
Concatenated Permutation Block Codes based on
Set Partitioning for Substitution and Deletion

Error-Control
Reolyn Heymann∗, Jos H. Weber†, Theo G. Swart∗ and Hendrik C. Ferreira∗

∗ University of Johannesburg, Dept. E&E Eng. Science, South Africa
Email: {rheymann, tgswart, hcferreira}@uj.ac.za

† TU Delft, The Netherlands
Email: J.H.Weber@tudelft.nl

Abstract—A new class of permutation codes is presented where,
instead of considering one permutation as a codeword, codewords
consist of a sequence of permutations. The advantage of using
permutations, i.e. their favourable symbol diversity properties,
is preserved. Additionally, using sequences of permutations
as codewords, code rates close to the optimum rate can be
achieved. Firstly, the complete set of permutations is divided
into subsets by using set partitioning. Binary data is then
mapped to permutations from these subsets. These permutations,
together with a parity permutation, will form the codeword. Two
constructions will be presented: one capable of detecting and
correcting substitution errors and the other capable of detecting
and correcting either substitution or deletion errors.

I. INTRODUCTION

Permutations are used in error control coding because of
their favourable symbol diversity properties. Combining per-
mutations with M-ary FSK modulation can be used to combat
different types of noise (e.g. impulse noise, background noise
and frequency disturbances) in Power Line Communications
(PLC) [1], where every integer in the permutation maps to
a specific frequency. A combination of permutations and
convolutional decoding has been proposed in [2] to correct
errors when used in PLC. Methods to correct synchronization
errors, modelled as insertion(s) and deletion(s) of symbols,
are presented in [3]–[6]. In fact, the failure of permutations
to overcome insertion(s) and deletion(s) is also investigated in
[7].

Permutations are also combined with rank modulation for
use in flash memories [8], consisting of floating gate cells
which have a discrete number of levels. It is difficult to charge
a cell to a specific level without causing an overshoot error.
Rank modulation, combined with permutations, provide a
solution since the charge levels needed are determined relative
to the other cells.

Set partitioning is the process of dividing a set into smaller
subsets in such a way that the subsets are nonempty and every
object of the original set is included in exactly one subset.
The use of set partitioning in Trellis Coded Modulation was
proposed by Ungerboeck [9]. A process is used in Trellis
Coded Modulation where constellation points are partitioned
into subsets, and then those subsets are partitioned into smaller

subsets and so forth. Every time set partitioning is applied,
the Euclidean distance between signals in the same subset is
increased. In this paper, set partitioning will be applied to
permutations to increase the Hamming distance in subsets.

Let SM denote the set of all M ! permutations of the
integers 1, 2, . . . ,M . Traditionally, a permutation code C of
length M is a subset of SM . The subset is chosen in such
a way that the codebook has a specific minimum distance
enabling it to correct errors. Binary information is mapped
to these permutations. The maximum rate obtainable for any
permutation code is

log2(M !)

M
bits/symbol. (1)

Since only a rather small subset of SM is used, the code
rate of C is considerably lower than the maximum rate.

The two constructions presented in this paper use a larger
subset of SM (compared to other constructions in literature,
for example [6]) and, in some cases, even the entire set SM .
It is thus possible to obtain code rates close to the maximum
rate obtainable. Initially, the set SM is partitioned into subsets.
Binary data is mapped to permutations in the subsets. These
permutations will form subwords of the codeword. Every
subword will thus still have the property of a permutation, i.e.
every symbol will occur exactly once. The subwords, together
with a parity permutation, will form a codeword as shown in
Figure 1. Thus, error control capabilities are achieved with
very little loss in rate and simple decoding. The number of
permutations in every codeword is an important parameter:
a larger number will increase the code rate but also the
probability of undetected errors.

3421 1324 2413 1342

Codeword

Parity
Permutation

Fig. 1. Concatenation of permutations to form a codeword (M = 4)

370

This paper is organized as follows: in the next section
formal definitions and notations are given for the most im-
portant concepts used in this paper. The initial step for both
constructions is to partition the set SM into subsets. This
process is described in Section III. A construction capable
of correcting and detecting substitution errors is presented
in Section IV. This construction is expanded in Section V
to correct either substitution or deletion errors. The work is
concluded in Section VI.

