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Abstract—Codes are presented that can correct the deletion or
the insertion of a predetermined number of adjacent bits greater
than or equal to three. This extends the constructions of codes
beyond those proposed by Levenshtein fifty years ago to correct
one or two adjacent deletions or insertions.

I. INTRODUCTION

Loss of synchronization due to uncertainties in timing is a

problem in communication and storage systems. It typically

manifests itself in the deletion or the insertion of spurious

symbols. Should the receiver fails to recover synchronization, a

catastrophic failure in decoding the received symbols follows.

In 1965, Levenshtein [5] has demonstrated that a class of

codes constructed earlier by Varshamov and Tenengol’ts [7] to

correct a single asymmetric error can also be used to correct

a single deletion or insertion. Two years later, Levenshtein

presented asymptotic upper bounds on the sizes of codes that

can correct the deletion or the insertion of exactly a given

number of adjacent deletions and insertions [6]. In the same

paper, he constructed asymptotically optimal codes that can

correct up to two adjacent deletions or insertions. In this paper,

we present three classes of codes that can correct exactly a

given number, greater or equal to three, of adjacent deletions

and insertions.

Let c = (c1, c2, . . . , cN) be a binary sequence of length N
transmitted over a channel. If the received sequence is r =
(r1, r2, . . . , rN−s), where

rℓ =
{

cℓ for ℓ < ℓ∗,
cℓ+s for ℓ ≥ ℓ∗, (1)

then we say that the channel caused s adjacent deletions in
c starting at index ℓ∗, where 1 ≤ ℓ∗ ≤ N − s. On the other
hand, if the received word is r = (r1, r2, . . . , rN+s), where

rℓ =
{

cℓ for ℓ < ℓ∗,
cℓ−s for ℓ ≥ ℓ∗ + s,

and rℓ, for ℓ∗ ≤ ℓ < ℓ∗ + s, can assume any value in {0, 1},
then we say that the channel caused s adjacent insertions
starting at index ℓ∗, where 1 ≤ ℓ∗ ≤ N + 1.
In this paper, we consider codes that can correct a single

deletion or insertion of exactly (rather than at most) s adjacent
symbols. It should be emphasized that codes correcting exactly

s adjacent symbols may fail to correct fewer number of
adjacent symbols. For example, (0, 1, 0, 1) and (1, 0, 1, 0) can

appear together as codewords in a code that corrects two

adjacant deletions but not in a code that corrects a single

deletion. We assume that the beginning and the end of each

received sequence corresponding to a transmitted codeword

are known, which allows for independent decoding of the

codewords. (This assumption, which is commonly assumed in

the literature, can be achieved by inserting periodic markers

between codewords.) A code is s-adjacent deletion (insertion,
resp.) correcting if the receiver can retrieve the transmitted

codeword provided that the channel causes s adjacent bits to
be deleted (inserted, resp.). This is equivalent to saying that

no sequence can be obtained from two distinct codewords in

the code by deleting (inserting, resp.) s adjacent bits from
(in, resp.) each. A classical result by Levenshtein [5] states

that a code is deletion correcting if and only if it is insertion

correcting. Based on this, it suffices to consider only s-adjacent
deletion correcting codes since these codes are also s-adjacent
insertion correcting codes in the sense that they can correct

either the deletion or the insertion of s-adjacent bits.

In 1967, Levenshtein [6] has shown that the number of

codewords in an s-adjacent deletion correcting code of length
N is asymptotically upper bounded by 2N−s+1/N . He also
constructed codes that meet this upper bound for s = 2. The
Varshamov-Tenengol’ts codes meet the bound for s = 1. In
this paper, we consider s-adjacent deletion correcting codes
for s ≥ 3.

The paper is organized as follows. In Section II, we review

two classes of codes that form the main ingredients in the

constructions of s-adjacent deletion correcting codes presented
in Section III. The paper ends with a conclusion in Section IV.

