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BIFURCATION AND HYSTERESIS OF FLOW PATTERN
TRANSITION IN A SHALLOW MOLTEN SILICON POOL
WITH Cz CONFIGURATION

Lan Peng, You-Rong Li, and Ying-Jie Liu
College of Power Engineering, Chongqing University, Chongqing,
People’s Republic of China

Nobuyuki Imaishi
Institute for Materials Chemistry and Engineering, Kyushu University,
Fukuoka, Japan

Tien-Chien Jen and Qing-Hua Chen
Mechanical Engineering Department, University of Wisconsin, Milwaukee,
Wisconsin, USA

Three-dimensional numerical simulations of transient thermal convection in a shallow mol-

ten silicon pool with Czochralski configuration (depth d ¼ 3 mm) have been conducted to

understand the transition mechanism of the flow patterns on silicon melt in Czochralski fur-

naces. The crucible side wall is maintained at constant temperature. Bottom and free sur-

faces are either adiabatic or allow heat transfer in the vertical direction. The simulation

results indicate that two flow transitions occur when the radial temperature difference along

the free surface increases. First, the steady two-dimensional flow becomes steady three-

dimensional flow, and then it evolves to three-dimensional oscillatory flow when the

temperature difference is further increased. This oscillatory flow is characterized by spoke

patterns traveling in either the clockwise or counterclockwise direction. It is observed that a

transition hysteresis exists from oscillatory three-dimensional flow to steady three-

dimensional flow when the radial temperature difference decreases. The critical conditions

for the flow pattern transition are determined. Characteristics of the bifurcation and

hysteresis of flow pattern transition are discussed.

1. INTRODUCTION

The Czochralski (Cz) method is one of the most important methods of produc-
ing silicon single crystals from the melt. In this method, the buoyancy and thermo-
capillary forces are coupled to cause the melt convection in the crucible. In the past
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few decades, thermocapillary convection has received much attention from both fun-
damental and applied aspects, especially in microgravity-related fluid mechanics and
in semiconductor single-crystal growth from melt. Smith and Davis [1] performed a
linear stability analysis of a thin and infinitely extended fluid layer with a free upper
surface subjected to a constant horizontal temperature gradient. They found two
types of three-dimensional instabilities, i.e., stationary longitudinal rolls and oblique
hydrothermal waves, depending on the Prandtl (Pr) number and basic flow pattern
(with or without a return flow), and determined the critical Marangoni number.
They also predicted that there would exist bifurcation of the flow pattern transition.
Subsequently, Laure and Roux [2] extended Smith and Davis’s work to account
for the influence of buoyancy forces for low-Pr fluids. Meanwhile, Yamagishi and
Fusegawa [3] performed an experimental study of thermocapillary-buoyancy flow
and observed dark lines at the surface of the melt by CCD camera during silicon
Cz growth. Since this pattern looks like the spoke of a wheel, it is called a spoke
pattern. Furthermore, Nakamura [4] observed the thermal waves due to a nonaxi-
symmetric flow at a Czochralski-type silicon-melt surface with a carbon-dummy
crystal when the crucible rotates. It was found that the thermal wave number
increased with increase of the crucible rotation rate and that the traveling rate of
the thermal wave in the azimuthal direction was slower than the crucible rotation
rate. Recently, Azami et al. [5] observed the moving spoke patterns on the free sur-
face of a shallow pool of high-temperature silicon melt (3 mm and 8 mm in depth)
and reported that thermocapillary flow may play an important role in the incipience
of the three-dimensional (3-D) convection and the number of spokes.

It is difficult to understand the details of transient thermal convection in a
shallow molten silicon pool with Czochralski configuration through experiments.

NOMENCLATURE

A amplitude of temperature oscillation,

K

cp heat capacity, J=kg K

d depth, m

ez z-directional unit vector

g gravitational acceleration, m=s2

m azimuthal wave number

p pressure, Pa

Pr Prandtl number (¼ n=a)