II. DEFINITIONS AND NOTATIONS

The Hamming distance, d, between two codewords is de-
fined as the number of positions in which the codewords
differ. The minimum Hamming distance of a codebook, dmin,
is defined as the minimum Hamming distance between any two
different codewords in the codebook. Since only the Hamming
distance will be used in this paper, any reference to distance
will refer to Hamming distance.

If a larger integer precedes a smaller one in a permutation,
it is defined as an inversion. For example, the total number
of inversions in the permutation 613452 is equal to 8. A
permutation can be either even or odd. A permutation is even
if the total number of inversions is even and odd if the total
number of inversions is odd. The set of all even permutations
is denoted as AM , where |AM | = M !/2 and dmin = 3 [10].

A substitution error occurs if one symbol is transmitted but
another is received. If a transmitted symbol is not received,
then a deletion error occurred.

A permutation can be transformed into another permutation
by transposing (or swapping) symbols. For example, the
permutation 1423 can be transformed into permutation 3421
by the function swap(1, 3).

Let Bv be the set consisting of all binary sequences of length
v and let K be a positive integer.

III. SET PARTITIONING

The set S4 will be divided into subsets. These sets will
also form the basis for all the subsets in cases where M > 4.
The set S4 has a minimum distance of 2. The set is firstly
partitioned into 2 subsets, one containing even permutations
and one containing odd permutations, each with a minimum
distance of 3 [10]. These two subsets are further partitioned
into smaller subsets with distance 4. Thus, the 24 permutations
of length 4 are divided into 6 subsets:

R0 = {1234, 2143, 3412, 4321},
R1 = {1243, 2134, 4312, 3421},
R2 = {1324, 3142, 2413, 4231},
R3 = {1342, 3124, 4213, 2431},
R4 = {1423, 4132, 2314, 3241},
R5 = {1432, 4123, 3214, 2341}.

Hence, the set S4 has been divided in such a way that
two sequences within the same subset will have a distance
of 4, while two sequences from different subsets will have a
minimum distance of 2.

IV. CODE CONSTRUCTION I

Construction I will firstly be presented for M = 4 and will
then be generalized for all values of M > 4. Only substitution
errors will be considered in this section.

A. M = 4

Not all the subsets from Section III will be used. Binary
sequences are mapped to the permutation sequences. The
number of bits that will be mapped to a permutation is
blog2 4!c = 4. The number of subsets that will be used is
thus 24/4 = 4. (A generalized equation is given in the next
subsection.)

For all permutation sequences r ∈ Ri, define ψ(r) = i. Let
R = R0 ∪ R1 ∪ R2 ∪ R3. Let φ be a one-to-one mapping
from the set B4 to R.

Encoding: A source generates a sequence u of 4K bits,
which is partitioned into K sequences u1,u2, . . . ,uK , all
from B4. Let xk = φ(uk) for all k and let c = −

∑K
k=1 ψ(xk),

where the summation is done modulo 4. Then the encoder
output is the code sequence x = (x1,x2, . . . ,xK ,xK+1),
where the check sequence xK+1 is taken from Rc. Note that∑K+1

k=1 ψ(xk) ≡ 0 (mod 4), which implies, together with the
properties of Ri, that any two different code sequences differ
in at least 4 positions. Throughout this paper, formal proofs
are omitted due to space constraints.

Decoding: Let the received sequence be y =
(y1,y2, . . . ,yK ,yK+1), where each yi is a sequence
of four symbols from {1, 2, 3, 4}. The decoding procedure
consists of the following steps:

1) If all yk are in R and
∑K+1

k=1 ψ(yk) ≡ 0 (mod 4), then
set x′ = y and go to Step 4, else go to Step 2.

2) If there exists an e such that (i) ye is not in R, (ii) yk

is in R for all k 6= e, and (iii) ye contains one symbol t
from {1, 2, 3, 4} twice, another symbol n not at all, and
each of the other symbols once, then go to Step 3. Else,
go to Step 5.

