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Abstract 

 
System reliability optimization is often faced with imprecise and conflicting goals such as reducing the cost of the 
system and improving the reliability of the system. The decision making process becomes fuzzy and multi-objective. 
In this paper, we formulate the problem as a fuzzy multi-objective nonlinear program (FMOOP). A fuzzy multi-
objective genetic algorithm approach (FMGA) is proposed for solving the multi-objective decision problem in order 
to handle the fuzzy goals and constraints. The approach is able flexible and adaptable, allowing for intermediate 
solutions, leading to high quality solutions. Thus, the approach incorporates the preferences of the decision maker 
concerning the cost and reliability goals through the use of fuzzy numbers. The utility of the approach is 
demonstrated on benchmark problems in the literature. Computational results show that the FMGA approach is 
promising. 
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1. Introduction 
Reliable industrial systems are essential for productivity and effectiveness (Kuo and Prasad, 2000; Huang et al., 
2005; Wu et al., 2011). As such, these systems are expected to be fully available and operational most of the time so 
as to maximize productivity. However, an industrial system is composed of a number of complex components, such 
that the probability of the system survival over time depends directly on the characteristics of its constituent 
components. Failure is inevitable in industrial systems so much that system reliability optimization has become a 
very important subject matter in industry. Therefore, the development of effective methods for improving the overall 
system productivity is imperative. The ever-increasing need for highly reliable systems necessitates the search for 
improved methods for system reliability optimization. In system reliability design, there are two typical approaches 
that can enhance system reliability, namely: (i) using redundant elements in the subsystems of the system, and (ii) 
increasing the reliability of the components that constitute the system. 
 
Industrial systems are designed under several restrictions, including cost, weight, and volume of the resources. With 
limited resources, the major aim is to find a trade-off between reliability and other resource constraints (Huang et al., 
2005). One feasible way is to maximize system reliability via redundancy and component reliability choices, a 
problem called reliability-redundancy allocation problem (Kuo and Prasad, 2000). However, in designing a highly 
reliability system, the main problem is to find a trade-off between reliability enhancement and resource 
consumption. 
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Real life reliability optimization problems are inundated with several difficulties: (i) the management goals and the 
constraints are often described with some imprecision or vagueness; (ii) the coefficients or parameters as understood 
by the decision maker may be characterized with some vagueness; and, (iii) the available historical data, collected 
under specific conditions, are often imprecise and vague. Variability and changes in the manufacturing processes 
that produce the components of the systems lead to uncertainties in component reliability. Probabilistic approaches, 
which essentially deal with uncertainty arising from randomness, cannot adequately address the inherent 
uncertainties in the data. As such, the concept of fuzzy reliability is more promising (Onisawa, 1990; Cai et al., 
1991; Chen, 1994; Chen, 2001). Thus, while probabilistic approaches deal with uncertainties arising from 
randomness, fuzzy approaches seek to address the uncertainty that arises from vagueness of human judgment and 
imprecision due to system complexity (Bing et al., 2000; Duque and Morifiigo, 2004; Mohanta et al., 2004; Bag et 
al., 2009; Huang et al., 2005; Garg and Sharma, 2012; Garg and Sharma, 2013). 
 
Bellman and Zadeh (1970) introduced the fuzzy optimization approach, providing aggregation operators for 
combining fuzzy goals and fuzzy decision space. Since the inception of the fuzzy optimization approach, numerous 
methods and applications have been proposed to solve optimization problems that involve vagueness and ambiguity 
(Slowinski, 1998; Delgado et al., 1993; Huang, 1997; Huang et al., 2006; Mahapatra and  Roy, 2006). These 
approaches treat parameters (coefficients) as fuzzy numerical data. Apart from the fuzziness of the system reliability 
problem, the presence of conflicting, nonlinear and ambiguous objectives further complicates the problem. In such a 
fuzzy environment, with multiple objectives, simultaneous reliability maximization and cost minimization calls for a 
cautious trade-off approach. Thus, finding the optimal solution is almost impossible. Metaheuristic and other 
intelligent methods are a potential application method for such complex problems (Coit and Smith, 1996; Chen and 
You, 2005; Michalewicz, 1996). Therefore, the most appropriate procedure is to cautiously find a set of solutions 
that satisfy the decision maker’s expectations to the highest possible degree. Clearly, this calls for an interactive 
fuzzy multi-objective optimization approach which incorporates the preferences and expectations of the decision 
maker, allowing for human (expert) judgment. Iteratively, it becomes possible to obtain the most satisfactory 
solution in a fuzzy environment. 
 
