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Abstract: The article proposes an optimization method based on the function approximation
in control strategies design of medium earth orbit (MEO) and inclined geosynchronous orbit
(IGSO) satellites. As an extension of the functional approximation method (FAM), this method
is suitable to solve a single-variable or a multivariable optimization question with equality or
inequality constraints. This ensures that the optimal control strategies for MEO and IGSO satel-
lites to manoeuvre along the ideal control arc can be easily determined, and finally make satellites
enter the designed orbits as soon as possible after satellites being launched under restrictions
of the limited propellant and number of revolutions around the earth. In the current article, the
basic FAM model is first introduced, and then the method applications and the simulation results
are discussed in detail. Compared with the conventionally adopted exhaust search in the process
of the optimal strategy design for the MEO and IGSO satellites, this method has the advantages of
simplicity, less dependence on the initial parameter range, and requires much less computational
effort.

Keywords: medium earth orbit and inclined geosynchronous orbit satellites, control strategies,
optimization, function approximation method

1 INTRODUCTION

Both medium earth orbit (MEO) and inclined geosyn-
chronous orbit (IGSO) satellites have been widely used
in many large-scale constellation systems in the field
of navigation and positioning [1–8]. It is well known
that, although these two types of satellites have abso-
lutely different orbit altitudes, the eccentricity and
inclination of these two satellites are nearly the same.
In general, the same control strategy is applied to the
orbital manoeuvre in the early flying phase of MEO
and IGSO satellites. Conventionally, the multidimen-
sional exhaust search (ES) is often adopted for this
purpose [9–15]. In this method, every variable must be

∗Corresponding author: Department of Mechanical Engineering,

University of Wisconsin, Milwaukee, 3200 N. Cramer Street, Mil-

waukee, Wisconsin 53211, USA.

email: jent@uwm.edu

divided into many intervals, and the objective function
must be computed at every discrete point of all system
variables. Thus, considerable computational effort is
required in order to obtain the optimal function value,
even if the system contains only one single variable.
One of the major advantages of this method is that it
is very simple to implement. However, it depends too
much on the range of every variable. This means that
only the perfect selection to the range of all variables
can guarantee that the optimal result of objective func-
tion can be achieved quickly. The most difficult task
in this method is to identify the ideal variable range
under the condition that it is not obvious for the range
of every selected variable.Thus, most of the computing
effort has been expended in solving a single-variable
or a multivariable control problem with a set of com-
plex dynamics model systems and special constraint
conditions. The function approximation method is
proposed to solve this kind of problem [16, 17]. The
biggest advantage of this method is that it can be
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implemented easily and effectively in the initial pro-
cess of optimal manoeuvre of MEO and IGSO satellites.
Compared with the multidimensional ES, this method
is also simple to implement, and it does not depend
on the variable range too much and requires much
less CPU time in solving the same complex system
problem.

The functional approximation method (FAM) men-
tioned above is not the same as the well-known
sequential quadratic programming (SQP) method
although the objective function for each of these two
methods has non-linear characteristics. In general,
SQP methods attempt to solve a non-linear program
directly rather than convert it to a sequence of uncon-
strained minimization problems. To FAM here, the
objective function is only approximated step by step
with the aid of a simple quadratic function. Function
approximation differs from both derivative-based and
heuristic evolutionary optimization, and it is designed
for optimization of computationally expensive func-
tions like simulation models for which it is not feasible
to run the model a large number of times. Function
approximation is usually applied to uncertainty anal-
ysis and to groundwater transport optimization in
water resource and environmental analysis both for
design of remediation plans and for calibration.

In this article, the proposed system model about
the function approximation is described at first, and
then its use in the strategy optimization of MEO and
IGSO satellites orbit manoeuvre. Finally, the simula-
tion condition and the discussion of the results of the
orbit control strategies of MEO and IGSO satellites are
shown in detail.

2 BASIC CALCULATION MODEL

2.1 Function approximation method

In the function approximation method, the high-order
objective function of control system is fitted with a
polynomial; this means that the function value at
some point of the variable range can be used to
construct the low-order interpolation polynomial for
finding the minimum of objective function. Then, the
minimum of the polynomial can be viewed as the
approximate value of the minimum of the objective
function. Generally, the simple second-order parabola
interpolation is adopted as an example to intro-
duce the basic model of the function approximation
method.