q heat flux, W=m2

r radius, m

t time, s

T temperature, K

v velocity vector

z axial coordinate, m

a thermal diffusivity, m2=s

cT temperature coefficient of surface

tension, N=m K

e emissivity of the melt

h azimuthal coordinate, rad

k thermal conductivity, W=m K

m dynamic viscosity, kg=m s

n kinematic viscosity, m2=s

q density of the melt, kg=m3

qT thermal expansion coefficient of the

melt, K�1

r Stefan-Boltzmann constant, W=m2 K4

x angular velocity of hydrothermal

waves, rad=s

Subscripts

a ambient

c crucible

cri critical

h heated

m melting point

r radial

s crystal

z axial

h azimuthal
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Recent developments in computers allow us to conduct large-scale, 3-D, nonsteady,
numerical simulations [6–17]. Yi et al. [18] performed a 3-D numerical simulation of
the silicon melt flow and verified asymmetric temperature profiles similar to the
spoke patterns. They concluded that the Rayleigh-Benard or Marangoni-Benard
instability (or both) can cause spoke patterns in the silicon melt. Li et al. [19, 20] con-
ducted a series of unsteady 3-D numerical simulations of thermocapillary and ther-
mocapillary-buoyancy flows of silicon melt in a shallow annular pool heated from
the outer wall and cooled at the inner cylindrical wall and verified the existence of
the hydrothermal waves. In our previous articles [21, 22], comprehensive numerical
simulations of the thermocapillary and thermocapillary-buoyancy flow in a shallow
pool of silicon melt which is heated from the outer wall and cooled at the cylindrical
inner rod which touches the surface of the melt just like the Cz configuration were
performed. The geometry configuration is exactly the same as that of the experi-
mental apparatus of Azami et al. [5]. It was found that two flow transitions occur
when the radial temperature difference along the free surface is increased. First,
the steady two-dimensional (2-D) flow becomes steady 3-D flow, and then it evolves
to oscillatory 3-D flow when the temperature difference is further increased. In the
present study, numerical simulations on the characteristics of the bifurcation and
hysteresis of flow pattern transition in a shallow pool of silicon melt are reported.

2. MODEL FORMULATION

2.1. Basic Assumptions and Governing Equations

The thermocapillary flow (hereafter we denote this as the Ma-driven flow) in a
shallow molten silicon pool with Cz configuration as shown schematically in Figure 1
is analyzed. Furthermore, when the buoyancy force is taken into consideration, it is
denoted as the MaþB-driven flow. The radius of the cylindrical rod (hereafter we call
this the ‘‘crystal’’) is rs ¼ 15 mm, the crucible radius rc ¼ 50 mm, and the depth is
d ¼ 3 mm. The melt=crystal interface and crucible side wall are maintained at
constant temperatures Tm and Th > Tm, respectively. Tm (¼1,683 K) is the melting-
point temperature of silicon. The following assumptions are introduced in our model.

Figure 1. Configuration of the system.
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1. Silicon melt is an incompressible Newtonian fluid that satisfies the Boussinessq
approximation except for the surface tension.

2. The velocity is small and the flow is laminar.
3. The upper surface is flat and nondeformable.
4. At the free surface, the thermocapillary force is taken into account.
5. On every solid–liquid boundary, the no-slip condition is applied.

In order to evaluate the effect of vertical heat flux, two types of thermal bound-
ary conditions on the free and bottom surfaces were introduced:

Case A: adiabatic on the free and bottom surfaces
Case B: heated at the bottom surface with a constant heat flux (q ¼ 3 W=cm2) and

radiative heat loss to the ambient at an effective temperature Ta ¼ 1,599 K
from the free surface

The thermophysical properties of silicon melt at Tm ¼ 1,683 K are listed in Table 1.
With the above assumptions, the flow and heat transfer equations are

expressed as follows.

