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Abstract—This paper investigates three background modelling
techniques that have potential to be robust against sudden and
gradual illumination changes for a single, stationary camera. The
first makes use of a modified local binary pattern that considers
both spatial texture and colour information. The second uses a
combination of a frame-based Gaussianity Test and a pixel-based
Shading Model to handle sudden illumination changes. The third
solution is an extension of a popular kernel density estimation
(KDE) technique from the temporal to spatio-temporal domain
using 9-dimensional data points instead of pixel intensity values
and a discrete hyperspherical kernel instead of a Gaussian kernel.

A number of experiments were performed to provide a com-
parison of these techniques in regard to classfication accuracy.

Index Terms—background subtraction, sudden illumination
changes.

I. INTRODUCTION

Background subtraction techniques have traditionally been

applied to object detection in computer vision systems and

have since become a fundamental component for many appli-

cations ranging from human pose estimation to video surveil-

lance. The goal is to remove the background in a scene so

that only the interesting objects remain for further analysis or

tracking. Techniques such as these are especially useful when

they can identify object regions without prior information and

when they can perform in real-time.

Real-life scenes often contain dynamic backgrounds such as

swaying trees, rippling water, illumination changes and noise.

While a number of techniques are effective at handling these,

sudden illumination changes such as a light source switching

on/off or curtains opening/closing continue to be a challenging

problem for background subtraction [1]. In recent years a

number of new segmentation techniques have been developed

that are robust to sudden illumination changes but only for

certain scenes. Our aim is to eventually identify the best-

performing solution, improve upon it, and implement it on

a GPU for real-time application.

II. RELATED WORK

A number of texture-based methods have developed to

solve the problem of sudden illumination changes. Heikkila

[2], Xie et al. [3] and Pilet et al. [4] make use of robust

texture features [5]. Heikkila makes use of local binary pattern

histograms as background statistics. Xie et al. assumes that

pixel order values in local neighbourhoods are preserved in

the presence of sudden illumination changes. They provide

an output image by classifying each pixel by its probability

of order consistency [3]. Pilet et al. make use of texture

and colour ratios to model the background and segment the

foreground using an expectation-maximization framework [4].

Texture-based features work well, but only in scenes with

sufficient texture; untextured objects prove to be a difficulty.

Another way of dealing with sudden illumination changes

is to maintain a representative set of background models [5].

These record the appearance of the background under differ-

ent lighting conditions and alternate between these models

depending on observation. The techniques that make use of

this approach mostly differ in their method of deciding which

model should be used for the current observation. Toyama

et al. [6], implement the Wallflower system which chooses

the model as the one that produces the lowest number of

foreground pixels. This proves to be an unreliable criterion

for real-world scenes. Stenger et al. [7] make use of hidden

Markov models but in most cases, sharp changes occur without

any discernible pattern. Also, Stenger et al. and Toyama et al.

require off-line training procedures and consequently cannot

incorporate new real-world scenes into their models during

run-time [8]. Sun [9] implements a hierarchical Gaussian

Mixture Model (GMM) in a top-down pyramid structure. At

each scale-level a mean pixel intensity is extracted and is

matched to the best model of its upper-level GMM. While

mean pixel intensity is useful for the detection of illumi-

nation changes, it is also sensitive to changes caused by

the foreground. Additionally, the Hierarchical GMM does

not exploit any spatial relationships among pixels which can

output incoherent segmentation [5]. Dong et al. [10] employ

principle component analysis (PCA) to build a number of

subspaces where each represent a single background appear-

ance. The foreground is segmented by selecting the subspaces

which produces minimum reconstruction error. However, their

work does not discuss how the system reacts to repetitive

background movements.

More recently, Zhou et al. [11], Ng et al. [1] and Vemu-

lapalli [12] have developed techniques that have potential to

handle, and even be robust to, sudden illumination changes.

