs. Then, they start the protocol

and using the inputs as control bits, they apply the prescribed unitaries, so that at round k

the joint state can be written as

∑

x,y

√

µ(x, y)|x〉XR
|y〉YR

|x〉X |y〉Y |φk
xy〉AMB . (4)

Using this state, we can now define the two notions of information cost.

3.1 Classical input information cost

In this definition the register R does not appear and hence without loss of generality, we can

assume that it has been measured. This is why the registers X and Y become now classical

registers. We can now provide the definition of classical input information cost

Definition 1 For a protocol π, the Classical input Information Cost of Alice and Bob are

defined as

CICA(π) =
∑

k : odd

I(Mk : X|Y,Bk) and CICB(π) =
∑

k : even

I(Mk : Y |X,Ak),

where according to equation (4), X,Y are the input registers, and Mk, Ak, Bk are quantum

registers that correspond to the message and Alice’s and Bob’s workspaces at round k.
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Remark 1 Note that in the model of quantum communication, where only unitary operations

are allowed during the protocol, there is no obvious equivalent of a classical protocol π when π

uses random coins (as is usual in a classical communication protocols). It is possible to define

a quantum communication protocol π′ where the players create and keep in their workspace

a uniform superposition of coins, use them as control bits to simulate π in superposition,

and measure them at the end of the protocol π′. As far as communication is concerned, this

construction is fine, since the communication of π′ is the same as the one of π. However,

when dealing with information, things are more subtle. In particular the CIC of π′ could be

larger than the (classical) information cost of π. This is because using coins in superposition

might reveal more information than just using classical coins. We will not discuss further

this issue here, since in the present work we focus on the difference between the two notions

of informaiton cost for quantum protocols and not how they relate to the informaiton cost of

classical protocols.

3.2 Quantum information cost

Recently, another definition of quantum information cost for protocols with entanglement was

proposed by Touchette [6]. This definition has very nice properties: for example, it is equal

to the amortized quantum communication complexity. In this case, the information cost is

measured with respect to the register R and not the input registers X,Y .

Definition 2 For a protocol π, the Quantum Information Cost of Alice and Bob are defined

as

QICA(π) =
∑

k : odd

I(Mk : R|Y,Bk) and QICB(π) =
∑

k : even

I(Mk : R|X,Ak), (5)

where according to Equation 4, X,Y are the input registers, R = (XR, YR) holds their pu-

rifications and Mk, Ak, Bk are quantum registers that correspond to the message qubits and

Alice’s and Bob’s workspaces at round k.

3.3 Relation between the two definitions of information cost

We have seen two different definitions which measure in some way the information transmitted

during the protocol. We now prove a general inequality between these notions.

Theorem 1 For any protocol π we have

CICA(π) ≤ QICA(π) and CICB(π) ≤ QICB(π).

Proof : We have that at round k,

I(Mk : X|Y Bk) = I(Mk : XR|Y Bk) = I(Mk : XRYR|Y Bk)− I(Mk : YR|XRY Bk) (6)

≤ I(Mk : XRYR|Y Bk). (7)

Summing over odd k we obtain CICA(π) ≤ QICA(π). Similar for Bob.

4 Information Cost for Inner Product

In this section we describe a quantum protocol for Inner Product and compute all different in-

formation cost quantities for it. Alice and Bob have input x ∈ {0, 1}n, y ∈ {0, 1}n respectively

and want to compute x · y.
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The protocol is given in Fig. 1. Here we assume that only Alice needs to learn the value of

the function (then she could communicate it to Bob, leaking at most one bit of information

about her input).

Protocol ΠIP :

1. Alice creates and sends to Bob |φ1
xy〉 := 1√

2n

∑

r∈{0,1}n |r〉Q|r · x〉T

2. Bob applies the unitary Vy : |r〉 7→ |r ⊕ y〉 to register Q and sends back
to Alice the state |φ2

xy〉 := 1√
2n

∑

r∈{0,1}n |r ⊕ y〉Q|r · x〉T
Fig. 1. Quantum protocol for inner product.

