
ELSEVIER 

Available online at www.sciencedirect.com 

SCIENCE~DIFIECT • 
Mathematical and Computer Modelling 39 (2004) 

MATHEMATICAL 
AND 
COMPUTER 
MODELLING 

991-1003 
www.elsevier.com/locat e/mcm 

Thermal Analysis of the Grinding Process 

R. J. Gu 
Department  of Mechanical Engineering, Oakland University 

Rochester, MI, U.S.A. 

M .  S H I L L O R  
Depar tment  of Mathematical  Sciences, Oakland University 

Rochester, MI, U.S.A. 

G .  C .  B A R B E R  
Depar tment  of Mechanical Engineering, Oakland University 

Rochester, MI, U.S.A. 

T .  J E N  
Depar tment  of Mechanical Engineering, University of Wisconsin 

Milwaukee, WI,  U.S.A. 

(Received and accepted July 2003) 

A b s t r a c t - - A  two-dimensional mathematical model for the thermal aspects of a grinding process 
is presented. The model includes heat conduction in the grinding wheel, workpiece, and coolant. The 
heat generation through friction, heat loss to the environment as well as debris, and the interaction 
among the three components are described in detail. A finite-element algorithm is implemented to 
solve the nonlinear problem. Numerical results, such as temperatures in the grinding wheel and 
workpiece, are presented. © 2004 Elsevier Ltd. All rights reserved. 
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n G ,  ~I.W 

P 

Pi 

rG 
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s l  

t ,  A t  

V, V l 

C j ,  ~ j  

unit outward normal to grinding 
wheel, workpiece 

contact pressure; MPa 

power generated from the friction 
force; N.m/s  

radius of grinding wheel; m 

coordinate along the grinding 
zone; m 

size of grinding zone; m 

time, time step size; sec. 

feed speed of the workpiece, and 
velocity component of a point; m/s  

fraction of contact of grain to 
grinding zone 

parameter chosen as 0.5 

one` and two-dimensional weighting 
functions 

~?k, Ck one- and two-dimensional linear 
interpolation functions 

A parameter chosen as 0.5 

/~ coefficient of friction 

0G, 0w, OF temperatures in grinding wheel, 
workpiece, and fluid, respectively; 
°C 

0~  ambient temperature; °C 

eGk,  Owk, e F k  nodal temperature of grinding 
wheel, workpiece, and fluid, 
respectively; °C 

PG, P W  J P F  density of grinding wheel, work- 
piece, and fluid, respectively; 
K g / m  3 

~- friction force; N 

w angular speed of grinding wheel; 
rpm 

t i c ,  ~2w domains of grinding wheel and 
workpiece 

I N T R O D U C T I O N  

During grinding, a number of physical phenomena occur: cutting, sliding, material removal, 
heat generation, deformation, fluid flow, etc. This complicated thermomechanical process has 
attracted intensive attention and research effort over the past decades. The main concern of this 
machining process is the detrimental effects that high temperatures bring to the workpiece and 
tool. Coolant is then introduced to remove much of the heat generated between the grinding wheel 
and the workpiece due to friction and plastic deformation. To gain insight of the heat transfer 
among individual components in grinding processes, various methods have been proposed. Snoeys 
et al. [1] and Malkin [2] presented detailed reviews of the research conducted on heat transfer in 
grinding. More recently, Lavine and Jen [3] presented a study which assumed the heat fluxes into 
the workpiece, grinding wheel, and fluid were uniformly distributed. Later, Jen and Lavine [4] 
developed an improved model allowing heat flux variation along the grinding zone. This model 
has been extended and analyzed by Andrew et al. [5]. 

In the paper, first a form of heat source stemming from friction between the grinding wheel 
and workpiece is proposed. This source term is similar to the one used by Andrews et al. [5]. 
The mathematiCal model relating the heat transfer between the grinding wheel, fluid, and the 
workpiece is presented. The finite-element method is employed to numerically solve the problem. 
Numerical results depicting the temperature profiles of the objects along the grinding zone of the 
workpiece are shown. 