r � v ¼ 0 ð1Þ

qv

qt
þ v � rv ¼ � 1

q
rpþ nr2vþ qT gðT � TmÞez ð2Þ

qT

qt
þ v � rT ¼ ar2T ð3Þ

The boundary conditions at the free surface ðz ¼ d; rs < r < rc; 0 � h < 2pÞ are

m
qvr

qz
¼ cT

qT

qr
ð4aÞ

m
qvh

qz
¼ cT

qT

r qh
ð4bÞ

vz ¼ 0 ð4cÞ

Table 1. Physical properties

Symbol Value Unit

Tm 1,683 K

k 64 W=m K

q 2,530 kg=m3

m 7.0� 10�4 kg=m s

cp 1,000 J=kg K

qT 1.5� 10�4 K�1

cT �7.0� 10�5 N=m K

Pr 0.011 —
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qT

qz
¼ 0 or � k

qT

qz
¼ erðT4 � T4

a Þ ð4dÞ

At the melt=crystal interface ðz ¼ d; r � rs; 0 � h < 2pÞ,

vr ¼ 0 ð5aÞ

vh ¼ 0 ð5bÞ

vz ¼ 0 ð5cÞ

T ¼ Tm ð5dÞ

At the bottom ðz ¼ 0; r < rc; 0 � h < 2pÞ,

vr ¼ 0 ð6aÞ

vh ¼ 0 ð6bÞ

vz ¼ 0 ð6cÞ

qT

qz
¼ 0 or � k

qT

qz
¼ q ð6dÞ

At the crucible side wall ðr ¼ rc; 0 � z � d; 0 � h < 2pÞ,

vr ¼ 0 ð7aÞ

vh ¼ 0 ð7bÞ

vz ¼ 0 ð7cÞ

T ¼ Th ð7dÞ

At the beginning, since the radial temperature difference along the free surface
is very small, the following initial conditions (t ¼ 0) are used:

vr ¼ 0 ð8aÞ

vh ¼ 0 ð8bÞ

vz ¼ 0 ð8cÞ

T ¼ Tm r � rs ð8dÞ

T ¼ Th � ðTh � TmÞ
lnðr=rcÞ
lnðrs=rcÞ

r > rs ð8eÞ

However, in order to reduce computational effort, the result of a small DT is
used as initial condition when DT is increased, and the result of a large DT is used
as the initial condition when DT is decreased.
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2.2. Numerical Method

The fundamental equations are discretized by the finite-volume method. The
modified central difference approximation is applied to the diffusion terms, while
the QUICK scheme is used for the convective terms. The SIMPLER algorithm
[23] is used to handle the pressure–velocity coupling. In this study, nonuniform stag-
gered grids of 62r� 22z� 60h are used. The validation of the code for the thermoca-
pillary and thermocapillary-buoyancy flow simulation was performed in our
previous works [19–22] and will not be repeated here.

Numerical simulations were conducted on an MPU of the Fujitsu VPP700 at
the Computer Center of Kyushu University. The time increment was chosen between
0.5� 10�3 and 5� 10�3 s. Convergence at each time step was assumed if the
maximum residual error of the continuity equation among all control volumes
became less than 10�5 s�1.

3. RESULTS AND DISCUSSION

Any radial temperature difference (DT ¼ Th� Tm > 0) produces a surface ten-
sion gradient on the free surface of the melt combined with the Marangoni effect
with the buoyancy-induced flow in the melt layer. In the present case, surface fluid
flows from the crucible side wall toward the crystal and recirculation flow exists near
the bottom. The flow below the crystal is weak. If the temperature gradient is small,
the flow is steady and axisymmetric. This type of flow is called the basic flow (BF).
However, when the temperature gradient is increased, two flow transitions occur.
First, the steady 2-D flow becomes steady 3-D flow (stationary roll, which is denoted
as SR), and then it becomes oscillatory 3-D flow (hydrothermal wave, which is
denoted as HTW) [21, 22]. During the second transition, bifurcation and hysteresis
of flow pattern occur and will be discussed in the following sections.

3.1. Bifurcation of the Second Flow Pattern Transition

When DT exceeds the second critical value DTcri2,max, 3-D disturbances are
initiated and their amplitudes increase with time. Finally, a 3-D oscillatory flow pat-
tern is established [21, 22]. In order to obtain all possible solutions of the 3-D oscil-
latory flow and save computational time, the result of a steady 3-D flow slightly
below the second critical value was used as the initial conditions. The time increment
between 0.5� 10�3 and 5� 10�3 s was used when DT > DTcri2. It was found that
there are two group oscillatory flow and temperature fields with different propa-
gation directions. Figure 2 shows the propagating angular velocity x of oscillatory
flow as a function of DT.