Let us prove the correctness of the protocol. Observe that

|φ2
xy〉 =

1√
2n

∑

r∈{0,1}n

|r ⊕ y〉Q|r · x〉T =
1√
2n

∑

r∈{0,1}n

|r〉Q|(r ⊕ y) · x〉T . (8)

At the end of the protocol, Alice, by applying the unitary Ux : |r〉|b〉 7→ |r〉|b ⊕ r · x〉, can
transform |φ2

xy〉 to the state

|φ3
xy〉 :=

1√
2n

∑

r∈{0,1}n

|r〉Q|((r ⊕ y) · x)⊕ (r · x)〉T =





1√
2n

∑

r∈{0,1}n

|r〉Q



 |x · y〉T . (9)

By measuring Register T , Alice obtains the bit x · y.
Assuming the inputs are distributed uniformly, we then evaluate the information cost of

this protocol.

Theorem 2 For the above protocol ΠIP under uniform distribution of inputs, we have (up

to exponentially small terms)

CICA(ΠIP ) = n/2 + 1/2 , CICB(ΠIP ) = 1.

QICA(ΠIP ) = n/2 + 1/2 , QICB(ΠIP ) = n/2 + 3/2.

The proof of Theorem 2 follows from the following claims.

Claim 1 Bob gets n/2 + 1/2 bits of information (up to exponentially small terms) from the

first message and Alice one bit from the second message. More precisely: CICA(ΠIP ) =

n/2 + 1/2 and CICB(ΠIP ) = 1.

Proof : After receiving the first message, the information that Bob has about Alice’s input

is, by definition:

I(M1 : X|Y ) = S(M1Y )− S(Y )− S(XYM1) + S(XY ) = S(M1), (10)

since S(XYM1) = S(XY ) = 2n and M1 is independent of Y . It remains to calculate S(M1).

Define

Mx
1 =|φ1

xy〉〈φ1
xy| =

1

2n

∑

r,r′

|r〉|r · x〉〈r′|〈r′ · x|. (11)
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Then

M1 =
∑

x∈{0,1}n

1

2n
Mx

1 =
1

22n

∑

r,r′,i,j

c(r, r′, i, j)|r〉|i〉〈r′|〈j|, (12)

where the coefficient c(r, r′, i, j) is defined on {0, 1}n × {0, 1}n for i, j ∈ {0, 1} as:

c(r, r′, i, j) := #
{

x ∈ {0, 1}n : r·x = i, r′·x = j
}

=















































2n if r = r′ = i = j = 0

0 if r = r′, i 6= j

or r = 0, i = 1 or r′ = 0, j = 1

2n−1 if r = r′ 6= 0, i = j

or r = 0 6= r′, i = 0

or r′ = 0 6= r, j = 0

2n−2 otherwise.

(13)

We can show by computing the matrix and its eigenvalues that S(M1) = n/2 + 1/2 (up to

exponentially small terms).

Alice receives only one message from Bob, and after this message she has the state ρ2x,y =
1

22n

∑

x,y |x〉〈x| ⊗ |φ2
xy〉〈φ2

xy| with

|φ2
xy〉 =

1√
2n

∑

r∈{0,1}n

|r〉|(r ⊕ y) · x〉. (14)

We have

I(M2 : Y |X) = S(M2X)− S(X)− S(M2XY ) + S(XY ) (15)

= (n+ 1)− n+ 2n− 2n (16)

= 1, (17)

where we used the fact that the state in the registers M2X has the same entropy as the

following state (since there is a unitary on M2X that turns one into the other): ρ3x,y =
1

22n

∑

x,y |x〉〈x| ⊗ |φ3
xy〉〈φ3

xy| with

|φ3
xy〉 =





1√
2n

∑

r∈{0,1}n

|r〉



 |x · y〉. (18)

Claim 2 For the Quantum Information Cost of the protocol, we have (up to exponentially

small terms)

QICA(ΠIP ) = n/2 + 1/2 , QICB(ΠIP ) = n/2 + 3/2.

Proof : Let us compute QICA(ΠIP ). For the first round, the state is

|φ1〉 = 1

23n/2

∑

xy

|x〉X |y〉Y |xy〉T
∑

r∈{0,1}n

|r〉|r · x〉. (19)



190 Information cost of quantum communication protocols

Then, we have

I(M1 : R|Y ) = S(M1Y )− S(Y ) + S(Y R)− S(YM1R) = S(M1) = n/2 + 1/2. (20)

We used here the fact that S(YM1R) = S(Y R) = n, the fact that M1 is independent of Y ,

and the equality S(M1) = n/2+ 1/2 we have already proven when analyzing the privacy loss

in the proof of Claim 1.