3) For j = 1, 2 set xj as y, with the jth symbol t in ye

replaced by symbol n. If there exists a j such that xj
e ∈

R and
∑K+1

k=1 ψ(xj
k) ≡ 0 (mod 4), then set x′ = xj

for this j and go to Step 4. Else, go to Step 5.
4) Set the decoder output as u′ = (u′1,u

′
2, . . . ,u

′
K), where

u′k = φ−1(x′k) for k = 1, 2, . . . ,K and STOP.
5) Detect that at least two substitution errors have occurred

and STOP.
Remarks: The code has rate 4K

4(K+1) = K
(K+1) = 1− 1

(K+1)

bits/symbol. This can be improved to 4K+2
4(K+1) = 2K+1

(2K+2) =

1 − 1
2(K+1) by encoding two extra information bits into the

choice of xK+1, which is possible due to the fact that there
are four options in the set Rc. The rate is thus close to the
optimal rate for large values of K. The proposed decoding
procedure will correct any single substitution error and detect
the occurrence of two substitution errors in the sequence of
4(K+ 1) transmitted symbols. The choice of K is a trade-off
between efficiency (the higher the value of K, the higher the
rate) and reliability (the lower the value of K, the lower the

371

probability of uncorrected/undetected errors). The effect of K
will further be explained in Subsection IV.C.

Mapping: The map φ used in the construction could be
implemented through a table look-up. Still, it may be good
to impose some structure, to allow simple encoding and
decoding. The binary sequence b = (b0, b1, b2, b3) is uniquely
mapped to a member s = (s0, s1, s2, s3) from R as follows:
The integer representation p of (b0, b1) indicates that a member
of Rp will be chosen. The integer representation q of (b2, b3)
indicates that within Rp we choose the sequence with sq = 1.
For example, b = 1001 has p = 2 and q = 1 and is thus
mapped to s = 3142 ∈ R2.

Example: Let K = 3 and let the information sequence
be u = (0111, 1000, 1010). Then the encoded sequence is
x = (3421, 1324, 2413, 1342). Five cases are considered for
the received sequence y and the corresponding decoding
results are given.
• If y = x (no errors), then we go from Step 1 to Step 4

and the decoding result is u′ = u.
• If y = (3421, 1321, 2413, 1342), i.e., an error occurred

in the eighth symbol, then we find in Step 1 that y2 is
not in R. Thus, in Step 2 we find that e = 2, t = 1
(the symbol which appears twice in y2), and n = 4 (the
symbol which does not appear in y2). Hence, in Step 3 we
get x1

2 = 4321 and x2
2 = 1324 and thus Σ4

k=1ψ(x1
k) =

1 + 0 + 2 + 3 = 6 ≡ 2 (mod 4) and Σ4
k=1ψ(x2

k) =
1 + 2 + 2 + 3 = 8 ≡ 0 (mod 4). In conclusion, x′ =
x2 = (3421, 1324, 2413, 1342) and Step 4 gives u′ = u.
Hence, the error has been corrected.

• If y = (3431, 1324, 2213, 1342), i.e., errors occurred in
the third and tenth symbol, then we find that y1 and y3

are not in R, and thus we go from Step 1 via Step 2
to Step 5, and the decoding result is the detection of (at
least) two errors.

• If y = (3421, 3124, 2413, 1342), errors occurred in the
fifth and sixth symbol, then we find in Step 1 that all
symbols are in R, but that Σ4

k=1ψ(yk) = 1+3+2+3 =
9 ≡ 1 (mod 4). Via Step 2 we end up in Step 5, and the
decoding result is the detection of (at least) two errors.

• If y = (3421, 1324, 3213, 1342), i.e., errors occurred in
the ninth and tenth symbol, then we find in Step 1 that
y3 is not in R, and thus e = 3, t = 3 and n = 4 in Step
2. Hence, in Step 3 we get x1

3 = 4213 and x2
3 = 3214,

and thus Σ4
k=1ψ(x1

k) = 1 + 2 + 3 + 3 = 9 ≡ 1 (mod 4),
while x2

3 /∈ R. In conclusion, we end up in Step 5, and
the decoding result is the detection of (at least) two errors.