Here, suppose that f (x) is a convex function and
[x1, x2] is the range of xk , and x0 ∈ [x1, x2]. All these
satisfy the following conditions

x1 < x0 < x2 (1)

f (x1) > f (x0) < f (x1) (2)
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Fig. 1 Schematic diagram for FAM

As per the schematic diagram is shown in Fig. 1,
the main procedure for function approximation is
followed below.

First, construct the second-order interpolation poly-
nomial g (0)(x) by using three initial given points
(xi, f (xi)) (i = 0, 1, 2). The minimum point x(0)

min is
obtained according to

dg (0)(x)

dx
= 0 (3)

Second, select three points x(1)

0 , x(1)

1 , and x(1)

2 from
the known points x0, x1, x2 (i.e. x(0)

0 , x(0)

1 , x(0)

2 ), and x(0)

min,
and make these three values satisfy the condition
inequalities (1) and (2) and the following inequality

x(1)

2 − x(1)

1 < x(0)

2 − x(0)

1 (4)

Repeatedly, the range (x(m)

1 , x(m)

2 ) and x(m)

min, which satisfy
the condition inequalities (1) and (2), can be obtained,
and they satisfy the following conditions too

(x(m)

1 , x(m)

2 ) ⊂ (x(m−1)

1 , x(m−1)

2 ) · · · ⊂ (x(0)

1 , x(0)

2 ) (5)

x(m)

min ∈ (x(m)

1 , x(m)

2 ) (6)

According to conditions (5) and (6), obviously when
m → ∞, x(m)

1 → x(m)

2 , the final minimum point xmin can
be obtained by xmin = 1/2(x(m)

1 + x(m)

2 ).
Generally, the objective function is complicated and

it is difficult to express them by a perfect explicit for-
mulation. However, it can be calculated according to
the orbital dynamics equation as mentioned in the
next section.

2.2 Orbital dynamics equation

When the satellite performs an orbit manoeuvre, the
thrust force that acts on the satellite can be gener-
ally regarded as the perturbation force. Relatively, the
acceleration created by the thrust force can be con-
sidered as the perturbation acceleration. Here, the
variation equations of Gauss, which provide a conve-
nient set of equations relating the effect of a control
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acceleration vector u to the oscillating orbital ele-
ment time derivatives [18], are applied to describe the
orbital elements variation of satellite

da
dt

= 2a2

h

(
e sin f ur + p

r
uθ

)
(7)

de
dt

= 1
h

[p sin f ur + ((p + r) cos f + re)uθ ] (8)

di
dt

= r cos θ

h
uh (9)

d�

dt
= r sin θ

h sin i
uh (10)

dω

dt
= 1

he
[−p cos f ur + (p + r) sin f uθ ]

− r sin θ cos i
h sin i

uh (11)

dM
dt

= n + η

he
[(p cos f − 2re)ur − (p + r) sin f uθ ]

(12)

The majority nomenclature for these and subsequent
equations is explained in the notation section of this
article. Here, u = (ur, uθ , uh) is the control acceleration
vector, written in the Local-Vertical-Local-Horizontal
frame, ur is the radial component of the perturbation
acceleration, which points in the radial direction away
from the earth, uh is the normal component of the
perturbation acceleration, which is aligned with the
orbit angular momentum vector, and uθ is the lateral
component of the perturbation acceleration, which
is orthogonal to both ur and uh. r is the scalar orbit
radius, p is the semi-latus rectum; here, p = a(1 − e2),
θ = ω + f , h = √

pr, η = √
1 − e2, and n = √

µ/a3. The
mass variation equation of the satellite is

dm
dt

= − F
Ispg

(13)

In addition, the thrust vector can be considered to be
perpendicular to the radius vector of the satellite dur-
ing the orbit manoeuvre around apogee or perigee.
The perturbation force (or perturbation acceleration)
can be divided into three orthogonal components,
which are defined as the radial component, the lateral
component, and the normal one. Thus, the constraint
relation between the motor thrust vector F and the
satellite’s orbit radius vector r (from the geocentre to
the satellite, r = |r |) can be expressed by the following
equation