II. TWO USEFUL CODES

In this section, we briefly review two classes of codes

that are used in the following section to construct s-adjacent
deletion correcting codes. The first class of codes is the

well-known Varshamov-Tenengol’ts codes that were shown by

Levenshtein to be capable of correcting a single deletion or

insertion. The second class of codes can also correct a single

deletion or insertion of a bit if it is known to the receiver that

it is localized within two adjacent bits.
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A. Varshamov-Tenengol’ts Codes

Recall that the Varshamov-Tenengol’ts code [7], denoted

by VTa(n), where 0 ≤ a ≤ n, consists of all binary vectors
(x1, x2, . . . , xn) satisfying

n
∑

j=1

jxj ≡ a (mod n + 1). (2)

If a codeword c = (c1, c2, . . . , cn) is transmitted and a single
bit, say cj , is deleted, then the receiver can retrieve the

transmitted codeword. This is done by identifying the run

of identical bits in the transmitted codeword that has been

shortened (or deleted if the run has unit length). For example,

(0011100001) is a codeword in VT0(10). If it is received as
(001100001), then the receiver can determine that the deleted
bit belongs to the first run of 1’s and by inserting a 1 in this
run, it recovers the transmitted codeword.

The cardinality of VTa(n) was determined by Ginzburg [4].
In particular, it is shown that the choice a = 0 maximizes the
cardinality of the codes, i.e., |VT0(n)| ≥ |VTa(n)| for all
0 ≤ a ≤ n. From [4], we have

|VT0(n)| =
1

2(n + 1)

∑

d|n+1

d odd

φ(d)2(n+1)/d ≥

⌈

2n

n + 1

⌉

, (3)

where φ is Euler’s function. On the other hand, Lemma 1 in
[2] implies that

|VT0(n)| <
2n+1

n + 1
. (4)

B. Substitution-Transposition Codes

In this paper, we will make use of a code proposed in [1]

in the context of detecting substitutions and transpositions of

bits. For a fixed a ∈ {0, 1, 2}, the code of length n, which will
be denoted here by STa(n) (rather than Cn(t) as in equation
(5) in [1]), is given by

STa(n) = {(c1, c2, . . . , cn) :

n
∑

j=1

bjcj ≡ a (mod 3)}, (5)

where

bj =
{

1 if j is odd,
2 if j is even. (6)

It is shown in [1] that the choice a = 0 maximizes the
cardinality of the codes, i.e., |ST0(n)| ≥ |STa(n)| for all
a ∈ {0, 1, 2} and that

ST0(n) =

⌈

2n

3

⌉

=

{

2n+1
3 if n is odd,

2n+2
3 if n is even.

(7)

The code STa(n) is shown in [1] to be able to detect a
a substitution of a bit, i.e., changing 0 to 1 or vice versa,
or a transposition of two adjacent and different bits, i.e.,

changing 01 to 10 or vice versa. However, in the present
work we are interested in deletions rather than substitutions

and transpositions. We show next that the code can determine

a deleted bit from a codeword c = (c1, c2, . . . , cn) if it is
known to the receiver that the deleted bit is either cj0 or cj0−1

(provided that j0 ≥ 2). Indeed, if this is not the case, then

there are two distinct codewords, c′ = (c′1, c
′
2, . . . , c

′
n) and

c
′′ = (c′′1 , c′′2 , . . . , c′′n), in STa(n) such that deleting c′j0 from

c
′ results in the same sequence as deleting c′′j0−1 from c

′′. This

implies that c′j = c′′j for j < j0−1 or j > j0 and c′j0−1 = c′′j0 .
Hence,

n
∑

j=1

bjc
′
j −

n
∑

j=1

bjc
′′
j =

n
∑

j=1

bj(c
′
j − c′′j ) (8)

= bj0−1(c
′
j0−1 − c′′j0−1) + bj0(c

′
j0 − c′′j0) (9)

= bj0−1(c
′′
j0 − c′′j0−1) + bj0(c

′
j0 − c′′j0) (10)

≡ bj0(c
′
j0 + c′′j0−1 − 2c′′j0) (mod 3) (11)

where we used the facts that c′j = c′′j for j < j0 − 1 or
j > j0 in (9), c

′
j0−1 = c′′j0 in (10), and bj−1 ≡ −bj (mod 3),

as given in (6), in (11). Since c
′ and c

′′ are codewords in

STa(n) satisfying (5), it follows that the left hand side in (8)
vanishes modulo 3. As bj0 being either 1 or 2, and hence
nonzero modulo 3, (11) implies that

2c′′j0 ≡ c′j0 + c′′j0−1 (mod 3).