In light of the above issues, the purpose of this paper is to address the problem of system reliability optimization in a 
fuzzy environment characterized with multiple conflicting objectives. Therefore, in addressing this problem the 
objectives of this research are as follows: 
 

1. to develop a fuzzy multiple-objective nonlinear programming model for the problem; 
2. to use an aggregation method to transform the fuzzy model to a single-objective optimization problem; and, 
3. to use a global metaheuristic optimization method to obtain a set of acceptable solutions. 

 
In this work, we use the max-min operator to aggregate the membership functions of the objective functions while 
incorporating the decision maker’s judgment. To this end, we define our acronyms, notations and assumptions. 

 
Acronyms: 
FMGA  Fuzzy multi-objective genetic algorithm 
GA   Genetic algorithm 
MODA  Multi-objective decision analysis 
MINLP  Mixed Integer Nonlinear Programming 
RRAP  Reliability-redundancy allocation problem 
FMOOP  Fuzzy multi-objective optimization problem 
 
Notation: 
m the number of subsystems in the system 
ni the number of components in subsystem i, 1 i m  
n ≡(n1, n2, …, nm), the vector of the redundancy allocation for the system 
ri the reliability of each component in subsystem i, 1 i m  
r ≡(r1, r2, …, rm), the vector of the component reliabilities for the system 
qi =1 - ri, the failure probability of each component in subsystem i, 1 i m  



 
315 

 

Ri(ni) =1 , in
iq the reliability of subsystem i, 1 i m  

Rs the system reliability 
gi the ith constraint function 
wi the weight of each component in subsystem i, 1 i m  
vi the volume of each component in subsystem i, 1 i m  
ci the cost of each component in subsystem i, 1 i m  
V the upper limit on the sum of the subsystems’ products of volume and weight 
C the upper limit on the cost of the system 
W the upper limit on the weight of the system 
b the upper limit on the resource 
 
Assumptions 
1. The availability of the components is unlimited; 
2. The weight and product of weight and square of the volume of the components are deterministic; 
3. The redundant components of individual subsystems are identical; 
4. Failures of individual components are independent; 
5. All failed components will not damage the system and are not repaired. 
 
 
2. System Reliability Optimization 
The system reliability optimization problem is a maximization problem subject to multiple linear constraints. Thus, 
the problem can be expressed as a mixed integer nonlinear programming problem. In this study, we present a 
reliability redundancy problems commonly found in the literature, particularly the series system (Kuo and Prasad, 
2000; Hsieh et al. (1998). The series system reliability problem consists of five subsystems as reported in the 
literature as shown in Figure 1. The problem can be formulated as a nonlinear mixed integer programming problem 
as follows: 
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Figure 1: The series system 
 
We present the proposed fuzzy multi-objective optimization approach, based on genetic algorithms in the next 
section. 
 
3. Fuzzy Multi-objective Optimization Approach 
In a fuzzy environment, the objective goal, the constraints and the consequences of the decision taken are inherently 
imprecise. Thus, in practice, the decision maker seeks to consider a trade-off between reliability, cost, weight and 
volume. For instance, a common approach may be to maximize reliability and to minimize cost, simultaneously. In 
this connection, the multi-objective formulation is obtained by transforming constraints to objective functions, such 
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that reliability and other costs functions can be optimized jointly. This is achieved through the use of membership 
functions for the objective functions. This makes the approach more applicable and adaptable to the real life human 
decision process. Therefore, the fuzzy multi-objective optimization problem (FMOOP) can generally be represented 
by the following; 
 