F · r = 0 (14)

where

F = {F cos δ cos α, F cos δ sin α, F sin δ}
r = {x, y, z}
Here, F = |F |, α is the attitude longitude of the thrust

vector F and δ is the attitude latitude of the thrust

vector F in the geocentric equator inertia coordinate
system. According to equation (14), the perpendicular
relation between the thrust vector F and the radius
vector r can be expressed as

x cos δ cos α + y cos δ sin α + z sin δ = 0 (15)

Generally, for MEO and IGSO satellites, the orbit incli-
nation does not need to be adjusted, and so the main
task of orbit manoeuvre is in the orbit plane, and in the
process of simulating to orbit manoeuvre to MEO and
IGSO satellites, the lateral component Fh (it is vertical
to the orbit plane) of the motor thrust vector F meets
the following condition

Fh = 0 (16)

Obviously, it is difficult to express the objective func-
tion for optimal orbit manoeuvre with an explicit
analytical formulation. However, every variable can
be calculated by using numerical integration, and
the results of the numerical integrations are used to
calculate the optimal function value, which will be
described in the next section.

3 CONTROL STRATEGY OPTIMIZATION FOR MEO
AND IGSO SATELLITES

Generally, the orbit error or deflection surely exists
between a satellite’s practical orbit after the satel-
lite is launched and its theoretical design orbit. Even
though the orbit error may be quite small, in order
to meet the function design requirement of the satel-
lite and to obtain the longer application time, the
orbit control implemented to the satellite is neces-
sary and important. Designing a flexible, dependable,
and efficient orbit control strategy is one of the key
factors ensuring the satellite’s flight on the precise
orbit. The main task in designing a control strategy
for a satellite’s orbit manoeuvre is to obtain all con-
trolled parameters before every orbit manoeuvre is
performed. These parameters are used to determine
when the orbit manoeuvre must be performed, how
much orbit parameters adjustment must be achieved,
and so on. Of course, for different satellites, the orbit
control objective is often different.

For MEO and IGSO satellites, the longitude drift rate
of the satellite is usually used as the reference bench-
mark in designing a control strategy to determine the
objective orbit parameters after every orbit transfer. Its
definition is given as follows

α̇ =
(

1 − a
aobj

)3/2

(17)

where aobj is a constant and represents the final
objective semi-major axis of MEO or IGSO satellites.
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Obviously, the parameter α̇ can be determined by the
semi-major axis a, and so the semi-major axis a is used
as the benchmark to determine the controlled quan-
tity in place of the objective longitude drift rate of every
orbit transfer. The amount of the parameter α̇ reflects
the angle at which the current position of satellite devi-
ates from the final objective position in one revolution.
If α̇ > 0, it means the satellite drifts more quickly than
its final objective drift rate. If α̇ < 0, it means the sate-
llite drifts more slowly than its final objective drift rate,
and only when α̇ = 0, it means that the satellite drifts
at the final objective drift rate.

3.1 Analysis of initial orbit characteristics of
MEO and IGSO satellites

Normally, for MEO and IGSO satellites, irrespective of
whether there are errors between the practical initial
orbit and the designed initial orbit, orbit control is
always necessary because of the requirements of orbit
transfer (usually, from an initial larger elliptic orbit to
an approximate circle one).

1. The initial orbit altitude of the satellite entirely
exceeds the altitude range of the theoretical design
orbit, as shown in Fig. 2(a). The quasi-optimized
strategy is to continuously to decelerate to the satel-
lite until both the perigee and the apogee altitudes
meet the requirement. The most efficient chance
is when the satellite is around the perigee where
the thrust is in the local horizontal plane and the
orientation of the thrust is anti-collinear to the
velocity. After about several decelerations, manoeu-
vres to the satellite are implemented in the same
perigee. For simplicity, two times of deceleration
are shown here: the initial perigee will become
the apogee and the new perigee altitude will then
meet the design requirement. The last step (which
may need several similar steps in practice) of the
application is to implement the last deceleration
to the satellite in the new perigee. In the end, the
orbit shape of the satellite will become approxi-
mately circular, and all orbit elements can meet
the design requirements for the objective orbit of
the satellite.