B. M > 4

This subsection will extend and generalize the construction
given in the previous subsection to higher values of M . The
prefix method from [11] is proposed to construct subsets of
permutations of length M from the subsets of permutations of
length (M − 1). The recursive process starts with the subsets
as defined for M = 4 in Section III.

Let Q be a partitioning of SM into M !/4 subsets Ri of
size 4 each, with the property that sequences within the same

subset have distance 4. Similarly, let Q′ be a partitioning of
SM−1 into (M − 1)!/4 subsets R′i of size 4 each, with the
same distance properties as Ri.

Every subset in Q′ can be extended and used to form
M new subsets with 4 sequences of length M . Let Pij ,
j = 0, 1, . . . ,M − 1, be the subsets created from R′i. The
construction steps are:

1) Add the symbol M as a prefix to every permutation in
R′i to form Pi0.

2) Let j = 1, 2, . . . , (M−1). To construct Pij , swap(M, j)
in every permutation contained in Pi0.

3) All sets, Pij , j = 0, 1, 2, . . . , (M − 1), are added to Q.
4) Repeat the previous steps for all the subsets in Q′.
The number of subsets that will be used during encoding

and decoding is L = 2v

4 , where v = blog2M !c. R can then
be formed by choosing any L subsets from Q, thus R =
R0 ∪R1 ∪ · · · ∪ RL−1.

Example: Let M = 5 and R′0 = {1234, 2143, 3412, 4321}.
The extended sets from R′0 are:

P00 = {51234, 52143, 53412, 54321},
P01 = {15234, 12543, 13452, 14325},
P02 = {21534, 25143, 23415, 24351},
P03 = {31254, 32145, 35412, 34521},
P04 = {41235, 42153, 43512, 45321}.

The encoding and decoding procedures are similar to the
M = 4 case, except that all summations are done modulo L.

Remarks: The code rate is vK
M(K+1) bits/symbol. The

mapping can still be done as in the previous subsection, where
the first (v− 2) binary bits represent the subset index and the
last 2 binary bits represent the specific permutation in a subset.

The parity permutation can be any permutation in the subset
Rc. Two additional bits can be used to determine which of the
permutations inRc is used as the parity permutation. The code
rate can thus be improved to vK+2

M(K+1) bits/symbol.

C. Effect of K

The choice of K is a trade-off between efficiency and
reliability. The optimal code rate for permutation codes is
log2(M !)

M . If K is large, a code rate close to optimal can be
obtained. Figure 2 shows the code rates for different values of
K and M . The improved code rate of vK+2

M(K+1) bits/symbol,
as given in the previous subsection, is used.

However, as K increases, the probability that the error cor-
rection capability of the code will be exceeded, also increases.
Errors will not be corrected if more than 1 error occurs in a
codeword. Let Pe be the probability of a substitution error
occurring and let n = M(K+1) be the length of a codeword.
Using Bernoulli trials, the probability that an error will not be
corrected, P2, is given by

P2 = 1− (1− Pe)
n − nPe(1− Pe)

n−1. (2)

These probabilities are given in Figure 3 for M = 4 and
different values of K.

372

0.5

1

1.5

2

2.5

3

3.5

4 6 8 10 12 14 16 18 20

C
od

e
R

at
e

M

log2(M !)/M
K = 3
K = 20

Fig. 2. Code rates for different values of M and K

10−6

10−5

10−4

10−3

10−2

10−1

100

10−410−310−2

P
2

Substitution Error Probability

K = 3
K = 10
K = 20

Fig. 3. Probability that an error will not be corrected, M = 4

V. CODE CONSTRUCTION II

Construction I is adapted in this section to provide deletion
error correcting capabilities. If a deletion does not occur, the
construction will be able to detect and correct substitution
errors. Only the M = 4 case is presented in this paper.