M A T H E M A T I C A L  M O D E L  

In the present study, a two-dimensional setting as depicted in Figure 1, is assumed. Accordingly, 
all the components involved in the following have the same thickness of one unit in length. 

Mathematical  Description 

Contact Pressure and Heat Source--During grinding, a force is applied to the grinding wheel, 
Figure 2. This force generates a reaction force, which in turn generates a frictional force that 
counterbalances the applied turning torque. It is believed that the frictional force is the major 
heat source of temperature increases in the grinding wheel, workpiece, and cooling fluid. As 
opposed to the resultant force shown in Figure 2, the reaction from the workpiece should exist 
in the form of a contact pressure on the grinding wheel. This contact pressure may be difficult 
to determine as it involves the cooling fluid and the cutting of the workpiece. It is known that, 
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Figure 1. Components in the grinding process. 
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Figure 2. Equilibrium of forces on the grinding wheel. 

due to the shape of the grains, the grinding wheel comes into contact with the workpiece only 

over a small fraction of the grinding area. This allows the coolant to be trapped within the 

space between the grains. Let this fraction be a, which has a value of 0.05 ~ 0.i according to 

experimental observation. Referring to Figure 3, we assume that the average grain size is do, 

the average contact area of the grain is ado, and the contact pressure within the grain contact 

area is uniform. Thus, each grain exerts a force on the work piece. Recall that the Hertz contact 

pressure between a cylinder and a plane is elliptical in shape. In the present study, we further 

assume that these grain forces form an elliptical envelope, as shown in Figure 4. Thus, we have 

the following form of contact pressure p(s) within the grinding.zone F2 = {s I 0 < s < sl} seen 

in Figure I: 

where F0 is the maximum of the elliptical curve, 5(.) represents the Dirac delta function, and i 
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Figure 3. Contact between grain and workpiece. 
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Figure 4. Elliptical distribution of contact forces. 

is an index ranging from 1 to n, the number of grains in the grinding zone. To determine F0, we 
integrate p(s) over F2 and equate the result to the total applied force Fa. 

2 
F 0 S  TM 1 1 . . . .  Fa. (2) 

i=1 81 ] 

The friction force seen in Figure 2 is the resultant of the following tangential stress acting on the 
grinding wheel: 

= ,p ,  (3) 

where tt is the coefficient of friction and Coulomb's law of friction is employed here. Therefore, 
the power generated by the friction force, Pi, is 

P~ = #p(rcw - v), (4) 

where rG and w are the radius and angular speed of the grinding wheel, respectively, and v is 
the velocity of the workpiece. Note that for up-grinding the subtraction sign in equation (4) is 
replaced by an addition sign, although the difference is minimal for row >> v. Jen and Lavine [4] 
presented a model using uniform and triangular power input, while Kohli [6] showed that a 
triangular power input is more realistic. 

Heat Transfer in Grinding Wheel and Workpiece--The governing equations for the plane heat 
conduction in the two objects are expressed below. 

inao,  t > o ,  (5) 
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and 

pwcw(ew+vew, )-Kw ew=0, inaw, (6) 
where the subscripts "G" and "W" indicate that the variable is assodated with the grinding wheel 
or the workpiece, respectively, Po, Pw are the densities, co, cw are the specific heat, 8o, 8w are 
the temperatures, a dot over 8o, or 8w indicates a partiM time derivative, t indicates the time 
variable, and K o ,  K w  are the thermal conductivities. In addition, the comma "," in the above 
equations denotes the spatial partial derivative, the A is the Laplacian operator, and x and ¢ 
are the horizontal and transverse coordinates as indicated in Figure 1. 