We finally compute QICB(ΠIP ). For the second round, we have

|φ2〉 = 1

23n/2

∑

xy

|x〉X |y〉Y |xy〉T
∑

r∈{0,1}n

|r〉|(r ⊕ y) · x〉, (21)

and thus

I(M2 : R|X) = S(M2X)− S(X)− S(XM2R) + S(XR) (22)

= (n+ 1)− n− n+ (n+ n/2 + 1/2) (23)

= n/2 + 3/2. (24)

Note that, since Alice must output x ·y, the quantity CICB is at least one for any protocol

computing Inner Product, which means that our protocol is optimal with respect to this

quantity. Also note that the lower bound of Cleve et al. [13] on the quantum communication

complexity of Inner Product shows that the sum of the information cost of both players is at

least n/2.

Remark 2 We can easily describe a family of protocols Πt
IP , t ∈ [n] that provide a tradeoff

between the CIC of Alice and Bob: Alice and Bob apply Protocol ΠIP for the first t bits of

their inputs. Then, for the remaining n − t bits they switch roles and in the end Bob sends

the outcome to Alice. This new protocol is correct, since the inner product of x, y is the

XOR of the inner products of the smaller strings. Alice leaks at most t/2 + 1/2 bits from the

first invocation and 1 from the second one. Bob leaks at most 1 bit from the first one and

(n− t)/2 + 1/2 from the second one and hence n/2 + 3 in total.

5 The Information Cost of Private Information Retrieval

In this section we construct a quantum protocol for Private Information Retrieval with poly-

logarithmic CICS and polylogarithmic communication cost, by describing a general method

to convert a classical scheme for Private Information Retrieval with ℓ > 1 servers into a

quantum scheme with a single server.

Simulation of an ℓ-server classical scheme by a 1-server quantum scheme Consider

a two-round classical scheme ΠPIR, where a user interacts with ℓ > 1 servers that each possess

a copy of the n-bit database and are not allowed to interact with each other. We can describe

such a scheme as in Fig. 2, where mq,ma, R ∈ N. We assume that the distribution of queries

that each server receives is uniform, and hence do not reveal any information about the user’s

input. This assumption is true for essentially all known classical protocols for (information-

theoretic) Private Information Retrieval, including the protocols described in [14, 7] that we

will later use.
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Protocol ΠPIR

1. The user picks uniformly at random r ∈ [R] that corresponds to a ℓ-tuple
of queries {qr1, ..., qrℓ} and asks query qri ∈ {0, 1}mq to server i ∈ [ℓ].

2. Each server i, who received qri , sends his answer ari ∈ {0, 1}ma , to the
user.

Fig. 2. General form of a 2-round ℓ-server classical protocol for Private Information Retrieval.

Let us now describe a quantum protocol QPIR that simulates the classical protocol ΠPIR,

but with a single server. The server and the user use ℓ query registers Q1, . . . , Qℓ of size

mq each and ℓ answer registers Ans1, . . . ,Ansℓ of size ma each. Moreover the user also

holds a private register Q of size ℓ · mq to keep a copy of the queries. The protocol is

given in Fig. 3, where we use the notations |ar[i−1]〉Ans[i−1]
:= |ar1〉Ans1 . . . |ari−1〉Ansi−1

and

|0〉Ans[i,ℓ] := |0〉Ansi . . . |0〉Ansℓ .

Protocol QPIR

1. The user prepares the pure state

|φ1〉 := 1√
R

∑

r

|qr1 . . . qrℓ 〉Q|qr1〉Q1
. . . |qrℓ 〉Qℓ

|0〉Ans1 . . . |0〉Ansk .