In Construction II, the sequence of permutation words will
be divided into two substrings. Each substring will use differ-
ent subsets. The set S4 is divided into subsets as explained
in Section III. The two subsets which were not used in
Construction I, will now form a different set that will be
used exclusively by the second substring. Referring back to
the subsets given in Section III, let T0 = R4 and T1 = R5.

For all permutation sequences r ∈ Ri, define ψ(r) = i,
and for all permutation sequences t ∈ T j , define ξ(t) = j.
Let R = R0 ∪ R1 ∪ R2 ∪ R3, and T = T0 ∪ T1. The
construction method will exploit both R and T , and all 24
permutations will be used. Using all 24 permutations gives
a communications diversity benefit in some applications, e.g.
the harsh PLC channel.

Let φ be a one-to-one mapping from the set B4 to R, and
let χ be a one-to-one mapping from the set B3 to T .

Encoding: A source generates a sequence u of 7K bits,

which is partitioned in K sequences u1,u2, . . . ,uK , all
from B7. Each uk is partitioned as uk = (vk,wk), where
vk ∈ B4 and wk ∈ B3. Let x2k−1 = φ(vk) for all k and
let codd = −ΣK

k=1ψ(x2k−1), where the summation is done
modulo 4. Similarly, let x2k = χ(wk) for all k and let
ceven = −ΣK

k=1ξ(x2k), where the summation is done modulo
2.

Then the encoder output is the code sequence x =
(x1,x2, . . . ,x2K ,x2K+1,x2K+2), where the check sequence
x2K+1 is taken from Rcodd and the check sequence x2K+2

is taken from Tceven . Note that ΣK+1
k=1 ψ(x2k−1) ≡ 0 (mod 4)

and ΣK+1
k=1 ξ(x2k) ≡ 0 (mod 2), which imply, together with

the properties of the Ri and Tj subsets, that any two different
code sequences differ in at least four positions.

Decoding: The occurrence of deletions can be ob-
served from the length of the received sequence y.
If no deletions occur, we receive the sequence y =
(y1,y2, . . . ,y2K ,y2K+1,y2K+2), where each yj is a se-
quence of four symbols from {1, 2, 3, 4}. By applying
the procedure from the previous section on the odd sub-
string (y1,y3, . . . ,y2K−1,y2K+1) and the even substring
(y2,y4, . . . ,y2K ,y2K+2), one substitution error can be cor-
rected and two substitution errors can be detected in each of
the substrings. In the procedure for the even substring, the roles
of R, φ, and ψ are substituted by T , χ, and ξ, respectively,
in a straightforward way.

If one deletion occurs (and no substitution errors), it can
be corrected by the following procedure, which exploits the
fact that all sequences in T starts with 14, 41, 23 or 32, while
none of the sequences in R starts with such a combination.

1) Partition the received sequence y as
(y1,y2, . . . ,y2K ,y2K+1,y2K+2), where yj are
sequences of symbols from {1, 2, 3, 4}, which are of
length four, except the last one, which is of length
three. Partition each yj into two subsequences, i.e.,
yj = (yhead

j ,ytail
j), where each subsequence is of

length two, except ytail
2K+1, which is of length one. Let

ys,p,k denote the sequences which are obtained from
y by inserting the symbols s ∈ {1, 2, 3, 4} at position
p ∈ {0, 1, 2, 3} of yk.

2) Find the smallest value of e ∈ {1, 2, . . . ,K + 1} such
that yhead

2e is not equal to 14, 41, 23 or 32. If no violated
yhead
2e is found, then set e = K + 2.

3) If (i) y2e−2 ∈ T , (ii) y2e−1 ∈ R, and (iii)
ΣK+1

k=1 ψ(y1,0,2e
2k−1) ≡ 0 (mod 4), then set x′ = ys,p,2e,

where s and p are chosen such that ys,p,2e
2e ∈ T and

ΣK=1
k=1 ξ(y

s,p,2e
2k) ≡ 0 (mod 2), and go to Step 6.