2. The initial orbit altitude of the satellite partly
exceeds the altitude range of the theoretical design
orbit. In this case, the quasi-optimized strategy
increases the perigee altitudes and decreases the
apogee altitudes until the circular MEO/IGSO
orbit is reached. First, the continuous accelera-
tion to the satellite (in the apogee, i.e. increasing
the perigee altitude continually) can be imple-
mented repeatedly when the satellite is around the
apogee where the thrust is in the local horizon-
tal plane and it points toward the same direction
of the satellite flight direction. Second, when the

perigee altitude meets the orbit design require-
ments, the necessary manoeuvre that decrease the
initial apogee altitude must be implemented in the
new perigee, where the orientation of the thrust
must be anti-collinear to the velocity. Finally, the
satellite’s orbit will also take on an approximately
circular contour (usually, this is also the objective
orbit).

3. The initial orbit altitude of the satellite is entirely
smaller than the altitude of the theoretical design
orbit. The schematic diagram of this case is shown
in Fig. 2(b). In this case, the altitude of the perigee
and the apogee is increased continuously until the
MEO/IGSO circular orbit is reached. Each time of
acceleration manoeuvre to the satellite is imple-
mented in the apogee because the initial perigee
may eventually become an apogee after several
rounds of acceleration; however, it is also possi-
ble that all orbit acceleration controls are imple-
mented in almost the same position, and usually it

Fig. 2 Schematic diagram of the initial orbit character-
istics of an MoEO/IGSO satellite: (a) Initial orbit
altitude entirely exceeds the design orbit altitude;
and (b) Initial orbit altitude is entirely smaller
than the design orbit altitude
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Fig. 3 Logic diagram for FAM application in orbit
manoeuvre

is around the apogee. In this kind of orbital con-
trol, the orientation of the motor thrust is almost
always in the local horizontal and is collinear
to the velocity around the apogee, and thus the
eccentricity becomes smaller and smaller until the
objective circular orbit of the MEO/IGSO satellite is
reached.

Especially, when the initial orbit altitude at the
apogee is equal to the objective orbit altitude, almost
every manoeuvre will be implemented near this ini-
tial apogee. According to the analyses mentioned
above, obviously, irrespective of the kind of initial
orbit used for the MEO/IGSO satellite, the eccentric-
ity parameters must be satisfied after the whole orbit
manoeuvres task is completed under the orbit alti-
tude constraint. The function approximation method
(FAM) can be applied perfectly in the strategies design
of the MEO/IGSO satellite.

3.2 Simulation procedure for parameters
calculation in orbit manoeuvre

For the general objective orbit design about MEO and
IGSO satellites, the semi-major axis a is often used
as the constraint condition to solve the optimiza-
tion problem for the orbit manoeuvre in the orbital
plane, and the eccentricity e is selected as the objective
variable or function so that its value becomes min-
imum when the orbit semi-major axis a is equal to
the objective semi-major axis aobj finally. The main

procedure of one orbit manoeuvre, for FAM to be
applied in the control strategies design of MEO and
IGSO satellites, is introduced as follows.

1. Initialization: obtain the initial orbital elements and
all the constants required for the orbit manoeu-
vre calculation, and then transfer these orbital
parameters to the selected computational coor-
dinate system that is suitable for the integrals of
equations (7) to (13).

2. According to the constraint of the time interval
between two orbit manoeuvres and the longest time
limit �tmax for the motor to continuously work in
each orbit manoeuvre, two different initial times
t1 and t2 can be treated as the boundary points of
the time range for searching the optimal start time
of each orbit manoeuvre. Generally, the time inter-
val �t12 between t1 and t2 must be longer than the
�tmax, and so the �tmax may be larger than one-half
the orbit time period, and the optimal start time
for the manoeuvre motor to work can be obtained
between the initial time t1 and t2 by the following
calculation.

3. Calculate three different objective elements of an
orbit, which correspond to three different start
time parameters t1, t2, and t0 (where t0 = (t1 +
t2)/(2)) for an orbit manoeuvre, respectively. This
can be accomplished using the numerical inte-
gration in the dynamics equations for satellite
orbit manoeuvre under a pre-determined con-
straint condition, and three different eccentric-
ity parameters e1, e2, and e0 can be obtained,
respectively. For the MEO/IGSO satellite, the con-
straint condition is the objective semi-major axis
of the satellite. Here, aj

obj(j = 1, 2, . . . Jmax) indicates
the objective semi-major axis of the jth orbit
manoeuvre.

4. In terms of the calculated three points (t1, e1),
(t0, e0), and (t2, e2) in the plane t − e, the unique
conic shape can be determined, and all the coef-
ficients of this parabola can also be obtained by
calculation.