2. The user and the server iterate for i = 1 to ℓ :

• at each odd round 2i− 1 the user holds the whole (pure) state

|φ2i−1〉 := 1√
R

∑

r

|qr1 . . . qrℓ 〉Q|qr1〉Q1
. . . |qrℓ 〉Qℓ

|ar[i−1]〉Ans[i−1]
|0〉Ans[i,ℓ]

and sends registers (Qi,Ansi) to the server ;

• at each round 2i, the server holds (Qi,Ansi). He reads the query,
writes the answer in the Ansi register and sends the two registers to
the user.

Fig. 3. Quantum protocol simulating ΠPIR with one server.

This protocol indeed simulates the classical protocol ΠPIR: at the end of the protocol,

the user holds

|φ2k〉 = 1√
R

∑

r

|qr1 . . . qrℓ 〉Q|qr1〉Q1
. . . |qrℓ 〉Qℓ

|ar[ℓ]〉Ans[ℓ] (25)

and by measuring in the computational basis, he gets a uniformly random ℓ-tuple of queries

and their answers, hence he has the same success probability as the user in the classical

scheme. The communication cost of Protocol QPIR is 2ℓ(ma +mq) qubits. We now describe

its information cost.
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Theorem 3 For the above protocol ΠPIR under uniform distribution of inputs, we have

CICS(ΠPIR) = O(ℓ(ma +mq)) , CICU (ΠPIR) = 0,

QICS(ΠPIR) = O(ℓ(ma +mq)) , QICU (ΠPIR) = Ω(log(n)),

where the queries and answers are in {0, 1}mq and {0, 1}ma .

Proof : The first statement is obvious since in ΠPIR the total communication is 2ℓ(ma+mq)

and hence CICS(ΠPIR), QICS(ΠPIR) are O(ℓ(ma +mq)).

As for the CICU , note that each message independently does not leak any information

about the user’s input, since the quantum message is exactly the same distribution over

classical queries that each server receives in the classical scheme, which we know is perfectly

private.

Now, for QICU (ΠPIR), we know from Theorem 3.2 in [8] that, if the user leaks at most

b bits about his input, then the server has to leak at least Ω(n/2O(b)) bits about his n-bit

database, or equivalently, if the server leaks at most t bits about the database, then the user

must leak at least Ω(log(n/t)) bits about his input. Since in our scheme the communication

is bounded by polylog(n), we obtain that the user has to leak at least Ω(log(n)) about his

input.

Application: a quantum protocol for PIR with polylogarithmic privacy loss We

consider the classical scheme proposed in [14, 7].

Lemma 1 [See Theorem 3 in [14]] There is a (classical) private information retrieval scheme

for 1
2 · (log n + log log n) + 1 servers, each holding n bits of data, where the server sends to

each server a query of O(log(n) · log log(n)) bits, and receives from each server an answer of

O(log log(n)) bits (so that the total communication cost is O(log2 n · log log(n)) bits).
By converting the classical protocol of Lemma 1 into a one-server quantum protocol by

the above construction, and applying Theorem 3, we obtain the following result.

Corollary 1 There exists a one-server quantum protocol for Private Information Retrieval,

with total communication cost O(log2(n) · log log(n)), such that:

• it is perfectly private for the user according to CIC ;

• the server leaks O
(

polylog(n)
)

information.

By Corollary 1 and Theorem 3.2 in [8] we obtain the following separation between the

different notions of information cost.

Corollary 2 There exists a quantum protocol which is perfectly private for the user according

to CIC and has information cost (CIC and QIC) for the server only polylogarithmic on the

size of the database. On the other hand, any quantum protocol which is perfectly private for

the user according to QIC has information cost (CIC and QIC) for the server linear on the

size of the database.

6 Logarithmic Scheme for PIR with Prior Entanglement

We now study one-server quantum private information retrieval in the same setting as in

the previous section, but allowing prior entanglement between the server and the user, and

construct a protocol with CICS and communication cost O(log(n)). For simplicity we will
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assume in this section that n = 2ℓ, and write the user’s input using its binary representation

as i = i1i2 . . . iℓ, where i1, . . . , iℓ are bits such that i = 1+
∑ℓ

k=1 ik2
ℓ−k. The case where n is

not a power of two can be dealt in a similar way, or simply by adding zeros to the database

in order to obtain a size that is a power of two.

For convenience we introduce the following notation.