Here, the surface temperature fluctuation dT is introduced in order to extract
the 3-D disturbances. This fluctuation dT is defined as

dTðr; h; z; tÞ ¼ Tðr; h; z; tÞ � 1

2p

Z 2p

0

Tðr; h; z; tÞ dh ð9Þ

In the oscillatory flow region, many traveling curved spoke patterns are
observed on the entire surface. These correspond to the ‘‘hydrothermal wave’’
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(HTW) instability. For example, at DT ¼ 22 K, as shown in Figure 3 for Ma-driven
flow, there are the two possible traveling waves moving along different propagation
directions. In Figure 3a, five hot (dark) and five cold (bright) spots of comparable
intensity indicate the mode (number of waves) m ¼ 5. In this case, the hydrothermal
wave is propagating in the counterclockwise direction with the number of spokes
m ¼ 5. In Figure 3b, it is interesting to see that the hydrothermal wave is propagating
in the clockwise direction with the number of spokes also 5. The angles (/) between
wave propagation and radial direction, measured at r ¼ 25 mm, are about 75–80�

and 100–105�, respectively, which is close to the angle values predicted by the linear
stability theory for an infinite rectangular layer [1]. However, as seen from Figure 3,

Figure 2. Bifurcation diagram. (a) Ma-driven for case A. (b) MaþB-driven for case A. (c) Ma-driven for

case B. (d) MaþB-driven for case B. BF, basic flow; SR, stationary roll; HR, hysteresis region; HTW,

hydrothermal wave. �, increasing DT; ., decreasing DT.
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the spokes are not straight but bent. Therefore, these hydrothermal traveling waves
result in many parallel tilted straight lines on the space–time diagram (STD) taken at
r ¼ 20 mm (Figure 3).

The circumferential view of the temperature distribution and the flow structure
at r ¼ 25 mm and t ¼ 150 s is shown in Figure 4 for case A (Ma-driven flow) at
DT ¼ 22 K. In this case, the shallow molten silicon pool is occupied by hydrothermal
waves in both cases. It is worth noting that jvhðþÞj > jvhð�Þj when hydrothermal
waves propagate in the counterclockwise direction (Figure 4a). On the contrary,
jvhðþÞj < jvhð�Þj when hydrothermal waves propagate in the clockwise direction
(Figure 4b). As indicated by Smith and Davis [1] and by Levenstam and Amberg
[24], the hydrothermal waves are maintained by the coupling of temperature and
velocity disturbances in the melt pool.

To recognize the propagating direction of HTWs established in the melt, a net
azimuthal flow is calculated. The net azimuthal flow is determined by integrating the
entire shallow cylinder volume, and it can be expressed as

vh;ave ¼
1

pr2
cd

Z Z Z
vhðr; h; z; tÞr dz dr dh ð10Þ

Figure 3. Snapshots of surface temperature (left) and space–time diagram of surface temperature distri-

bution at r ¼ 20 mm (right) at DT ¼ 22 K for case A, Ma-driven. (a) HTW propagating in the counter-

clockwise direction. (b) HTW propagating in the clockwise direction.

Figure 4. Circumferential view of temperature distribution and flow structure at t ¼ 150 s and r ¼ 25 mm

for DT ¼ 22 K for case A by Ma-driven. (a) HTW propagating in the counterclockwise direction.

vh(�) ¼ �3.90 mm=s, vh(þ) ¼ 4.12 mm=s. (b) HTW propagating in the clockwise direction.

vh(�) ¼ �4.14 mm=s, vh(þ) ¼ 3.92 mm=s.
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The net azimuthal flow for case A by Ma-driven is shown in Figure 5. It
confirms that the net azimuthal flow is zero for 2-D axisymmetric flow and for
steady 3-D flow when the temperature difference is small. After the second threshold
value, the net azimuthal flow starts to deviate from zero. When the net azimuthal
flow is greater than zero, this results in a clockwise hydrothermal flow pattern as
shown in Figure 3b. On the contrary, when the net azimuthal flow is less than zero,
a counterclockwise hydrothermal flow pattern is formed (Figure 3a). All these are
consistent with the angular velocity of hydrothermal wave shown in Figure 2a. It
is also observed that the net azimuthal flow is much less sensitive to the buoyancy
and thermal boundary conditions on the free and bottom surfaces, once the HTWs
appear in the melt pool.

With increasing DT (Ma), the number of spoke patterns decreases and the
amplitude of the maximum temperature oscillation (A) on the free surface increases,
as shown in Figure 6. Obviously, the temperature oscillation for case A is larger than
for case B. Furthermore, when the buoyancy is considered (triangular symbol), the
flow is enhanced and the amplitude of the maximum temperature oscillation on the
free surface is also increased.