(P2) Min   ( )

Subject to:

( ) 0 1,2...,

1,2,...,

   

  



 z

l u
q q q

f x

g x or or z p

x x x q Q

 

 

where, 1 2( , ,..., ) , T
Qx x x x is a vector of decision variables that optimize a vector of objective 

functions, 1 2( ) { ( ), ( ),..., ( )}   
df x f x f x f x  over the decision space X; 1 2( ), ( ),..., ( )df x f x f x  are d individual objective 

functions; l
qx  and u

qx are lower and upper bounds on the decision variable xq, respectively. 

 
3.1 Membership Functions 
Fuzzy set theory permits gradual assessment of membership, defined in terms of a suitable membership function that 
maps to the unit interval [0,1]. A number of membership functions such as Generalized Bell, Gaussian, Triangular 
and Trapezoidal can be used to represent the fuzzy membership. Though various functions can be used, it has been 
shown that linear membership functions can provide equally good quality solutions with much ease Sakawa (1993). 
The triangular and trapezoidal membership functions have widely been recommended (Chen, 2001; Delgado et al., 
1993). Therefore, in this study, we use linear functions to define the fuzzy membership functions of the objective 
functions. 
 
Let mt and Mt denote the minimum and maximum of the feasible values of each objective 

function ( )tf x , 1,2,...,t h , where h is the number of objective functions. Let 
tf

  denote the membership function 

corresponding to the objective function tf . Then, the membership function corresponding to minimization and 

maximization can be defined, based on the satisfaction degree. Figure 4 illustrates the linear membership functions 
defined for two optimization cases, that is, minimization and maximization cases. We define the membership 
functions for both cases. 
 

 
Figure 4: Fuzzy membership function for ft(x) 

 
For the case of minimization, the linear membership function can be formulated according to the following 
expression; 
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Clearly, the function ( )
tf

x is monotonically decreasing in ( )tf x . On the other hand, for the case of maximization, 

the membership function can be defined as follows; 
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It can be seen from this analysis that ( )

tf
x is a monotonically increasing function of ( )tf x . The next step is to 

formulate the corresponding crisp model. The use of fuzzy evaluation in FMGA allows the algorithm to accept 
inferior which would otherwise be infeasible when using conventional crisp formulation. The advantage of this 
approach is that it makes the algorithm robust enough to cope with any infeasibility. Allowing the FMGA to pass 
through inferior solutions gives the algorithm speed and flexibility, which ultimately improves the search power of 
the optimization approach. 
 
3.2 Corresponding Crisp Model  
To further incorporate the decision maker’s preferences and to enhance the interactive flexibility of the model, a set 
of user-defined weights w = {w1, w2,…,wh} are introduced. We convert the multi-objective system reliability 
optimization problem into a single objective optimization problem (Huang, 1997): 
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Here, 

1 2
( ) { ( ), ( ),..., ( )}

t hf f f fx x x x    signifies a set of fuzzy regions that satisfy the objective functions; λt 

denotes the degree of satisfaction of the tth objective, x is a vector of decision variables, wt denotes the weight of the 
tth objective function suggested by the expert judgment of the user or decision maker, and the symbol “ ” is the 

aggregate min operator or the intersection operator. For instance, the expression  1

1

( ) 1x

w

  gives the minimum 

between 1 and 1

1

( )x

w

 . Though the values of λ1(x) are in the range [0,1], the value of 1

1

( )x
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 may exceed 1, howbeit, by 

the min operator the final value of  1

1

( ) 1x

w

  will always lie in [0,1]. To solve, the optimization problem P5, we 

employ the genetic algorithm metaheuristic approach, a global optimization approach inspired by the theory of 
genetics and philosophy of natural selection and survival of the fittest (Goldberg, 1989; Holland, 1975). 
 