Definition 3 Let s be any positive integer, and z be any binary string of length 2s. Define

z[0] and z[1] as the first and second halves of the string z, respectively. For any k ∈ {2, . . . , s}
and any k bits j1, . . . , jk, let z[j1, . . . , jk] be the binary string of length 2s−k defined by the

recurrence relation z[j1, . . . , jk] = (z[j1, . . . , jk−1])[jk].

Let us consider an example to illustrate this definition: if s = 3 and z = 10100110, then

z[0] = 1010, z[1] = 0110, z[0, 0] = 10, z[0, 1] = 10, z[1, 0] = 01, z[1, 1] = 10 and, for instance,

z[0, 0, 0] = 1 or z[1, 0, 1] = 1. Note that, with these definitions, the bit xi that the user wants

to output in a protocol for Private Information Retrieval is x[i1, . . . , iℓ].

Our protocol will use, besides the two registers containing the inputs, the following quan-

tum registers:

• ℓ quantum registers R1, . . . , Rℓ where Rk is a register of 2ℓ−k qubits for k ∈ {1, . . . , ℓ};

• ℓ quantum registers R′
1, . . . , R

′
ℓ where R′

k is a register of 2ℓ−k qubits for k ∈ {1, . . . , ℓ};

• two one-qubit quantum registers Q0 and Q1.

Define the unitary operator V1 acting on (R1, Q0, Q1) as follows:

V1 (|z〉R1
|a〉Q0

|b〉Q1
) = |z〉R1

|a⊕ z · x[0]〉Q0
|b⊕ z · x[1]〉Q1

(26)

for any string z ∈ {0, 1}2ℓ−1

and any bits a, b ∈ {0, 1}. For any integer k ∈ {2, . . . , ℓ}, we
define the unitary operator Vk acting on (Rk−1, Rk, Q0, Q1) as follows:

Vk

(

|y〉Rk−1
|z〉Rk

|a〉Q0
|b〉Q1

)

= |y〉Rk−1
|z〉Rk

|a⊕ z · y[0]〉Q0
|b⊕ z · y[1]〉Q1

(27)

for any strings y ∈ {0, 1}2ℓ−k+1

, z ∈ {0, 1}2ℓ−k

and any bits a, b ∈ {0, 1}.
For any integer k ∈ {1, . . . , ℓ}, define the state

|Φk〉(Rk,R′

k
) =

1√
22ℓ−k

∑

z∈{0,1}2ℓ−k

|z〉Rk
|z〉R′

k
. (28)

We assume that the server and the user initially share the quantum state

|Φ1〉(R1,R′

1)
⊗ |Φ2〉(R2,R′

2)
⊗ · · · ⊗ |Φℓ〉(Rℓ,R′

ℓ
) ⊗ |0〉Q0

|0〉Q1
, (29)

where R1, . . . , Rℓ, Q0, Q1 are owned by the server and R′
1, . . . , R

′
ℓ are owned by the user. Our

quantum protocol is given in Fig. 4.

We analyze the correctness, the communication cost and the information cost of Protocol

PPIR, and prove the following theorem.

Theorem 4 The protocol PPIR for input size n = 2ℓ has communication cost 4ℓ + 1 qubits

and correctly computes the index function. Moreover, under uniform distribution of inputs,

we have

CICS(PPIR) ≤ 2ℓ+ 1 , CICU (PPIR) = 0,

QICS(PPIR) ≤ 2ℓ+ 1 , QICU (PPIR) = Ω(ℓ).
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Protocol PPIR

1. For k from 1 to ℓ, the server and the user do the following:

(a) The server applies Vk, and then sends Registers Q0 and Q1 to the
user;

(b) The user applies the Pauli gate Z over Register Qik and sends back
Registers Q0 and Q1 to the server;

(c) The server applies Vk, and applies a Hadamard transform on each
of the 2ℓ−k qubits in Register Rk;

(d) The user applies a Hadamard transform on each of the 2ℓ−k qubits
in Register R′

k.

2. The server sends Register Rℓ to the user.

Fig. 4. Quantum protocol for private information retrieval with prior entanglement.

The following lemma, which can be easily shown by recursion on k, will be convenient to

analyze Protocol PPIR.