4) If (i) y2e−2 ∈ T , (ii) ΣK+1
k=1 ξ(y

1,0,2e−1
2k) ≡ 0 (mod 2),

and (iii) y2e−1 /∈ R or ΣK+1
k=1 ψ(y1,0,2e

2k−1) ≡ 1, 2, 3
(mod 4), then set x′ = ys,p,2e−1, where s and p are cho-
sen such that ys,p,2e−1

2e−1 ∈ R and ΣK+1
k=1 ψ(ys,p,2e−1

2k−1) ≡ 0
(mod 4), and go to Step 6.

5) Set x′ = ys,p,2e−2, where s and p are chosen such that
ys,p,2e−2
2e−2 ∈ T and ΣK+1

k=1 ξ(y
s,p,2e−2
2k) ≡ 0 (mod 2).

6) Set the decoder output as u′ = (u′1,u
′
2, . . . ,u

′
K), where

373

u′k = (φ−1(x′2k−1)), χ
−1(x′2k)) for k = 1, 2, . . . ,K,

and STOP.

In Step 2, the deletion in the transmitted code sequence y is
determined to have occurred in ytail

2e−2, y2e−1 or yhead
2e . Then,

in Steps 3-5, it is determined whether the deletion occurred
in yhead

2e (if the three conditions in Step 3 are all true), in
y2e−1 (if the three conditions in Step 4 are all true), or in
ytail
2e−2 (otherwise). Insertions are made accordingly. Finally,

the binary information sequence is retrieved in Step 6.
Remarks: The code has rate 7K

8(K+1) bits/symbol. This can
be improved to 7K+4

8(K+1) by encoding two extra information
bits into the choice of x2K+1 and two extra information bits
into the choice of x2K+2. The rate is close to (7/8) for large
values of K. If no deletions occur, the proposed decoding
procedure will correct any single substitution error and detect
the occurrence of two substitution errors in each of the two
substrings of length 4(K+1). If a single deletion error occurs
and no substitution errors, then the deletion will be corrected
by the proposed procedure. Again, the choice of K is a trade-
off between efficiency (the higher the value of K, the higher
the rate) and reliability (the lower the value of K, the lower
the probability of uncorrected/undetected errors).

Mapping: The maps φ and χ used in the construction could
be implemented through a table look-up. Still, some structure
can be imposed. For φ, this can be done as described in the
previous section. For χ, this can be done as follows: The binary
sequence b = (b0, b1, b2) is uniquely mapped to a member
t = (t0, t1, t2, t3) from T as follows: The value of b = b0
indicates that a member of Tb will be chosen. The integer
representation q of (b1, b2) indicates that within Tb we choose
the sequence with tq = 1. For example, b = 110 has b = 1
and q = 2 and is thus mapped to t = 3214 ∈ T1.

Example: Let K=3 and let the information sequence be u =
(0111, 000, 1000, 111, 1010, 101). Then the code sequence
is x = (3421, 1423, 1324, 2341, 2413, 4123, 1342, 1423). We
consider two cases for the received sequence y and give the
corresponding decoding results.

• If y = (3423, 1423, 1324, 2241, 2413, 4123, 1342, 1423),
i.e., substitution errors occurred in the fourth and four-
teenth symbol, then the decoder observes that y1 is not
in R and y4 is not in T . From ψ(y3)+ψ(y5)+ψ(y7) =
2 + 2 + 3 = 7 ≡ 3 (mod 4), the decoder finds that the
first substrings should be in R1, and thus x′1 = 3421.
Similarly, from ξ(y2) + ξ(y6) + ξ(y8) = 0 + 1 + 0 ≡ 1
(mod 2), the decoder finds that the fourth substring
should be in T1, and thus x′4 = 2341. Hence, both errors
are corrected.