Given that c′j0 , c
′′
j0−1, c

′′
j0 ∈ {0, 1}, the above congruency

yields c′j0 = c′′j0−1 = c′′j0 . Hence, c
′
j = c′′j for all 1 ≤ j ≤ n

contradicting the assumption that c
′ and c

′′ are distinct.

We conclude that STa(n) indeed can be used to recover a
deleted bit from a codeword if it is known that the deleted

bit is confined to one of two known adjacent positions. In

particular, suppose a codeword in STa(n) is transmitted and
it is known that the transmitted bit of index j0 or j0 − 1
(provided that j0 ≥ 2) is deleted resulting in the received
word r = (r1, r2, . . . , rn−1). Then the transmitted codeword
is c = (c1, c2, . . . , cn), where

cj =
{

rj for j < j0 − 1,
rj−1 for j > j0,

(12)

and either cj0−1 is the solution of

cj0−1 ≡ b−1
j0−1



a −

j0−2
∑

j=1

bjrj +

n−1
∑

j=j0−1

bjrj



 (mod 3)

(13)

if such a congruency has a solution cj0−1 ∈ {0, 1}, in which
case cj0 = rj0−1, or cj0 is the solution of

cj0 ≡ b−1
j0



a −

j0−1
∑

j=1

bjrj +
n−1
∑

j=j0

bjrj



 (mod 3) (14)

if such a congruency has a solution cj0 ∈ {0, 1}, in which
case cj0−1 = rj0−1. Our argument that STa(n) can recover
the deleted bit if it is confined to one of two known adjacent

positions implies that exactly one of the two possibilities

determined by (13) and (14) holds. Notice that if j0 = 1,
then the deleted bit is c1 which can be determined from (14).

III. CONSTRUCTIONS

In this section we construct s-adjacent deletion correcting
codes of length N , a multiple of s. We give the basic frame-
work of the construction methods before describing them.



A. Basics

Let c = (c1, c2, . . . , cN) be a codeword in a code C of
length N = sn. The bit cℓ in c can be indexed by a pair of

positive integers as ci,j by mapping its index ℓ to (i, j) where

i = ℓ − (⌈ℓ/s⌉ − 1)s and j = ⌈ℓ/s⌉. (15)

Clearly, 1 ≤ i ≤ s and 1 ≤ j ≤ n. Then, the codeword c can

be represented as an s × n matrix

c =









c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n
...

...
. . .

...
cs,1 cs,2 · · · cs,n









, (16)

the bits of which are transmitted over the channel column by

column starting with the first column. Suppose that the channel

caused the deletion of s adjacent bits starting at index ℓ∗. Then,
the received word is r = (r1, r2, . . . , rN−s) satisfying (1). By
applying the mapping of indices specified in (15), the bit rℓ

in the received sequence can be identified with ri,j , where

1 ≤ i ≤ s and 1 ≤ j < n. With this indexing, the received
word can be represented as an s × (n − 1) matrix

r =









r1,1 r1,2 · · · r1,n−1
r2,1 r2,2 · · · r2,n−1
...

...
. . .

...
rs,1 rs,2 · · · rs,n−1









, (17)

the bits of which are received column by column starting with

the first column. Let (i∗, j∗) be the mapping of the index ℓ∗

as specified in (15). Then, from (1), we have

ri,j =
{

ci,j for j < j∗ or j = j∗ and i < i∗,
ci,j+1 for j > j∗ or j = j∗ and i ≥ i∗. (18)

We notice that each row in the matrix form of r as given

in (17) is obtained from the corresponding row in the matrix

form of c as given in (16) by a single deletion of a bit. This

is the foundation of all the constructions presented next.