5. Calculate the extreme point of this parabola and
obtain the time variable tm at the minimum point.
According to the dynamics equations (7) to (13),
which are used to describe the satellite orbit
manoeuvre, the eccentricity em after orbit manoeu-
vre can be obtained by numerical integration of
these dynamics equations. Here, the integration
start time is the time tm; the calculation process
of em by numerical integration is similar to that
described in step 3. Thus, these three new time
parameters points t∗

1 , t∗
0 , and t b

2 ox∗, all together with
the corresponding orbit eccentricity parameters e∗

1 ,
e∗

0 , and e∗
2 , can be selected from points (t1, e1), (t2, e2),

(t2, e2), and (tm, em) with the aid of the function
approximation method described above. Further-
more, the three new points must meet the following
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conditions

t∗
1 < t∗

0 < t∗
2 (18)

e∗
1 > e∗

0 < e∗
2 (19)

|t∗
2 − t∗

1 | < |t2 − t1| (20)

6. Repeat the above steps 4 and 5 until the following
condition is satisfied

|t∗
2 − t∗

1 | < ε (21)

And then, the ideal start time tost, for the orbit
manoeuvre, can be obtained by the following
expression

tost = (t∗
1 + t∗

2 )

2
(22)

This time will be used to calculate all other related
orbit parameters. The eccentricity em after orbit
manoeuvre can be obtained when the absolute
error between the current semi-major axis a and
the objective semi-major axis a(j)

obj of the jth orbit
manoeuvre is satisfied. The convergence criterion
is set and must be satisfied. Otherwise the time
variable tm at the next minimum point has to be
calculated again, and the theoretical orbit eccen-
tricity after orbit manoeuvre can be obtained by
solving the dynamics equations set (7) to (13) under
the imposed initial condition iteratively. This itera-
tive process ends when the convergence criterion is
satisfied.

Irrespective of the kind of satellite (MEO or IGSO),
considering that the numerical integration process
for the dynamics simulation in every orbit manoeu-
vre is almost similar, the calculation process of every
orbit manoeuvre for the MEO or IGSO satellite will
not be repeatedly mentioned here. However, after Jmax

times of orbit manoeuvres, the final objective orbit can
be obtained successfully, and the main procedure is
shown in Fig. 3.

4 SIMULATION RESULT DISCUSSIONS

In this article, the application of FAM in the opti-
mal strategy design for an MEO/IGSO satellite orbit
manoeuvre is carried out with the aid of a numerical
simulation. For the simulation calculation of the opti-
mality design of orbit control strategies of MEO/IGSO
satellites to be implemented successfully, it is nec-
essary to make some assumptions about the initial
parameters of an MEO/IGSO satellite. The main orbit
parameters, which will be used in the numerical sim-
ulations of the orbit manoeuvres of MEO and IGSO
satellites, are shown in Table 1, and some main param-
eters of a satellite thrust system are also listed in

Table 1. For simplification, the motor thrust and
specific are also proposed to be kept constant dur-
ing the orbit manoeuvre of the MEO/IGSO satellite.
However, the mass variation of both MEO and IGSO
satellites must be considered in the simulation pro-
cess of orbit manoeuvre. In this article, a more typical
kind of initial orbit is used to simulate the process
of control strategies optimization, and a discussion of
some results follows.

1. MEO satellite manoeuvre simulation using FAM:
according to all the assumptions, constraints, and
computational model described above, the opti-
mal control strategies for orbit manoeuvres of
MEO satellite can be obtained conveniently. An
MEO satellite’s main orbital variation in three orbit
manoeuvres is shown in Table 2. From Table 2, it
is obvious that the eccentricity of MEO satellite
decreases continually and becomes nearly zero at
the end of the final manoeuvre and the final object
orbit is obtained successfully.

2. IGSO satellite manoeuvre simulation using FAM:
as a similar simulation to MEO satellite, the con-
trol strategies for IGSO satellites to manoeuvre

Table 1 Assumed initial and objective orbit elements
and thrust system parameters of MEO and IGSO
satellites

MEO IGSO

F (N) 500.0 600.0
ISP (s) 3000.0 3000.0
Ms (kg) 2500.0 3000.0

Initial Objective Initial Objective
orbit orbit orbit orbit

a (m) 17 215 000 27 960 000 28 000 000 42 165 000
e 0.62 → 0.00 0.51 → 0.00
i (rad) 1.0472 1.0472 1.0472 1.0472
λG (rad) 0.6370 – 2.1049 –
ω (rad) 2.9775 – 2.9932 –
M (rad) 0.3578 – 2.8135 –

‘–’ means null in Tables 1–3.