These will be discussed in more detail in section III.
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III. PROPOSED SOLUTIONS

A. Background Modeling using Spatial-Colour Binary Pat-

terns (SCBP)

This approach makes used of a novel feature extraction

operator, the Spatial-Colour Binary Pattern (SCBP), which

takes spatial texture and colour information into consideration

[11]. It is an extension of a local binary pattern which is

adapted to be centre-symmetrical and to consider only two

colour channels for the sake of computational efficiency. For

the sake of simplicity all processes relating to this solution

apply to a single pixel and are performed on all the pixels in

an image.

SCBP2N,R(xc, yc) = CSLBP2N,R(xc, yc)

+2N+1f(Rc, Gc|γ) + 2N+2f(Gc, Bc|γ) (1)

f(a, b|γ) =

{

1, a > γb
0, otherwise

(2)

Where Rc, Gc and Bc are the three colour channels of the

centre pixel (xc, yc) and γ > 1 is a noise suppression factor.

The Centre-Symmetrical Local Binary Pattern (CSLBP) is

defined as:

CSLBP2N,R(xc, yc) =
N−1
∑

i=0

2is(gi − gi+N ) (3)

s(x) =

{

1, x >= 0
0, x < 0

(4)

Where gi is the grey value of the neighbouring pixel at index

i and N is the number of neighbours to be compared. The

neighbours are evenly distributed on a circle around the centre

pixel with radius R. If a neighbour value does not fall exactly

on a pixel it is estimated using bilinear interpolation.

An SCBP histogram is computed over a circular region of

radius Rregion around the pixel. Using this as a feature vector

a model consisting of K SCBP histograms is built, each with

their own weight, such that w0+w1+wK = 1.0 in decreasing

order. At the start these model histograms will be identical but

will begin to differ as their respective weights are updated.

An SCBP histogram is calculated for each new frame and

then compared to the model histograms using a proximity

measure. This measure adds the mutual minimum histogram

bins of the current frame and each model histogram that

comprise the background model. The proximity measure is

defined as follows:

∩(ā, b̄) =
N−1
∑

n=0

min(an, bn) (5)

Where ā and b̄ are histograms and N is the number of bins

in each histogram.

The model is updated selectively depending on the value

of the calculated proximity measures. If all the proximity

measures are below the threshold, Tp, the model histogram

with the lowest weight has its bins replaced with those of the

current frame. If at least one proximity measure is above the

threshold then only the background histogram that produced

the highest proximity measure is updated using the following

formula:

m̄k = αbh̄+ (1− αb)m̄k (6)

Where m̄k is the model SCBP histogram, h̄k is the current

frame SCBP histogram and αb is a learning rate such that

αb ∈ [0, 1].
Furthermore, the weights of the model are updated as

follows:

wk = αwMk + (1− αw)wk (7)

Where αw is a learning rate such that αw ∈ [0, 1] and Mk is

1 for the best-matching histogram and 0 for the rest.

Tp is an adaptive threshold that is maintained (for each

pixel). The advantage of this is that static regions become

more sensitive while dynamic regions have a higher tolerance.

The threshold is updated as follows:

Tp(x, y) = αp(s(x, y)− 0.05) + (1− αp)Tp(x, y) (8)

Where αp is a learning rate such that αp ∈ [0, 1] and s(x, y)
is a similarity measure of the highest value between the

current frame’s SCBP histogram bins and those of the model

histograms.

In order to determine the foreground mask the value for n
in the following equation is first determined.

w0 + w1 + ...+ wn ≤ Tw (9)

Where the weights have been sorted into descending order.

Tw is a fixed threshold and is dependent upon the number of

histograms that make up the model. The calculated value for

n determines the number of corresponding model histograms

which are selected to be part of the background model. The ad-

vantage of using this weighted technique is that the persistence

of a model histogram is directly related its weight. Persistence

needs to be considered because all of the model histograms are

not necessarily produced by background processes; the bigger

the weight of a model histogram, the higher the probability it

has of being a background histogram.

If the proximity measure values for all the background

model histograms are smaller than the threshold Tw the pixel

is classified as background. If the proximity value for at least

one of the background models is greater than Tw then the pixel

is classified as foreground.