3.3 Genetic Algorithm Approach 
Genetic algorithm, first introduced by Holland (1975), is a stochastic global optimization technique that attempts to 
evolve a population of candidate solutions by giving preference of survival to quality solutions, whilst allowing 
some low quality solutions to survive in order to maintain a level of diversity in the population. Each candidate 
solution is coded into a string of digits, called chromosomes. New offspring are obtained from probabilistic genetic 
operators, such as selection, crossover, mutation, and inversion (Goldberg, 1989). A comparison of new and old 
(parent) candidates is done based on a given fitness function, retaining the best performing candidates into the next 
population. Thus, characteristics of candidate solutions are passed from generation to generation through 
probabilistic selection, crossover, and mutation. 
 
Representation 
In our implementation, the FMGA for the reliability problem chromosome uses the variable vectors n and r. In this 
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study, a real-coded GA is implemented, where the integer variable ni is coded as a real variable and transformed to 
the nearest integer value upon evaluating the objective function. 
 
Initialization and Evaluation 
An initial population of the desired size, pop, is randomly generated randomly from the solution space. FMGA then 
computes the objective function for each string. According to the overall objective function in model P4, the 
objective function is always in the range [0,1]. 
 
Selection and Recombination 
A number of selection strategies have been suggested by Goldberg (1989), such as deterministic sampling, 
remainder stochastic sampling with/without replacement, stochastic tournament, and stochastic sampling 
with/without replacement. The remainder stochastic sampling without replacement is preferred in this study. In this 
strategy, each chromosome j is selected and stored in the mating pool according to the expected count ej; 
 

1

j
j pop

jj

f
e

f pop





            (3) 

 
Here, fj is the objective function value of the jth chromosome. Each chromosome receives copies equal to the integer 
part of ei, that is, [ei], while the fractional part is treated as success probability of obtaining additional copies of the 
same chromosome into the mating pool. 
 
Crossover operator 
The crossover operator is applied to selected parent chromosomes for the purpose of exchanging genetic information 
between the selected chromosomes, thereby producing new offspring. Here, we use the arithmetic crossover 
operator as in Michalewicz (1996) which defines a linear combination of two chromosomes. A crossover probability 
of 0.45 was assumed in the application. For instance let p1 and p2 be the selected parents, and α represent a random 
value in [0,1], then the resulting offspring, q1 and q2, are given by the following expression; 
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Mutation Operator 
The mutation operator is applied to every new chromosome, at a very low probability, so as to maintain diversity of 
the population and avoid premature convergence. In our implementation we used uniform mutation with a mutation 
rate of 0.035. 
 
Replacement Strategy 
In every generation, new offspring are created, which implies that they may be better or worse. Therefore, 
nonperforming chromosomes are replaced with better ones using a replacement strategy. A number of replacement 
strategies have been suggested in the literature, including probabilistic replacement, crowding strategy, and elitist 
strategy (Michalewicz, 1996). A combination of these has been implemented in this study. 
 
Termination Criteria 
Termination conditions are used to stop the FMGA iteration in two ways: when the number of generations exceeds 
the preset maximum iterations, or when average change in the fitness of the best solution over specific generations is 
less than a small number, which is 10-6. 
 

Algorithm 1: Pseudo code for FMGA 
1: randomly generate initial population 
Repeat 

2: evaluation of fitness, objective: f(x), x = (x1, x2,…,xh) 
3: selection strategy 



 
319 

 

4: crossover 
5: mutation 
6: replacement 
7: advance population; oldpop = newpop 

Until (termination criteria is satisfied) 

Figure 2: Pseudo code for the overall FMGA 
The overall structure of the FMGA for the system reliability problems is summarized in the pseudo code listed in in 
Figure 2. The next section presents the comparative results of our FMGA computations based on the benchmark 
problems found in the literature (Kuo and Prasad, 2000; Hsieh et al., 1998; Hikita et al., 1992). 
 

4. Numerical Experiments 
In order to evaluate the utility of our fuzzy FMGA for solving mixed integer reliability problems, the set of three 
reliability systems presented in Section 2 will be solved using the approach. We use the parameter values in Kuo and 
Prasad (2000) and to define the specific instances of these problems as shown in Tables 1. 
 