3.2. Hysteresis of the Second Flow Pattern Transition

After the HTWs appear on the melt pool above the second critical value, the
temperature difference is gradually decreased and uses the results with large DT as
the initial conditions. It is found that the critical value DTcri2,min of the flow tran-
sition from the HTW to SR becomes smaller than the critical value DTcri2,max of
the flow transition from the SR to HTW. This implies that there exists hysteresis
for the second flow pattern transition. Note that the hysteresis temperature differ-
ence is defined as: dTcri2 ¼ DTcri2,max� DTcri2,min, which is shown in Table 2.
Obviously, the hysteresis temperature difference depends on the driving mechanisms
and the thermal boundary conditions on the free and bottom surfaces. When

Figure 5. Net azimuthal flow for case A, Ma-driven, defined by Eq. (10), versus DT. �, increasing DT;

., decreasing DT.
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buoyancy is considered MaþB-driven flow, the flow is enhanced and the second
flow pattern transition is pushing forward (at smaller DTcri2), but the hysteresis
temperature difference increases. The vertical heat transfer increases the hysteresis
temperature difference for the Ma-driven flow. However, when buoyancy
(BþMa-driven flow) is considered, the hysteresis temperature is decreased.

Figure 7 illustrates an example for hysteresis of the second flow pattern tran-
sition for case A by Ma-driven flow. When the temperature difference increases to
above 21 K, the flow pattern transition occurs from the stationary roll to the hydro-
thermal wave. However, when the temperature difference decreases to below 19 K,
the flow pattern returns to the stationary roll. Figure 8 shows variation of the
azimuthal velocity disturbances at monitoring point P (r ¼ 20 mm, h ¼ 0, z ¼ 3 mm)
mm) for case A by Ma-driven when DT decreases from 20 to 19 K. In this case, it
was found that the transient time to establish the stationary roll from the HTW is
about 55 s.

Figure 6. Variation of the maximum temperature oscillatory A on the free surface as functions of DT.

Open symbols, increasing DT; filled symbols, decreasing DT. Circle, Ma-driven; triangle, MaþB-driven.

(a) case A. (b) case B.

Table 2. Hysteresis temperature difference of the second flow pattern transition

Case Driving mechanism DTcri2,max, K DTcri2,min, K dTcri2, K

A Ma 20.6 19.5 1.1

BþMa 17.4 15.2 2.2

B Ma 19.9 18.4 1.5

BþMa 18.2 16.3 1.9
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If we continue to decrease the temperature difference to below the first critical
value, the flow pattern transition from the stationary roll to the stable and axisym-
metric flow occurs. In this transition, however, the hysteresis does not appear.

Variations of the propagating angular velocity x of the HTWs and the
maximum temperature oscillation (A) on the free surface within the hysteresis region
are shown in Figures 2 and 6, respectively. In this region, the maximum temperature
oscillation of the HTWs is always larger than those of stationary rolls.

4. CONCLUSIONS

A comprehensive 3-D numerical simulations of thermocapillary and thermo-
capillary-buoyancy flow in a shallow silicon melt pool with the Cz configuration

Figure 7. Hysteresis of the second flow pattern transition for case A, Ma-driven. (a) Point A, DT ¼ 16 K.

(b) Point B1, DT ¼ 20 K. (c) Point C, DT ¼ 23 K. (d) Point B2, DT ¼ 20 K. (Points A, B1, C, and B2 are

shown in Figure 2).

Figure 8. Variation of azimuthal velocity disturbances at monitoring point P for case A, Ma-driven, at

decreasing DT from 20 to 19 K.
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(heated from the outside wall and cooled by a crystal touched to the melt surface)
were conducted using the finite-volume method. From the simulation results, the
following conclusions can be drawn.

1. The numerical results showed two possible types of the hydrothermal waves, with
different propagation direction in the shallow silicon melt pool with the Cz
configuration after the second flow pattern transition happens.

2. The bifurcation is shown in the x–DT diagram. The angular velocity of the
hydrothermal wave propagation depends on the driving mechanisms, the thermal
boundary conditions on the free and bottom surfaces, and the temperature differ-
ence along the free surface.

3. There exists hysteresis for the second flow pattern transition. When buoyancy is
considered, the hysteresis temperature difference increases. The vertical heat
transfer increases the hysteresis temperature difference for the Ma-driven flow.
However, when the buoyancy (BþMa-driven flow) is considered, the hysteresis
temperature is decreased.

4. When the temperature difference is increased, the maximum temperature oscil-
lation also increases.
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