Furthermore, object contours are refined using a statistical

operator to reduce false positives. These are based upon two

assumptions. A pixel should only be successfully classified

as part of the foreground if its intensity value deviates much

from the average pixel intensity of its pixel neighbourhood

and its colour composition changes much from that of its pixel

neighbourhood. Ergo, a binary mask is constructed as follows

and is convolved with the output of the foreground detection

module:

Ωi =







1, if [di >= ξstdi]&[di/ḡi ≥ ε1],
1, if||(ri, gi, bi)− (r̄i, ḡi, b̄i)||2 ≥ ε2,
0, otherwise

(10)
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Where di = abs(gi− ḡi) is the absolute deviation of intensity

from the average and r, g and b are chromaticity coordinates

calculated by r = R/(R+G+B), g = G/(R+G+B) and

b = B/(R+G+B). The parameters ξ, ε1 and ε2 are tuning

parameters.

Finally, the average and standard deviation of the resulting

background pixels are updated as follows:

ḡi = βgi + (1− β)ḡi (11)

stdi =
√

β(gi − ḡi)2 + (1− β)std2i (12)

Where β is a learning rate such that β ∈ [0, 1] The chromatic-

ity coordinates, r̄i, ḡi, b̄i, are updated in the same way as was

done for ḡi.

B. Background Modeling using a Shading Model and a Gaus-

sianity Test

The method proposed by Ng et al implements a hierarchical

framework that uses a combination of a pixel-based Shading

Model and a block-based Gaussianity Test [1]. This approach

is based on the assumption that camera noise is both spatially

Gaussian, and temporally uncorrelated. If the difference of two

consecutive frames are taken, only Gaussian noise and fore-

ground objects should remain. Under these assumptions, they

deduce that background pixels will be Gaussian distributed and

foreground pixels will be non-Gaussian distributed. Therefore

background pixels can be distinguished from foreground pixels

using a Gaussianity test.

The Gaussianity Test statistic is defined as follows:

H(J1, J2, J4) = J4 + 2J4
1 − 3J2

2 (13)

Where Jk is a moment defined by the following equation:

Ĵk(x, y) =
1

M2

M−1

2
∑

m=−
M−1

2

M−1

2
∑

n=1−
M−1

2

[Dt(x+m, y+n)]k (14)

The Gaussianity Test statistic is expected to be close to

zero when a set of samples is Gaussian distributed. If a set

of samples in a block of size MxM has a Gaussianity Test

statistic that is greater than a predefined threshold, τ , then the

block is considered to contain foreground pixels.

block =

{

foreground, if H > τ
background, otherwise

(15)

However, this assumption does not perform well in the pres-

ence of sudden illumination changes. A shading model is

implemented to handle these.

Ng et al extend the Gaussianity test with a shading model

proposed by Skifstad [13] in order to make it robust to sudden

illumination changes. The shading model is necessary because

the previous assumption that background regions are Gaussian

distributed does not hold true in the presence of sudden

illumination changes.

The shading model assumes that a pixel intensity can

be decomposed into an illumination value and a shading

coefficient. It is also assumed that if there is no physical

change between two frames, such as a moving object, then

the ratio of pixel intensities will be constant and independent

of the shading coefficients of the frames:

R(x, y) =
I1(x, y)

I2(x, y)
=

Li,1

Li,2

(16)

Under this assumption, if no foreground objects exist in

a difference frame, the ratio of pixel intensities should re-

main constant and therefore be Gaussian distributed. Now, by

employing the shading model as an input to the Gaussianity

test module, the background model can be made robust to

sudden illumination changes. The equation used to generate

the moments used in the Gaussianity Test statistic is modified

to make use of the pixel intensity ratio:

Ĵk(x, y) =
1

M2

M−1

2
∑

m=−
M−1

2

M−1

2
∑

n=1−
M−1

2

[Rgt(x+m, y+n)]k (17)

Where

Rgt(x, y) =
BMt−1(x, y)

It(x, y)
(18)

The foreground mask is obtained using the following equa-

tions:

Dt(x, y) = |It(x, y)−BMt−1(x, y)| (19)

(x, y) ⊂

{

foreground, if Dt(x, y) > Ta

background, otherwise
(20)

Where BMt(x, y) is the intensity value of the background

model at the coordinates (x, y) and time t, It(x, y) is the

intensity value of the current pixel at the coordinates (x, y)
and time t and Ta is an adaptive threshold. This equation is

only employed in the foreground blocks as classified by the

Gaussianity test.