B. Construction 1

If we choose each row in c to be a codeword in a

Varshamov-Tenengol’ts code of length n, then each row in
c can be recovered from the corresponding row in r. Notice

that the code constructed in this way of length N = sn, which
we denote by C1(s, n), is obtained by interleaving s single
deletion correcting codes. The construction of s-adjacent dele-
tion correcting codes using s Varshamov-Tenengol’ts codes is
a straightforward application of the interleaving concept. To

maximize the size of the code, we choose each row in c to

be in VT0(n) since the choice a = 0 maximizes the size of
VTa(n). The number of codewords in C1(s, n) is then equal
to |VT0(n)|s. In Table I, we list the values of |VT0(n)| for
2 ≤ n ≤ 12. Using (3) and (4), we have

(

2n

n + 1

)s

≤ |C1(s, n)| <

(

2n+1

n + 1

)s

. (19)

Example 1: Suppose we want to construct a code, C1(4, 6),
of length N = 4 × 6 which is 4-adjacent deletion correcting.

Each codeword in the code can be represented as a 4 × 6
matrix as in (16), where each row in the matrix is a codeword

in VT0(6), There are exactly ten codewords in VT0(6). Hence,
the total number of codewords in C1(4, 6) is 104 = 10, 000.
Notice that the construction of C1(s, n) does not take into
account that the deleted bits from c in (16) are consecutive in

the sense that if the deletion starts at index ℓ∗, then, from (18),
the s bits ci,j∗ with i∗ ≤ i ≤ s and ci,j∗+1 with 1 ≤ i ≤ i∗−1
are deleted. In particular, if one can deduce that the bit c1,j

is deleted from the first row in (16), then only ci,j or ci,j−1

(if j ≥ 2) is deleted from the i-th row, 2 ≤ i ≤ s. This
information can be used to obtain more efficient constructions

as shown next.

C. Construction 2

We present a code, denoted by C2(s, n) of length N = sn,
the codewords of which are represented by s × n matrices as
in (16). Let a2, . . . , as ∈ {0, 1, 2}. We choose the first row in
the codewords of C2(s, n) to be the vector (0, 1, 0, 1, . . .) of
length n composed of alternating 0’s and 1’s. The i-th row, for
2 ≤ i ≤ s, in C2(s, n), is selected from STai

(n) in (5). Hence,
C2(s, n) has exactly

∏s
i=2 |STai

(n)| codewords. To maximize
the size of C2(s, n), we choose a2 = a3 = · · · = as = 0. With
this choice, it follows from (7) that

|C2(s, n)| =

⌈

2n

3

⌉s−1

. (20)

To show that C2(s, n) is an s-adjacent deletion correcting
code, note that if s adjacent bits are deleted from a codeword c,
then a bit is deleted from each row in its matrix representation

in (16) to give the received word r as given in its matrix

representation in (17). Since the first row in c is (0, 1, 0, 1, . . .),
then deleting a bit other than the first or the last from it

results in a vector with exactly one pair of two identical and

consecutive bits in the first row (r1,1, r1,2, . . . , r1,n−1) of r.

On the other hand, deleting the first or last bit from the first

row in c results in the vectors (1, 0, 1, . . .) and (0, 1, 0, . . .),
respectively, of length n − 1 of alternating 0’s and 1’s. From
this, the receiver can determine the index of the bit in the first

row of c that has been deleted. Suppose that j0 is this index.
Then, either ci,j0 or ci,j0−1 (if j0 ≥ 2) is deleted from the i-th
row, 2 ≤ i ≤ s, in c. Since this is a codeword in STa(n), it
can be recovered using (12)–(14).

Example 2: We construct a code, C2(4, 6), of length N =
4 × 6 = 24 which is 4-adjacent deletion correcting. The first
row of the codewords in C2(4, 6) is (0, 1, 0, 1, 0, 1) and the
remaining rows are codewords in ST0(6). The code C2(4, 6)
has 223 = 10, 648 codewords as ST0(6) is of size 22 according
to (7). As an example,

c =





0 1 0 1 0 1
1 0 1 0 1 0
0 0 1 0 0 1
1 0 1 1 0 1





is a codeword in C2(4, 6), which is the matrix representation
of the sequence

(0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1).