Table 1: Basic data used in series system 
 

i 105αi βi wivi
2 wi V C W 

1 2.330 1.5 1 7 110 175 200 
2 1.450 1.5 2 8 110 175 200 
3 0.541 1.5 3 8 110 175 200 
4 8.050 1.5 4 6 110 175 200 
5 1.950 1.5 2 9 110 175 200 

 
The parameters of the FMGA were set as follows: The crossover and mutation were set at 0.45 and 0.035, 
respectively. A two-point crossover was used in this application.  The population size was set to 20. The maximum 
number of generations or iterations was set at 150. This implies that the termination criterion is either limited to a 
maximum number of iterations or to the order of the relative error set at 10-6, whichever comes earlier. Specifically, 
whenever the best fitness f* at iteration t is such that |ft – f*| < ε is satisfied, then three best solutions are selected; 
where ε is a small number equal to 10-6. The FMGA was implemented in JAVA, and the program was run 25 times, 
while selecting the best 3 solutions out of the converged population. 
 
The FMOOP provided by formulation (P4) is used to solve benchmark problems in Kuo and Prasad (2000). A fuzzy 
region of satisfaction is constructed for each objective function, that is, objective functions corresponding to system 
reliability, cost, volume, and weight, which are denoted by λ1, λ2, λ3, and λ4, respectively. By using the constructed 
membership functions together with their corresponding weight vectors, we obtain the following equivalent crisp 
optimization formulation for our problem; 
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The weight set ω = {ω1, ω2, ω3, and ω4} was selected in the range [0.2,1], where the values of the weights indicate 
the bias towards specific objectives as specified by the expert decision maker. In particular, the weight set ω = 
[1,1,1,1] implies that the expert user prefers that there should be no bias towards any objective goal, that is, there is 
no preference at all. Every other case implies that there is some bias towards one or more specific objectives, and the 
relative importance of objectives is ranked accordingly. For instance, with a weight set defined by ω = 
[1,0.5,0.5,0.5], the preference is biased towards the region that is closer to the objective corresponding to reliability 
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than to the rest of the objectives that are equally ranked with weight value of 0.5. Therefore, the decision making 
process takes into account the decision maker’s preferences and choices based on expert opinion. In addition, the 
FMGA approach is a useful decision support tool that can provide a set of good solutions in an interactive manner, 
rather than prescribe a single solution. Furthermore, the approach enables the decision maker to specify the 
minimum and maximum values of objective functions in terms of reliability, cost, volume, and weight, denoted by 
f1, f2, f3, and f4, respectively. Table 2 provides a list of the selected minimum and maximum values of the objective 
functions, for the series system, the series-parallel and the complex (bridge) system. This approach makes the 
FMGA algorithm a more adaptable and flexible method for addressing specific problem situations while 
accommodating the expert user’s managerial preferences. Computational results and discussions are presented in the 
next section. 
 

Table 2. Minimum and maximum feasible values of objective functions 
 

 Series System 
 f1 f2 f3 f4 
Mi 1 180 120 210 
mi 0.6 60 5 100 

 
5. Results and Discussions 
This section presents the comparative results of the numerical experiments. The best three FMGA solutions are 
compared with the results obtained by other algorithms in the literature, for the series system, series-parallel system 
and complex bridge system. We specifically compare our results with those in Wu et al. (2011), Chen (2006) and 
Hsieh et al. (1998). 
 