Ta is an adaptive threshold which is calculated using an

automatic, iterative method first proposed by Ridler [14]. This

method is computationally inexpensive but has the disadvan-

tage of assuming that the scene is bimodal. This assumption

predicts that there will be two distinct brightness regions in the

image represented by two peaks in the grey-level histogram

of the input image. These regions correspond to the object

and its surroundings and so it is then reasonable to select the

threshold as the grey-level half-way between these two peaks.

The histogram of the current frame, It(x, y) is segmented

into two parts using a threshold, Titerate, which is first set to

the middle value (127) of the range of intensities. For each

iteration, the sample means of the foreground pixel intensities

and the sample means of the background pixel intensities are

calculated and a new threshold is determined as the average

of these two means. The iterations stop once the threshold

converges on a value, normally within about 4 iterations. The

following formula describes this process:

Tk+1 =

∑Tk

b=0
bn(b)

2
∑Tk

b=0
n(b)

+

∑N

b=Tk+1
bn(b)

2
∑N

b=Tk+1
n(b)

(21)
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Where Tk is the threshold at the kth iteration, b is the intensity

value and n(b) is the number of occurrences of the value b in

the image such that 0 ≤ b ≤ N .

Once the foreground mask has been segmented, morpho-

logical filtering is performed on the foreground mask in order

to remove noise. Ng et al. perform one closing operation

followed by one opening operation.

The values of the background pixels are updated using the

following formula:

BMt(x, y) =















BMt−1(x, y), if Dt(x, y) ≥ Ta

It(x, y), if Dt(x, y) < Tf

αIt(x, y)+
(1− α)BMt−1(x, y), if Tf ≤ Dt(x, y) < Ta

(22)

Where Tf is fixed and smaller than Ta and α is a learning

rate such that ∈ [0, 1]

C. Background Modeling using Non-parametric Kernel Den-

sity Estimation

The solution proposed by Vemulapalli is an extension of

the popular kernel density estimation (KDE) technique first

proposed by Elgammal et al. [15]. They extend the background

model from the temporal to spatio-temporal domain by using

3x3 blocks centred at each pixel as 9-dimensional data points

instead of individual pixel intensity values [12]. In order to

overcome the obvious increase in computational complexity

that this would cause, a hyper-spherical kernel is used instead

of the typical Gaussian kernel. Each pass of the background

modeling module entails comparing the data points of the

current frame, F0(x, y) with those of the previous frames,

Fi...N (x, y) selected from a window of size N = 50. The

Euclidean distance is then employed to compare the data

points instead of the typical pixel subtraction as used by

Elgammal et al. Furthermore, two non-parametric background

models, long-term and short-term, in order to exploit their

respective advantages at eliminating false positive detections.

So, for each new frame a series of N−1 Euclidean distances

are calculated by comparing each current pixel’s data point to

its past data-point values. The higher the value of a Euclidean

distance, the higher the probability that the current pixel is

part of the foreground. These distances are then thresholded

to determine if they lie within the radius of the discrete

hyperspherical kernel. This radius is a function of the amount

of variation present in the background.

M =
N
∑

i=1

φ

(

||F0(x, y)− Fi(x, y)||

r

)

(23)

Where r is the radius of the hyper-sphere and

φ(u) =

{

1, if u ≤ 1,
0, otherwise

(24)

||F0(x, y) − Fi(x, y)|| is the Euclidean distance between the

data points F0(x, y) and Fi(x, y).