The elliptical discrete input power in equation (4) represents the heat source to the grinding 
system, which does not appear in equations (5) and (6). Instead, it appears in the boundary 
conditions described below. To divide the heat source between two objects, thermal resistances 
across the contact area are introduced by Fried [7], Johansson and Klarbring [8], and aohans- 
son [9]. Accordingly, in the case of identical contact objects, the heat source divides evenly for 
both objects. For lack of experimental evidence, we simply assume that an equal amount of 
the power enters into the grinding wheel and workpieee, as indicated by the factor "1/2" in the 
following two equations. Therefore, the boundary conditions along the grinding zone F2 for the 
two objects are 

1 
-KoSo, ,~a = (1 - a)hF (80 -- BE) + o~how (80 - 8w) - ~ #p(row - v), on Fg., t > 0, (7) 

an d, 
- K w S w ,  nw = (1 - o~)hF (Sw -- BE) + a h o w  (Sw - 80) 

1 (8) 
2 #p(rcw - v ) +  p w c w S w g ,  on P2, t > 0, 

where no, n w  are the unit outward normal, hF is the heat transfer coefficient from the fluid to 
grinding wheel and workpiece, h o w  is the heat transfer coefficient between the grinding wheel and 
workpiece, 8F is the temperature in the fluid, and g is the grinding rate (mass of material removed 
per unit time). The last term on the right-hand side of equation (8) accounts for the energy loss 
to the chips being removed. We note that only a fraction c~ of every unit of grinding length is 
involved in the contact between the grinding grains and the workpiece and the remaining (1 - c~) 
is filled with coolant. These fractions can be seen in the above two equations. Pressure dependent 
thermal conductance to account for the heat transfer between two contact objects has been used 
by Fried [7], Johansson and Klarbring [8], Johansson [9], and Andrews et al. [5]. Here heat 
transfer coefficients are used between two neighboring objects. These coefficients are difficult to 
determine, although the average heat transfer coefficients of those derived by Lavine and Jen [3], 
which are functions of the transverse coordinate, are used in the present study. That is, 

~/TrKFpFCFrGw (9) 
hE = V sl ' 

h a w  -= ~ s~ V 4s v @ [1 - exp (52) erfc(¢)] ds 
(10) 

3 ~ /~rKwPwcwraw ~ 

a-g0 ' 

where 
4 Ka s  

= p G c G r G w  d2o" 

Here, KF,  PF, CF are, respectively, the thermal conductivity, density, and specific heat of the 
fluid, and erfc(.) is the error function. 
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Boundary conditions at the other areas are given below. 

--KGOG,na = O, 

--KGOG,,,a = h (Oa - 0~) ,  

-KwOw, nw = O, 

-KwOw,  nw = h (Ow - O~) , 

on r l ,  t > 0, (11) 

on F3, t > 0, (12) 

o n F s U F 6 U F T ,  t > 0 ,  (13) 

on F4 U Fs, t > 0. (14) 

Here, we assume insulated conditions for the inner wall of the grinding wheel, and the ,two sides 
and the bottom surface of the workpiece. The remaining surfaces of the grinding wheel and work- 
piece have the convective boundary condition allowing heat to dissipate into the ambient air with 
temperature 800 and heat transfer coefficient h. We also assumed that the initial temperatures 
of the two objects are equal to the room temperature 8oo. Thus, 

0 G = 0 ~ ,  i n ' G ,  a s t = 0 ,  (15) 

8W = 0oo, in ~w,  as t = 0. (16) 

Heat Transfer in Fluid--We now present the governing equation and boundary conditions for 
the coolant. First, we assume that the coolant is a one-dimensional continuous object whose heat 
transfer is governed by the following equation in the grinding zone. 

(1 
pFCF (8F, t + rGWOF, s) -- KFOF, ss -b T [hF (OF -- 8G) + hF (OF -- 0W)] ---- 0, (17) 

in F2 = {s I 0 < s < s~}, 

where 0F is the temperature of the fluid and b is the uniform thickness of the fluid. We assume that 
there is no boiling in the fluid, although its effect is included in a study by Jen and Lavine [10]. In 
addition, we also assume that the fluid only exists in the grinding zone, although it may spread to 
other areas in actual operation. The fluid enters the system continuously at the position indicated 
in Figure 1 and is assumed to be present before grinding starts. Therefore, we have the following 
boundary and initial conditions. 

OF = 0 ~ ,  a t  s = 0, (18) 

--KFOF, s -" h (OF -- Ooo), at s = sl, (19) 

8F=8oo,  inF2, a s t = 0 .  (20) 

Here, we assume that when the fluid exits the grinding zone, the heat dissipates into the ambient 
air. 