Lemma 2 Assume that Protocol PPIR is applied when the server’s input is x ∈ {0, 1}2N and

the user’s input is i ∈ {0, 1}N . Then, at the end of the k-th iteration of the loop in Step 1,

the state of the quantum system is (omitting a global normalization factor)




∑

y1,...,yk

(

|y1〉R1
|x[i1]⊕ y1〉R′

1
⊗

k
⊗

j=2

|yj〉Rj
|yj−1[ij ]⊕ yj〉R′

j

)



⊗|0〉Q0
|0〉Q1

⊗





N
⊗

j=k+1

|Φj〉(Rj ,R′

j
)



,

where the sum is over all strings y1 ∈ {0, 1}2N−1

, . . . , yk ∈ {0, 1}2N−k

.

Proof of Theorem 4: Since each iteration of the loop in Step 1 uses four qubits of com-

munication, and one additional qubit is used at Step 2, the overall communication cost is

4N + 1.

Next, we show that this protocol correctly computes the index function, i.e., the user can

output xi. From Lemma 2, the state of the quantum system at the end of Protocol PPIR is

(omitting a global normalization factor)
∑

y1,...,yN

|y1〉R1
|x[i1]⊕ y1〉R′

1
|y2〉R2

|y1[i2]⊕ y2〉R′

2
· · · |yN 〉RN

|yN−1[iN ]⊕ yN 〉R′

N
|0〉Q0

|0〉Q1
, (30)

where the server owns Registers R1, . . . , RN−1, Q0, Q1, and the user owns Register RN and

Registers R′
1, . . . , R

′
N . If the server and the user measure all their registers, the user obtains

strings aN , b1, . . . , bN such that


























aN = yN ,
b1 = x[i1]⊕ y1,
b2 = y1[i2]⊕ y2,
...

...
...

bN = yN−1[iN ]⊕ yN ,
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for some strings y1, . . . , yN corresponding to the server’s measurement outcomes. Note that

x[i1, i2, . . . , iN ] = b1[i2, . . . , iN ]⊕ b2[i3, . . . , iN ]⊕ · · · ⊕ bN−1[iN ]⊕ bN ⊕ aN , (31)

which means that the user can recover xi = x[i1, i2, . . . , iN ] from his measurement outcomes.

The upper bounds on CICS(PPIR) and QICS(PPIR) follow from the observation that the

total length of the messages received by the user is 2N+1. The lower bounds on QICU (PPIR)

follow from the same argument (based on [8]) as in Theorem 3.

Finally, let us prove that CICU (PPIR) = 0, by showing that the server’s state just after

receiving the message from the user during the k-th iteration of Step 1 of Protocol PPIR is

independent of i, for each k ∈ {1, . . . , N}. In the case k = 1, the state of the registers owned

by the server just after receiving the message from the user is, omitting a global normalization

factor,




∑

z∈{0,1}2N−1

|Ψ(z)〉〈Ψ(z)|



⊗





N
⊗

j=2

∑

z∈{0,1}2N−j

|z〉Rj
〈z|Rj



, (32)

where |Ψ(z)〉 = (−1)x[i1]·z|z〉R1
|x[0] · z〉Q0

|x[1] · z〉Q1
. Since

|Ψ(z)〉〈Ψ(z)| = |z〉R1
|x[0] · z〉Q0

|x[1] · z〉Q1
〈z|R1

〈x[0] · z|Q0
〈x[1] · z|Q1

(33)

is independent of i, the above state is also independent of i. For the case k ≥ 2, by using

Lemma 2. the state of the registers owned by the server just after receiving the k-th message

from the user is, omitting a global normalization factor,





∑

y1,...,yk−1

∑

z∈{0,1}2N−k

|Ψx(y
1, . . . , yk−1, z)〉〈Ψx(y

1, . . . , yk−1, z)|



⊗





N
⊗

j=k+1

∑

z∈{0,1}2N−j

|z〉Rj
〈z|Rj



,

(34)

where

|Ψx(y
1, . . . , yk−1, z)〉 = (−1)y

k−1[ik]·z|y1〉R1
· · · |yk−1〉Rk−1

|z〉Rk
|yk−1[0] · z〉Q0

|yk−1[1] · z〉Q1
,

(35)

and is again independent of i.
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