Tables 3 shows the comparative numerical results in which the best three solutions of each problem compared 
against solutions from the literature. The results indicate that each of the three solutions is better than the solutions 
reported previous, specifically in terms of system reliability. In terms of cost, the solutions are no better than the 
previously reported solutions. However, the difference in cost is quite small. Though there are a few exceptional 
instances where the cost of the FMGA are slightly higher with differences in the order of 10-6, it can be seen that, 
overall, FMGA provides better solutions than the approaches reported previously. FMGA approach found high 
quality solutions, most of which are better than those previously recorded in the literature. In summary, the approach 
offers a number of practical advantages to the decision maker, including the following: 
 
 FMGA addresses the imprecise and fuzzy nature of the problem; 
 The method address the conflicting multiple objectives, giving a trade-off between the objectives; 
 The approach accommodates the decision maker’s preferences  in its procedure; 
 The method gives a population of alternative solutions for the decision maker, rather that prescribe a solution; 
 The method is practical, flexible and easily adaptable to specific problem situations. 

 
In view of the above advantages, FMGA is a useful decision support tool for the practicing decision maker in 
industrial system reliability optimization. 
 

Table 3: Comparison of best-3 FMGA solutions with other algorithms for series system 
 Best 3 FMGA Solutions Wu et al. (2011) Chen Chen (2006) Hsieh et al.(1998) 
No. (ri: ni) (ri: ni) (ri: ni)  (ri: ni) (ri: ni) 
1 (0.779401321:3) (0.77940279:3) (0.77939597:3) (0.78037307:3) (0.779266:3) (0.779427:3) 
2 (0.871839015:2) (0.87181554:2) (0.87183716:2) (0.87178343:2) (0.872513:2) (0.869482:2) 
3 (0.902877370:2) (0.90287257:2) (0.90288515:2) (0.90240890:2) (0.902634:2) (0.902674:2) 
4 (0.711415792:3) (0.71141514:3) (0.71140318:3) (0.71147356:3 (0.710648:3) (0.714038:3) 
5 (0.787779580:3) (0.78783097:3) (0.78780147:3) (0.78738760:3) (0.788406:3) (0.786896:3) 
       
Rs

 0.931682387 0.931682384 0.931682388 0.9316800 0.93167800 0.93157800 
Cs 175.0000000 175.0000000 175.0000000 174.99899 174.998441 174.878546 
Ws 192.4810818 192.4810818 192.4810818 192.48108 192.481082 192.481082 
Vs 83.00000000 83.00000000 83.00000000 83.000000 83.0000000 83.0000000 
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6. Conclusion 
In practice, decision makers concerned with system reliability optimization encounter problems of finding a 
judicious trade-off between maximizing reliability and minimizing cost to an acceptable degree of satisfaction. In 
such a fuzzy environment, the management goals and constraints are not known precisely. Moreover, the goals are 
often conflicting, which further complicates the reliability optimization problem. One most viable and useful option 
is to us a fuzzy satisficing approach that includes the preferences and expert judgments of the decision maker. We 
provided a multi-objective non-linear mixed integer program for addressing system reliability optimization 
problems. The fuzzy multi-objective model is transformed into a single-objective model which uses a fuzzy 
evaluation method. Genetic algorithm uses the fuzzy evaluation method to evaluate the fitness of individuals in each 
population at every generation. Numerical results demonstrate that the fuzzy multi-objective Genetic Algorithm 
approach is able to provide high quality solutions while accommodating the preferences of the user. 
 
This work is a useful contribution to practicing decision makers in the field of system reliability design. Practically 
speaking, FMGA approach provides a trade-off between management goals, contrary to single-objective approaches 
which seek to optimize system reliability only. Oftentimes, at design stage, the information required for system 
reliability design is imprecise and incomplete. To that effect, the problem becomes ill-structured such that reliance 
on expert information is inevitable. Using the FMGA approach, the vagueness and imprecision of the expert 
knowledge, at the design stage, can be addressed effectively while taking into account the multiple conflicting 
objectives. Furthermore, FMGA provides a population of good alternative solutions in an interactive manner, which 
offers the decision maker a wide choice of practicable solutions and an opportunity to consider other practical 
factors that cannot be included in the formulation. Overall, FMGA approach is a useful platform for decision support 
for solving system reliability design problems when the parameters, the management goals, the design constraints, 
and the impact of the possible alternative actions are not precisely known. Therefore, the approach gives a robust 
method for system reliability optimization. 
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