Table 2 Main parameters and their variations at
the beginning and the end of the whole
manoeuvre to a MEO satellite

�a (m) e λG (rad) M (rad)

tbeg 17 215 000 0.620 3.0222 2.7142
�1 2 890 700 −0.231 −0.2073 0.7187
�2 6 274 100 −0.328 −0.1876 0.4821
�3 1 580 100 −0.061 −0.0270 0.0578
tend 27 960 000 0.000 3.0365 3.1660

Ms (kg) �t (s) �v (m/s) α̇ (rad/rev)
tbeg 2500.000 – – 4.6445
�1 479.794 2852.72 631.052 −0.4316
�2 431.305 2565.51 711.204 −1.0396
�3 60.314 369.34 114.603 −0.2829
tend 1528.587 – – 2.8904
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Table 3 Main parameters and their variations at
the beginning and the end of the whole
manoeuvre to an IGSO satellite

�a (m) e λG (rad) M (rad)

tbeg 28 000 000 0.506 1.4837 3.0011
�1 4 600 000 −0.212 −0.1447 0.2419
�2 8 900 000 −0.278 −0.1372 0.1735
�3 665 000 −0.016 −0.0073 0.0079
tend 42 165 000 0.000 1.4504 3.1453

Ms (kg) �t (s) �v (m/s) α̇ (rad/rev)
tbeg 3000.000 – – 2.8831
�1 395.895 1984.34 423.300 −0.8713
�2 375.388 1881.90 465.592 −1.8636
�3 18.366 102.58 24.749 −0.1482
tend 2210.351 – – 0.0000

can be obtained by numerical calculation and the
orbital variation of the IGSO satellite in three orbit
manoeuvres is shown in Table 3. Obviously, after
three orbit manoeuvres are completed, the eccen-
tricity of the IGSO satellite decreases to nearly zero
and the longitude drift rate decreases to 0.0 rad/rev.
All these indicate that the FAM can be used to
simulate the IGSO satellite manoeuvre quickly and
accurately.

3. Simulation result comparison between FAM and
ES. Considering that the final end time for MEO and
IGSO satellites to finish all manoeuvres is probably
different when the orbit manoeuvre is simulated
in two different algorithms, it is generally mean-
ingless to compare two orbit parameters that are
in the same kind but in different epoch times.
Thus, every orbit parameter in Table 4 has to be
adjusted to the same time by orbit extrapolation.

Here, according to the simulation results from two
algorithms, the later final end time in two kinds of
results is selected as the benchmark time for orbit
extrapolation.

As shown in Table 4, 11 parameters are selected to
reflect the difference of simulation results between
the function approximate method (FAM) and ES; for
every parameter, the error is equal to that the value
by FAM minus the value by ES. It is obvious that the
angle error for satellite attitude longitude and latitude,
footprint geographic longitude, and latitude based
on FAM and ES are slightly larger than that of incli-
nation and variation in terms of anomaly. However,
this kind of angle error is mainly brought about by
the difference in the manoeuvre start and end time
between FAM and ES, and their maximum error is only
slightly higher than 8.7266 × 10−4 rad, and this kind
of difference for MEO and IGSO satellites manoeuvre
simulation results is insignificant. The semi-major axis
error in the simulation results of two methods is less
than 200 m. The maximum error of the longitude drift
rate is about 3.4906 × 10−5 rad/rev. For other param-
eters, such as propellant consumption, duration for
manoeuvre motor to run and velocity increment, the
differences between FAM and ES are very small. The
main reason for the error between the two meth-
ods is that it is not possible for the variable interval
between discrete points to be divided into infinitely
small when ES is applied. From these errors analy-
ses and the successful application of ES, it is clear
that the function approximate method (FAM) can be
applied for designing control strategies for MEO and
IGSO satellites.