Suppose that the received sequence is

(0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1),

which can be placed in a matrix form as

r =





0 1 0 0 1
1 0 1 1 0
0 0 1 0 1
1 0 1 0 1



 .

Since the receiver knows that the first row in c is

(0, 1, 0, 1, 0, 1), it concludes from the first row of r that the

fourth bit has been deleted from the first row of c. Therefore,

either the third or fourth bits have been deleted from each of

the following rows in c. Using (12)–(14), these three rows can

be retrieved.

D. Construction 3

This construction gives a code, denoted by C3(s, n), of
length N = sn, the codewords of which are also repre-
sented by s × n matrices as in (16). Let a1, a2, a3, . . . , as

be such that 0 ≤ a1, a2 ≤ n and 0 ≤ a3, . . . , as ≤ 2. A
codeword c in C3(s, n) is specified as follows. The first and
second rows, (c1,1, c1,2, . . . , c1,n) and (c2,1, c2,2, . . . , c2,n), are
selected to be in the Varshamov-Tenengol’ts codes VTa1

(n)
and VTa2

(n), respectively, but we demand that (c1,j , c2,j) 6=
(c1,j−1, c2,j−1) for all 2 ≤ j ≤ n. Let Pa1,a2

be the set

of pairs of codewords in the Varshamov-Tenengol’ts codes

VTa1
(n) and VTa2

(n) satisfying this property. The i-th row,
for 3 ≤ i ≤ s, is selected from STai

(n).
To show that C3(s, n) is an s-adjacent deletion correcting
code, note that if s adjacent bits are deleted from a codeword c,
then a bit is deleted from each row in its matrix representation

in (16) to give the received word r as given in its matrix

representation in (17). Since the first row in c is a codeword

in the Varshamov-Tenengol’ts code VTa1
(n), then the receiver

can determine the run in (c1,1, c1,2, . . . , c1,n) that contains
the deleted bit. Similarly, from the second row in c, being

a codeword in VTa2
(n), the receiver can determine the run in

(c2,1, c2,2, . . . , c2,n) that contains the deleted bit. Recall that
(c1,j , c2,j) 6= (c1,j−1, c2,j−1) for all 2 ≤ j ≤ n, and if j1 and
j2 are the indices of the deleted bits in the first and second
rows of c, respectively, then j2 = j1 or j2 = j1 −1. Based on
this, the receiver can determine at most two possibilities for the

indices of the deleted bit in the i-th row of c, 3 ≤ i ≤ s. The
receiver can then recover this row as it belongs to STai

(n).
Hence, C3(s, n) is an s-adjacent deletion correcting code.
Example 3: Again, we construct a code, C3(4, 6), of length

N = 4 × 6 = 24 which is 4-adjacent deletion correcting.
The first and second rows of the codewords in C3(4, 6) are
selected to be codewords in VT0(6) and VT3(6), respectively.
From (3), there are exactly 10 codewords in VT0(6), which
are listed below:

c
1
0 = (0, 0, 0, 0, 0, 0), c

6
0 = (0, 1, 1, 1, 1, 0),

c
2
0 = (1, 0, 0, 0, 0, 1), c

7
0 = (1, 0, 1, 1, 0, 1),

c
3
0 = (0, 1, 0, 0, 1, 0), c

8
0 = (1, 1, 1, 1, 1, 1),

c
4
0 = (0, 0, 1, 1, 0, 0), c

9
0 = (1, 1, 0, 1, 0, 0),

c
5
0 = (1, 1, 0, 0, 1, 1), c

10
0 = (0, 0, 1, 0, 1, 1).

and nine codewords in VT3(6), which are listed below:

c
1
3 = (1, 1, 0, 0, 0, 0), c

6
3 = (0, 1, 1, 0, 1, 0),

c
2
3 = (0, 0, 1, 0, 0, 0), c

7
3 = (0, 1, 0, 1, 1, 1),

c
3
3 = (0, 0, 0, 1, 0, 1), c

8
3 = (1, 1, 1, 0, 1, 1),

c
4
3 = (1, 0, 1, 0, 0, 1), c

9
3 = (1, 1, 1, 1, 0, 0),

c
5
3 = (1, 0, 0, 1, 1, 0).