• If y = (3421, 1423, 1342, 3412, 4134, 1231, 3421, 423),
i.e., a deletion occurred in the eleventh symbol, then the
decoder detects that a deletion occurred from the length
of the sequence y. Since yhead

2 = 14 and yhead
4 = 34,

the deletion is determined to have occurred in ytail
2 ,

y3 or yhead
4 , i.e., e = 2 in Step 2 of the described

decoding algorithm. Since Σ4
k=1ψ(y1,0,2e

2k−1) ≡ 1 (mod 4),
it follows from Step 4 that the symbol s = 2 should be

inserted at position p = 2 of y3. The resulting sequence
x′ is correctly decoded in Step 6.

The M > 4 case is not presented in this paper due to space
constraints. Expanding the R and T sets in such a way that
the sequences in T still start with specific combinations, while
none of the sequences in R starts with those combinations, is
the most important step. Once that has been done, the encoding
and decoding will be similar to the M = 4 case.

VI. CONCLUSION

Sequences of permutations, rather than single permutations,
are used as codewords to achieve error control capabilities.
Two constructions are presented in this paper: one to correct
substitution errors and the other to correct either deletion or
substitution errors. Construction I is generalized for all values
of M . Simple decoding algorithms are presented as well as
methods to map from the binary data to permutations.

For any M ≥ 4 and large values of K, the codes obtained by
Construction I have a code rate close to log2(M !)/M , which
is the maximum value for the rate of any permutation code.
Thus, the error control capabilities are achieved with very little
loss in rate, especially when K is large.

Future work includes researching different methods to con-
struct the R and T sets, since these sets are the foundations
for the two constructions. Increasing the error-correcting ca-
pabilities of the constructions should also be investigated. For
higher values of M , M permutations can be included in every
subset with a distance of M . The increased distance properties
should lead to higher error-correcting capabilities. Adapting
the algorithms to correct insertion errors or a combination of
substitution and deletion errors should also be investigated.

REFERENCES

[1] A. J. H. Vinck, “Coded modulation for powerline communications,”
Proc. Int. J. Elec. Commun., vol. 54, no. 1, pp. 45–49, Jan. 2000.

[2] H. C. Ferreira, A. J. H. Vinck, T. G. Swart and I. de Beer, “Permutation
trellis codes,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1782–1789,
Nov. 2005.

[3] V. I. Levenshtein, “On perfect codes in deletion and insertion metric,”
Discrete Math. Appl., vol. 2, no. 3, pp. 241–258, Jan. 1992.

[4] L. Cheng, T. G. Swart and H. C. Ferreira, “Synchronization using
insertion/deletion correcting permutation codes,” Proc. IEEE Int. Symp.
on Powerline Commun. and its Applic., Jeju Island, Korea, pp. 135–
140, Apr. 2008.

[5] L. Cheng, T. G. Swart and H. C. Ferreira, “Re-synchronization of
permutation codes with Viterbi-like decoding,” Proc. IEEE Int. Symp.
on Powerline Commun. and its Applic., Dresden, Germany, pp. 36–40,
Mar. 2009.

[6] R. Heymann and H. C. Ferreira, “Using tree structures to resynchronize
permutation codes,” Proc. IEEE Int. Symp. on Powerline Commun. and
its Applic., Rio de Janeiro, Brazil, pp. 108–113, Mar. 2010.

[7] T. Shongwe, T. G. Swart, H. C. Ferreira and T. van Trung, “Good syn-
chronization sequences for permutation codes,” IEEE Trans. Commun.,
vol. 60, no. 5, pp. 1204–1208, May 2012.

[8] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation
for flash memories,” Proc. IEEE Int. Symp. Inform. Theory, Toronto,
Canada, pp. 1731–1735, Jul. 2008.

[9] G. Ungerboeck “Channel coding with multilevel/phase signals,” IEEE
Trans. Inform. Theory, vol. 28, no. 1, pp. 55–67, Jan 1982.

[10] M. Deza and S. A. Vanstone, “Bounds on permutation arrays,” Journal
of Statistical Planning and Inference, vol. 2, no. 2, pp. 197–209, 1978.

[11] H. C. Ferreira and A. J. H. Vinck, “Interference cancellation with
permutation Trellis Codes,” Proc. 2000 IEEE Vehicular Technology
Conference, Boston, MA, USA, pp. 2401–2407, Sept. 2000.

374