Table 4 Main parameters difference between FAM and ES at the end of the whole manoeuvre
to MEO and IGSO satellites

Output parameters in the end
of whole manoeuvre Error on MEO (FAM–ES) Error on IGSO (FAM–ES)

α (rad) Attitude longitude −0.000 75 −0.000 66
4.341 04–4.341 79 2.861 82–2.862 48

δ (rad) Attitude latitude −0.000 44 −0.000 37
1.031 16–1.031 60 1.164 94–1.165 31

λ (rad) Geographic longitude of satellite footprint −0.000 98 −0.000 75
2.968 18–2.969 16 1.330 59–1.331 34

ϕ (rad) Geographic latitude of satellite footprint −0.000 54 −0.000 44
−0.118 02 − (−0.117 48) −0.069 83 − (−0.069 39)

�a (m) Semi-major axis variation 190 130
10 745 000–10 744 810 14 165 000–14 164 870

�e (�e = eend − ebeg) Eccentricity variation −0.0008 −0.0007
−0.620 − (−0.6186) −0.5056 − (−0.5049)

�ω (rad) Variation in argument of perigee 3.4906 × 10−5 5.2360 × 10−5

0.001 28–0.003 40 0.005 81–0.005 76
α̇ (rad/rev) Longitude drift rate −3.4906 × 10−5 −3.4906 × 10−5

2.890 39–2.890 42 0.0–3.4906 × 10−5

�m (kg) Propellant consumption −0.109 −0.120
970.922–971.031 790.649–790.751

�T (s) Total manoeuvre time −0.53 −0.60
5786.77–5787.30 3968.82–3969.42

�v (m/s) Velocity increment −0.180 −0.140
1455.90–1456.08 913.641–913.781
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Table 5 Comparison of CPU consumption between
FAM and ES

CPU consumption (s)
Time step length in orbit

manoeuvre simulation (s) FAM ES

MEO 10 68 795
6 106 1571

IGSO 10 82 1693
6 129 2689

In this article, the base time step length for an orbit
manoeuvre simulation using ES is about 10 s, and
the same time span (about half one orbit period) is
selected for the time variable. It is worth pointing
out that the ES requires at least 10 times more CPU
than the function approximate method does for all the
manoeuvres of an MEO satellite, and needs at least 20
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Fig. 4 Simulation results of control strategies for MEO
and IGSO satellites to manoeuvre: (a) orbit con-
trol strategy for MEO satellite; and (b) orbit
control strategy for IGSO satellite

times more CPU time than the function approximate
method does for all the maneuvers of an IGSO satellite,
as shown in Table 5. Moreover, the precision for the
final result of a simulation manoeuvre by ES is not very
accurate. Especially, the CPU consumption by using
ES will increase dramatically when a higher precision
is required for the simulation of the MEO and IGSO
satellites. In contrast, the CPU consumption increases
only slightly when the FAM is used when a higher
precision simulation is needed in orbit manoeuvre
simulation. Hence, the FAM has more advantages than
ES, in particular in CPU consumption, corresponding
to the same simulation precision.

In Fig. 4(a) it is shown that the geocentric radius pro-
jection of an MEO satellite in the orbit plane varies
with time during the whole orbit manoeuvre; there
are four projection circles in this figure. The smallest
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Fig. 5 Some parameters variation with time during all
manoeuvres of MEO and IGSO satellites: (a)
eccentricity of MEO satellite varies during all
maneuvers; (b) true anomaly of IGSO satellite
varies with the time during all orbit maneuvers;
and (c) geocentric distance of IGSO satellite varies
with the time during all orbit maneuvers
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circle represents the initial case before all manoeu-
vres, obviously in that time the orbit eccentricity is
the largest, and this can also be found directly in
Fig. 5(a), which shows that the eccentricity varies grad-
ually from e = 0.62 to approximately e = 0.0 during
all orbit manoeuvres. The other three circles from
small to large, respectively, display an orbit shape vari-
ation, i.e. from a larger eccentricity ellipse orbit to
an approximately circular orbit (see from Fig. 4(a)).
All these are almost similar to an IGSO satellite (see
Fig. 4(b)). However, the semi-major axis variation in
the last orbit control is slightly smaller, and so the last
two circles almost overlap, and this can also be seen in
Fig. 5(c), which shows that the radius varies with time
during all manoeuvres. From this figure, it can easily
be found that the variation of geocentric distance r
becomes smaller and smaller with time after several
rounds of apogee control to satellite, and in the end
the IGSO satellite enters the designed objective orbit
(aobj = 42165 km).