If we choose c
4
0 = (0, 0, 1, 1, 0, 0) as the first row of

a codeword in C3(4, 6), then the second row should be
(c1, c2, c3, c4, c5, c6) where c1 6= c2, c3 6= c4, and c5 6= c6,

since the first and second bits, the third and fourth bits, and

the fifth and sixth bits are equal in c
4
0. It follows that the second

row is c
4
3, c

5
3, or c

6
3. By checking all pairs of codewords in

VT0(6) and VT3(6) in this way, we obtain P0,3(6) which
consists of the following 26 pairs for the first two rows in the
codewords of C3(4, 6):

(c3
0, c

2
3), (c3

0, c
3
3), (c3

0, c
4
3), (c3

0, c
5
3),

(c3
0, c

6
3), (c3

0, c
7
3), (c3

0, c
8
3), (c4

0, c
4
3),

(c4
0, c

5
3), (c4

0, c
6
3), (c5

0, c
4
3), (c5

0, c
5
3),

(c5
0, c

6
3), (c7

0, c
2
3), (c7

0, c
3
3), (c7

0, c
4
3),

(c7
0, c

5
3), (c7

0, c
6
3), (c7

0, c
7
3), (c7

0, c
8
3),

(c9
0, c

4
3), (c9

0, c
5
3), (c9

0, c
6
3), (c10

0 , c4
3),

(c10
0 , c5

3), (c10
0 , c6

3).

For the third and fourth rows, we can choose any codewords

in ST0(6). From (7), there are exactly twenty two codewords
in ST0(6). Hence, the code C3(4, 6) is composed of 26×22×
22 = 12, 584 codewords.
As an example of a codeword in C3(4, 6), we can take
the first row to be c

3
0, the second row to be c

2
3, and the

third and fourth rows to be (0, 0, 1, 0, 0, 1) and (1, 0, 1, 0, 1, 0),
respectively, which are codewords in ST0(6). Hence, the
codeword in a matrix form is

c =





0 1 0 0 1 0
0 0 1 0 0 0
0 0 1 0 0 1
1 0 1 0 1 0





and as a sequence is

(0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0).

Suppose that the received sequence is

(0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0),

which can be placed in a matrix form as

r =





0 1 0 1 0
0 0 1 0 0
0 0 1 0 1
1 0 0 1 0



 .

As the first row in r is obtained by a single deletion from a

codeword in VT0(6), we can retrieve the first row in c to be

(0, 1, 0, 0, 1, 0). The deleted bit from this row is the third or
fourth bit. The second row in r is obtained by a single deletion

from a codeword in VT3(6). Hence, we can retrieve the second



TABLE I
SIZES OF VT0(n) AND Pa1,a2

(n) MAXIMIZED OVER ALL
0 ≤ a1, a2 ≤ n, AND A CHOICE OF (a1, a2) ACHIEVING THIS MAXIMUM.

n |VT0(n)| max |Pa1,a2
(n)| (a1, a2)

2 2 2 (0, 1)
3 2 4 (1, 3)
4 4 6 (0, 2)
5 6 13 (0, 0)
6 10 26 (0, 3)
7 16 60 (2, 6)
8 30 136 (0, 4)
9 52 305 (0, 0)
10 94 726 (0, 5)
11 172 1868 (3, 9)
12 316 4468 (0, 6)

row in c to be (0, 0, 1, 0, 0, 0). The deleted bit from this row
is either the fourth, fifth, or sixth bit. Since if the j-th bit is
deleted from the first row, then either the j-th or the j − 1-st
bit is deleted from the second row, it follows that the deleted

bit in the first row is the fourth bit and the deleted bit from

the second row is also the fourth bit. The deleted bit from

the third row is, therefore, either the third or fourth bit. Using

(12)–(14), we can retrieve the third row in c from the third

row in r as (0, 0, 1, 0, 0, 1). Similarly, the deleted bit from the
fourth row is either the third or fourth bit and using (12)–(14),