The N − 1 binary outputs of this module are then summed

to produce a type of confidence measure, M of whether the

current pixel belongs to the background. This sum is then

thresholded using a value, T :

M

N
≤ T (25)

The long-term and short-term models are updated using a

blind update and selective update mechanism respectively. The

blind update adds a new 9-dimensional data point, Fi(x, y),
to the sample set regardless of whether it belongs to the

background or foreground while the selective update adds the

data-point only if it belongs to the background. When a new

data point is added the oldest data point is removed from the

sample set. The output of both the long-term and short-term

models are used as inputs to the foreground detection module.

The output of the module is described by the following table:

Long-term model Short-term model Output

Ol(x, y) = 0 Os(x, y) = 0 Ofd(x, y) = 0
Ol(x, y) = 0 Os(x, y) = 1 Ofd(x, y) = O′

fd
(x, y)

Ol(x, y) = 1 Os(x, y) = 0 Ofd(x, y) = 0
Ol(x, y) = 1 Os(x, y) = 1 Ofd(x, y) = 1

TABLE I: The output of the foreground detection module

which combines the output of the short-term and long-term

background models.

Where Ol(x, y) = 1 is the output of the long-term model,

Os(x, y) = 1 is the output of the short-term model and

Ofd(x, y) = 1 is the output of the foreground detection

module where:

O′fd(x, y) =















1, if
∑1

i=−1

∑1

j=−1

Os(x− i, y − j)Ol(x− i, y − j)
6= 0,

0, otherwise

(26)

If the two models agree on an output, the resultant fore-

ground mask will obviously have the same output. If only

the long-term model predicts foreground, the foreground mask

will prefer the prediction of the short-term model. In the event

of the short-term model predicting foreground and the long-

term model predicting a background, a check is performed

to see if the two models agree on the output of any of the

neighbouring pixels being foreground. If this is the case, the

pixel is classified as a foreground.

In the event of a sudden illumination change most of the

frame will be classified as foreground and will remain so unitl

the long term model adapts to the new lighting conditions.

Vemulapalli checks whether more than a certain percentage α
of the frame is declared as foreground. If this is the case the

short-term model is updated using the blind update mechanism

so that it avoids false detections and adapts to the new lighting

conditions quickly.

IV. EXPERIMENTAL METHODOLOGY

A. Dataset

These techniques will be tested with respect to the accuracy

of their outputs. In order to accomplish this three sequences
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from the publicly available Wallflower dataset [6] are used.

The first sequence is named ”Waving Trees” and contains a

scene with a typical dynamic background. It has 286 frames

where a ground truth is provided for the 247th frame. The

second sequence is named ”Time of Day” and contains a

scene with gradual illumination changes. It has 5889 frames

where a ground truth is provided for the 1850th frame. The

third sequence is named ”Light Switch” and contains a scene

with sudden illumination changes. It has 2714 frames where

a ground truth is provided for the 1865th frame.

B. Metrics

For the evaluation of the output accuracy we make use of

the detection rate (DR), false alarm rate (FAR) and precision

(P) statistics. The formulae for these are provided below:

DR =
#true positives

#true positives+#false negatives
(27)

FAR =
#false positives

#false positives+#true negatives
(28)

P =
#true positives

#true positives+#false positives
(29)

Where #true positives is the number of correctly classi-

fied foreground pixels, #true negatives is the number of

correctly classified background pixels, #false positives is

the number of incorrectly classified foreground pixels and

#true negatives is the number of incorrectly classified back-

ground pixels.

C. Selection of Tuning Parameters

Zhou et al. set Rregion = 9, R = 2, N = 4, K = 4,

TP = 0.65, TB = 0.7, αb = αw = β = 0.01, αp = 0.9,

ξ = 2.5 and ε1 = ε2 = 0.2. Zhou et al do not specify

which similarity measure they used; we investigated two, the

L1 Norm and the Square L2 Norm. The latter was determined

to be best by qualitatively comparing their output. Zhou et

al. also did not specify how they initialized the weights of

the model histograms; we investigated two methods: using

a values that decrease linearly and values that decrease ex-

ponentially. The latter was determined to be the best by

qualitative analysis. Using the exponential curve w0 = 0.567,

w1 = 0.321, w2 = 0.103, w3 = 0.011.