Weak Form 

Let Cj and ~j be the one- and two-dimensional weighting functions, respectively. The weak 
statement of the above initial-boundary-value problem can be formulated as follows. 

Gr ind ing  W h e e l  

/ aaPaCa(OG+wOa,¢)~Jd~+/aaKGOG, i~J#d~+~r  hawOa~J dF 

+ / r  [(1-  a )h f  + ahvw] Oa~ aT - f r 2 ( 1 -  a )hFOf~  dF - fr2 ahawOw~j dF 

1 
- - fr3hGwOcc~jdF+-~fr2t tpraw~J dF" 

(21) 
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Work  Piece 

+ fir [(1- a)h_p + ahow + pwcwg]Ow~o, dF-  jfp (1-a)hFOF~ojdF 
2 2 

1 

Fluid  

(22) 

jfF2flFCF(OF+rGwOF, s)¢jdr_k/p2KFOFsCj,sdF_FjfF~ 2(1 -- a) ' b hFOfCj dF 
(23) frl-  - 2 ---g--hFOaCjdF- 2 ---~hFOwCjdF+hOF,zCj~, = hO~¢~ +~o¢~o. 

In the above and hereafter, the indicial summation convention is implied. However, no sum- 
mation occurs over the subscript s. Note that Cj~ = Cj(sz), Cjo = Ca(O), OFs~ = OF(sl), and go 
is the heat flux of the fluid at s = O. 

N U M E R I C A L  A L G O R I T H M  

Pe t rov-Ga le rk in  Approx ima te  Solut ion 

The angular speed of the grinding wheel is so high that the convective effect turns out to be 
dominant in heat transfer. Therefore, we use the Petrov-Galerkin weighted residual finite-element 
method to solve the problem numerically. That is, the weighting function and the interpolation 
functions are different. Let ~k and Ck be the one- and two-dimensional linear interpolation 
functions, then the temperatures can be approximated as follows. 

OG = CkOak, OW = CkOWk, OF = ~kOFk. (24) 

Choose the weighting functions as 

= Cj + Zv ¢j,z; Cj = + Zra   ,s, (25) 

where/3 is a parameter which will be chosen later. This weighting functions are applied to all 
the terms in the above except the time-derivative terms resulting in an algorithm similar to that 
reported by L-hner et al. [11]. Substitution of the above two equations into equations (21)-(23) 
yields the following finite-element equations. 

Gr ind ing  Whee l  

3 2 

-- ~F2(1 --o~)hF(~j -F [~Vl~Jj,l)~Jk dreFk -- fF2 °~hGw(I/2J -F ~Vl~j,l)~Jk d'~eWk 

fr S~r = hawO~(¢j + ¢~vzCj,z) dF + ~ #praw(¢j +/3vz~j,z) dF. 
3 2 

(26) 



998 

W o r k  P i e c e  
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F l u i d  

~w pwcw¢j¢~ d~Owk + f~w pwcwv(¢j  + ~vCj,~)¢~,~ d~Owk 

+ f~ Kw¢~,~¢~,~d~Ow~ + fr.ur h~W(¢~ + ~v¢~,~)¢kdrOw~ 

+ fr [(1 - o~)h~ + ahaw + owewg](¢~ + ~v¢~,~)¢~ arOw~ 

= h a w O ~ ( ¢ ~  + flv¢~,~) d r  + -~ 2 
4UFs 

(27) 

/r2pFcF~?iDkdFOFk+/rPFCFrGw(~Tj+/3rGw~Tj,s)~Tk,sdFOFk+/rKF~i,s~?k,sdFOFk 
+ 2(1 - a) hF(r 5 + ~raw~,.)rlk dr'OFk -- 2 ---'b-- hE(r5 + ~rawrS'~)¢k dI'Oak 

~ b 

f r  1 - a hF(r 5 + ~raw~j,.)¢k aTOwk + h [(r 5 + ~rawrS,~)rlk]~ ' OFk -- 2----  ~ 

= hOoo [(r/j + l~rawrS,~)rlk]. ' + qo (~j + 13rawrlj,.)o. 