we can retrieve the fourth row in c from the fourth row in r

as (1, 0, 1, 0, 1, 0).
We notice that in this example, we have chosen the first row

in the codewords of C3(4, 6) to be in VT0(6) and the second
row to be in VT3(6). Although VT0(6) is of size 10 while
VT3(6) is of size 9, choosing both rows from VT0(6) yields
only 16 pairs of valid pairs in P0,0(6) instead of the 26 pairs
in P0,3(6) we used in the example.
Table I gives the cardinality of VT0(n), which is the
maximum cardinality of VTa(n) over all 0 ≤ a ≤ n, and
the cardinality of Pa1,a2

maximized over all choices of a1

and a2, where 0 ≤ a1, a2 ≤ n. The table also gives a pair
(a1, a2) achieving this maximum. From this table, we can
determine the largest size of an s-adjacent deletion correcting
code, C3(s, n), 2 ≤ n ≤ 12, which is given by

|C3(s, n)| = max |Pa1,a2
(n)|

⌈

2n

3

⌉s−2

. (21)

We can lower bound the maximum cardinality of Pa1,a2

as follows. Notice that there are in total 4 × 3n−1 pairs of

sequences (c1,1, c1,2, . . . , c1,n) and (c2,1, c2,2, . . . , c2,n) such
that (c1,j , c2,j) 6= (c1,j−1, c2,j−1) for all 2 ≤ j ≤ n. Indeed,
there are four choices for the pair (c1,1, c2,1). For each choice,
there are three choices for the pair (c1,2, c2,2) 6= (c1,1, c2,1). In
general, for 2 ≤ j ≤ n, there are three choices for (c1,j , c2,j)
that are different from (c1,j−1, c2,j−1). This gives 4 × 3n−1

as the number of pairs of sequences (c1,1, c1,2, . . . , c1,n) and
(c2,1, c2,2, . . . , c2,n) such that (c1,j , c2,j) 6= (c1,j−1, c2,j−1)
for all 2 ≤ j ≤ n. As each sequence of length n belongs to
VTa(n) for a unique value of a, 0 ≤ a ≤ n, we have

n
∑

a1=0

n
∑

a2=0

|Pa1,a2
(n)| = 4 × 3n−1,

which gives an average value of 4 × 3n−1/(n + 1)2 for
|Pa1,a2

(n)|. Since the maximum of this cardinality is at least
equal to this average, we get

max
0≤a1,a2≤n

|Pa1,a2
(n)| ≥

4 × 3n−1

(n + 1)2
. (22)

IV. CONCLUSION

In this paper, we presented three construction methods for

codes capable of correcting three or more adjacent deletions.

The first is a straightforward application of the interleaving

principle using Varshamov-Tenengol’ts codes. The second

construction, based on substitution-transposition codes, is the

simplest to implement and decode. The third construction uses

a combination of both codes.

As a comparison between the three constructions, we con-

sider the code rate defined by
log2 |C(s,n)|

sn for an s-adjacent
deletion correcting code C(s, n) of length sn where s = αn
for some constant α > 0. Levenshtein’s upper bound [6]

implies that the code rate is at most 1− 1
n +O

(

log2 n
n2

)

. From

(19) and (20), the rates of codes based on the first and second

constructions are 1−
log2 n

n +O
(

1
n

)

and 1−
1+α log2 3

αn +O
(

1
n2

)

,

respectively. From (21) and (22), the rates of codes based

on the third construction are at least 1 − 2−log2 3+α log2 3
αn +

O
(

log2 n
n2

)

.

We should mention that in this paper we assumed that

exactly s adjacent deletions occur. This is a crucial assumption
since it allows the receiver to write the received sequence as

a matrix in which each row suffers from a single deletion.

All constructions rely on this assumption. Definitely, it is

interesting to construct codes that can correct at most s
adjacent deletions. In [3], Bours constructed codes that can

do that and also correct substitution errors using a product

code construction. However, their rates are much lower than

the codes presented here.
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