Ng et al. set M = 17 and α = 0.1. The value for τ is set

empirically for the dataset at hand. For the experiments they

perform on the PETS 2006 dataset they set τ = 1× 105. We

set τ = 1× 103.

Vemulapalli sets W = 250, N = 50 and α = 75%.

However, for the the Waving Trees sequence we set W = 200
and N = 20 since the 247th frame is used for the ground truth.

Vemulapalli does not specify which parameters they used for

the hypersphere radius, r, and the threshold, T . We set r = 1
and T = µ + kσ where µ is the mean and σ is the standard

deviation of the values obtained for M in a frame. k is a

positive integer which is set to 6.

V. EXPERIMENTAL RESULTS

A. Waving Trees

From these results shown in fig. 1 we can see that the Zhou

et al. provides the best detection rate, moderate precision and

worst false alarm rate. Ng et al. provides the lowest false alarm

rate, but the worst precision and detection rate. Vemulapalli

provides the best precision and moderate detection and false

alarm rates.

B. Time of Day

From these results shown in fig. 2 we can see that Zhou

has the worst performance; having the worst detection rate,

precision and false alarm rate. Ng et al. has a superior

precision and false alarm rate as well as a moderate detection

rate. Vemulapalli provides the best detection rate and values

only slightly worse than Ng et al. in regard to precision and

false alarm rate.

C. Light Switch

From these results shown in fig. 3 we can see that Zhou et

al. provides the best detection rate, moderate precision and a

moderate false alarm rate. Ng et al. has the best precision and

false alarm rate, but the worst detection rate. Vemulapalli has

a moderate detection rate, but the worst precision and false

alarm rate.

The poor performance of the solution proposed by Vemu-

lapalli is largely due to the fact that the sudden illumination

check is not triggered by the video sequence. Hence, the blind

update mechanism for the short-term model is not employed

and the model does not adapt to the new lighting conditions

quickly enough.

Fig. 1: Results of ”Waving Trees” sequence.

Fig. 2: Results of ”Time of Day” sequence.
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Fig. 3: Results of ”Light Switch” sequence.

Fig. 4: Foreground segmentation masks of proposed solutions.

The columns correspond to the ”Waving Trees”, ”Time of

Day” and ”Light Switch” sequences respectively. The first

row represents the ground truths while the remaining rows

correspond to the outputs of the solutions proposed by Zhou

et al., Ng et al. and Vemulapalli respectively.

VI. CONCLUSION

This paper investigates three background modelling tech-

niques that are robust against sudden and gradual illumination

changes for a single, stationary camera. The first makes

use of a modified local binary pattern that considers both

spatial texture and colour information. The second uses a

combination of a frame-based Gaussianity Test and a pixel-

based Shading Model to handle sudden illumination changes.

The third solution is an extension of a popular kernel density

estimation (KDE) technique from the temporal to spatio-

temporal domain using 9-dimensional data points instead of

pixel intensity values and a discrete hyperspherical kernel

instead of a Gaussian kernel.

A number of experiments were then performed which

provide a comparison of these techniques in regard to clas-

sification accuracy.

The SCBP histogram feature approach performs well for

simple dynamic backgrounds, but not for scenes that contain

any type of illumination changes.

The Shading Model and Gaussianity Test approach provides

a sparse foreground mask that is very accurate for all three

sequences, but has a poor detection rate.

The KDE approach performs well for simple dynamic

backgrounds and scenes that contain gradual illumination

changes. However, the mechanism employed to handle sudden

illumination changes does not work well due to the use of an

unreliable criterion for sudden illumination detection.

VII. FUTURE WORK

We plan to further investigate the solution proposed by Ng

et al. and Vemulapalli. Both have potential to be improved

through automatic parameter selection and possibly by in-

tegrating the strengths of all three the solutions that were

investigated.
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