(2s) 

Note that the second-order derivatives of ~k and Ck vanish, since they are linear functions 
of the natural coordinates. The subscripts "st" and "0" indicate that the associated quantities 
are evaluated at s = st and s--0, respectively, and Ck is ¢k evaluated at the element edge on 
boundary F2. Moreover, the workpiece only moves in the x-direction with velocity v. Although 
the convective effect due to this velocity is much smaller that that of the grinding wheel, it is 
retained in the equation for integrity. 

T i m e  I n t e g r a t i o n  

The time derivative terms in the above three equations are discretized using the following 
implicit integration scheme. 

At "'vGk + (1 - A)OSk, (29) 

where the superscript n designates the time step, At is the time step size, and 0 <~'A < 1. Thus, 

ak = ~  AOGk -- (1-- A)OSk , (30) 

and at the time step n + 1, equation [26] becomes 

( 1  A~k + ~ ( B ~  +Cjk + Djk)) AOGk_ ~CjkAOFk_ ADjkAOwk 
(31) 

:~n't+l +(1 ~).@o~k ~(B~ +C~k + Dj~)O ~ = - - vk + AC~kO}k + ~D~kO~'k, 
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where 

A~ = fa~ pacaCjCk d~, 

KaCj,iCk,idf~ 
G G 

+ fr haw(¢j + Zv~¢j,~)¢k dr, 
3 (32) 

cjk = f r  (1 - c~)hF(¢j + ~v~¢~,z)¢k dr, 

D~k = f r  c~haw(¢~ + ~vl¢~,Z)¢k dr', 

f r  e r r  Rk = hawOoo (¢J +/3VlCj,l) aT + -~ #prGw(¢] n u ~vlC],l) aT. 
3 2 

Similar equations for the workpiece and fluid can be obtained from equations (27) and (28). Thus, 
we have a system of algebraic equations for solving the evolving temperatures  in the components. 

N U M E R I C A L  S I M U L A T I O N  
A N D  D I S C U S S I O N  

The material constants and parameters used in the simulation are given in Tables 1 and 2 
which are mainly from [4]. Let ~ = At~2 according to [11], and for numerical stability, A = 0.5 
is used. The thickness of the fluid is chosen to be half of the grit size, i.e., b -= do~2. The grit 
size is do = 0.5 mm which is equivalent to the commercial size of No. 50. The current model 
is two-dimensional, so the thickness of the grinding wheel is assumed to be the same as that  of 

the workpiece. Consequently, the applied force Fa of 10 kN is used in the following simulations. 
Furthermore,  the coefficients of friction used are # = 0.3 and 0.4. Also, the size of the time step 
used is At ---- 0.1 s, and the total  t ime step used is 1,500 for a duration of 2.5 minutes. 

Table 1. Material constants of components in a grinding process. 

Grinding Wheel Workpiece 
A1203 steel 

p, kg/m a 4000 7854 

c, J/kg-K 770 434 

K, W/m-K 46 60.5 

Fluid 
water 

1000 

4180 

0.68 

Table 2. System parameters used in numerical simulation. 

I o mm E I  rpm I I b mm I 0 °O I v m/sec Tom 
, 0.5 0.05 2865 10,-5 0.25 20 1.0 0.1 

dot mm I 
0.5 

A finite-element model containing 489 elements and 546 nodes for the grinding wheel and 794 
elements and 845 nodes for the workpiece is created. There are eight fluid elements along the 
grinding zone. Note that  none of the elements share common nodes. Figure 5 shows the finite- 
element mesh used in the numerical simulation. The evolving temperature-increase (AO ---- 0--0oo) 
of the workpiece along the grinding zone is depicted in Figure 6 by the solid lines when the applied 
force Fa --- 10kN, # = 0.3, and Hertzian contact pressure equation (1) are used. It  is seen that  
the tempera ture  reaches steady-state condition when t = 150 sec. Note tha t  the temperature-  
increase at the point where the coolant is introduced (s -- 0 mm) is higher than  at the point where 
the coolant exits (s -- 10mm) by about 7°C at t -- 150s. The stabilized temperature-increase 
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contour of the system near the grinding zone is shown in Figure 7. I t  is seen tha t  most  the area 
in the workpiece has a temperature-increase of less than  5°C. Note tha t  the workpiece travels to 
the right at a slow speed. The temperature-increase for the grinding wheel is 48°C at t -- 150 s. 