Figure 5(b) shows the variation of true anomaly
with time. From this figure, it is obvious that the
curve shape of the true anomaly variation with time
gradually becomes one approximate straight line, and
this means that the angle velocities of IGSO satellites
will become regular too. According to the simulation
results of MEO and IGSO satellites, the FAM is well
selected to ensure that every control to be imple-
mented near the apogee and the consumption of the
propellant also becomes the smallest. For MEO and
IGSO satellites, the application of FAM is simple and
efficient. It can ensure that MEO and IGSO satel-
lites enter their theoretical orbit on the most optimal
control strategies.

5 CONCLUSION

Design of the optimal control strategies for MEO and
IGSO satellites plays an important role in finishing
all orbit manoeuvre tasks of these satellites in the
early flight phase; it is the key factor to ensure that
these satellites can be successfully put into the normal
orbits. In this article, one type of FAM is introduced and
applied in the control strategies simulation to MEO
and IGSO satellites. Compared with the conventionally
adopted multidimensional ES, this function approxi-
mation method described in this article has several
main advantages.

1. It is simple to apply, and there is no need to divide
the system variable into a series of discrete points.

2. Compared with the ES, this function approxima-
tion method has the same excellent precision in the
control strategy optimization design.

3. In terms of the computational efficiency, this
method needs much less CPU time and it depends
much less on the capacity of the computer.With the
aid of this algorithm, the optimal control strategy

for orbit manoeuvre of MEO and IGSO satellites can
be achieved quickly and efficiently.

4. This method can be easily extended to other satel-
lites series such as GEO and LEO satellites.

In the next phase, the control strategy optimiza-
tion issue for a high-dimensionality (6 DOF) satellite
to manoeuvre with complex constraints will be stud-
ied, which involves solving a non-linear program using
a linearization of the cost function, dynamics, and
constraints of the initial feasible solution; it includes
non-linear attitude dynamics, difficult non-convex
constraints, and so on.
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APPENDIX

Notation

a semi-major axis (m)
aobj final objective semi-major axis (m)
a(j)

obj objective semi-major axis for the jth
manoeuvre (m)

e eccentricity
ebeg eccentricity at the beginning of the whole

orbit manoeuvre
eend eccentricity at the end of the whole orbit

manoeuvre
F thrust value of the orbit manoeuvre motor

(N )
F thrust vector of the orbit manoeuvre motor

(N )
f true anomaly (rad)
g gravitational acceleration (m/s2)
i inclination (rad)
ISP specific impulse (s)
Jmax the maximum times of whole orbit

manoeuvres
k superscript

m current satellite mass (kg) or special
subscript (for example: tm, em)

M mean anomaly (rad)
Ms initial mass of satellite (kg)
n mean angular velocity (rad/s)
p semi-latus rectum (m)
r geocentric distance (m)
r radius vector of satellite from the geocentre

to the satellite (m)
rx x component of geocentric distance of

satellite in orbital plane (km)
ry y component of geocentric distance of

satellite in orbital plane (km)
tbeg beginning time of whole manoeuvres (s)
tend end time of whole manoeuvre (s)
x x component of the radius vector of satellite

in geocentric equator inertial coordinate
system (m)

y y component of the radius vector of satellite
in geocentric equator inertial coordinate
system (m)

z z component of the radius vector of satellite
in geocentric equator inertial coordinate
system (m)

α attitude longitude (i.e. geographic longitude
corresponding to the orientation of motor
thrust) (rad)

α̇ longitude drift rate (rad/rev)
δ attitude latitude (i.e. geographic latitude

corresponding to the orientation of motor
thrust) (rad)

�a controlled variable of orbit semi-major axis
(m)

�m variation of satellite mass (kg)
�i parameter variation during the ith orbit

manoeuvre (i = 1, 2, 3, . . ., Jmax)
�t time length (s)
�T total manoeuvre time length (s)
�v velocity increment (m/s)
�ω variation in argument of perigee (rad)
ε convergence criterion for optimal start time

of orbit manoeuvre (s)
ε1 convergence criterion for final objective

semi-major axis (m)
λ footprint geographic longitude (rad)
λG geographic longitude of the ascending node

(rad)
ϕ footprint geographic latitude (rad)
ω argument of perigee (rad)
� right ascension of the ascending node

(rad)
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