I t  is ra ther  uniform, although tha t  it is I °C  higher near the center of the grinding zone. The 

temperature-increase for the coolant is rather  low and is depicted in Figure 6 by dashed lines for 

only three t ime steps. This is due to the fact tha t  the coolant stays in the grinding zone for a 

very short  period of time. 

0.4 m 

~ ~ . / - . . . ¢ _ . _ j _ _  _ , . 

I , , , , 

" 0.6 m = 

Figure 5. Finite-element mesh used in simulation calculation. 
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: : : : : : : : : : : : : : : : : : : : : : : :  . . . . . . . . . . . . . . . . . . . . . .  
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S-COORD (MM) 

Figure 6. Temperature-increase of the coolant (dashed lines) and the workpiece (solid 
lines) along the grinding zone. 
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A triangular pressure profile has been used by Jen and Lavine [4] and Kohli [6]. For comparison 
purpose, the following triangular pressure profile is also used in the simulation. 

1)( p(s)=2Fo . . . .  s 4Fo s U s 5 s do , 
sl 2 

0 < s < sl, (33) 

where U(.) is the Heaviside unit step function. The constant F0 can be evaluated in the same 
fashion as in equation (2). The stabilized (t = 150 s) temperature-increase for the workpiece along 
the grinding zone is shown in Figure 8, where two coefficients of friction (~ = 0.3,0.4) are used. 
Since the maximum pressure for the triangular profile is greater than that  of the Hertzian profile, 
its maximum temperature-increase at the middle of the grinding zone is seen to be higher than 
that  of the Hertzian profile. Figure 9 shows the evolution of the maximum temperature-increases 
using different contact pressure profiles and coefficients of friction. 

J~ 0 .04  m ~ ] . l  0 . 087  m 

7 
.022 m 

,038 

200 

150 

W 

100 
Z 

i 
W b- 

5O 

Figure 7. Stabilized temperature-increase profile. 
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- -  - -  # = 0.4; Hertz ian 

_ . ,  /z = 0.3,  Tr iang.  
- - -  # = 0 . 4 ,  Tr iang.  

i r I I T r I I I I I I T i i I i i i 

0 2 4 6 8 

S - C O O R D  ( M M )  

Figure 8. Comparison of temperature-increases in the workpiece along the grinding 
zone using various contact pressures and coefficients of friction. 
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uZ 
I t l  
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_z 
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tt = 0.3; Hertz ian 

I.t = 0.4; Hertz ian 

!~ = 0.3; Tr iangular  

!~ = 0.4; Tr iangular  

0 | |  t t ,  i I =, i I i I t i r I t I t 

0 20 40 60 80 1 O0 120 140 

TIME (S) 

Figure 9. Evolution of the maximum temperature-increases using different contact 
pressures and coefficients of friction. 

C O N C L U S I O N S  

16 

In this paper,  a theoretical model is presented to determine the evolution of the tempera ture  

fields in the components  involved in the grinding process. A series of assumptions are used to 

simplify this complicated machining process. First, it is assumed tha t  the only heat  source comes 

from the friction between the grinding wheel and workpiece modeled as two-dimensional objects. 

A Hertzian form of contact pressure is assumed for calculating the frictional force. The coolant, 

modeled as a one-dimensional object,  is introduced to dissipate the heat  along the grinding zone. 

In addition, heat also flows to the ambient  environment through convection. The heat  transfer 

between the neighboring objects is modeled by convection. Heat  transfer coefficients established 

by other researchers are used in this regard. The finite-element method  is employed to discretize 

the system of differential equations in spatial  coordinates while an implicit integration scheme 
is applied to the t ime domain. Numerical results presented include the temperature-r ises  in the 

grinding wheel and workpiece using Hertzian contact pressure and tr iangular  contact pressure. 

Different values of coefficient of friction are also used in the calculation to show its effects on the 

temperature-r ise.  
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