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Abstract 

 
The formulation and evaluation of renewable energy policies is a burning subject matter all over the globe. Policy 
makers seek to cautiously perceive information from the renewable energy market place so as to determine the 
dynamic factors, variables and policy parameters that influence the design of renewable energy policies. The 
perceived information is often imprecise or fuzzy, which makes policy formulation difficult. This paper presents a 
framework for evaluating renewable energy policies based on a fuzzy system dynamics (FSD) paradigm. First, we 
describe the renewable energy policy problem, with a case study example. Second, we present a framework for FSD 
modeling. Third, we propose a high-level causal loop analysis to capture the complex dynamic interactions among 
various energy demand and supply factors, from a fuzzy system dynamics perspective. Fourth, and finally, we 
propose an FSD model for renewable energy policy formulation and evaluation. 
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1. Introduction 
Practical renewable energy policy analysis and evaluation is crucial at island, country, regional and global levels. 
Industrial growth has increased the demand for fossil fuels such as coal, petroleum, and natural gas. Due to high 
potential social and environmental repercussions of global warming and the consequential climate change, the 
international community has emphasized the need to conserve energy and to mitigate carbon emissions. The 
Intergovernmental Panel on Climate Change (IPCC) estimated that about 90% of global temperature rise is likely to 
be caused by greenhouse gas emissions, and the earth’s average temperature will rise from 1.4 to 5.8°C in this 
century (IPCC, 2001). A number of international conventions held worldwide, such as Kyoto Protocol of United 
Nations Framework Convention on Climate Change, have called for a determined reduction of the emissions of 
greenhouse gases so as to mitigate climate change (UNFCCC, 1998). Several countries have since participated in the 
global actions targeted at reducing carbon dioxide (CO2) emissions by putting in place a set of greenhouse gas 
control strategies (Peters, G.P. 2008; Chang et al., 2010). Consequently, the concepts of low carbon economies, low 
carbon islands, low carbon regions, and low carbon cities and societies have increasingly become central issues 
aimed at building economies that consider the 3Es dimensions, that is, energy, economic development, and the 
environment (Qudrat-Ullah and Seong, 2010; Trappey et al., 2012). Increasingly, renewable energy technology 
(RET) policies and strategies are expected to steer the economy in the most sustainable direction.  
 
Several countries have engaged themselves into developing low carbon islands in an attempt to establish RETs and 
to reduce CO2 emissions to an acceptable level. For instance, a number of interesting low carbon island projects 
exist in the literature, including empirical studies in Turkey (Demiroren and Yilmaz, 2010; Demiroren and Yilmaz, 
2010), Kinmen Island in Taiwan (Liu and Wu, 2010), Taiwan (Trappey et al., 2012), Yakushima island in Japan 
(Uemura, 2002), Penghu island administrative region in Taiwan (Trappey et al., 2012), and in other countries such 
as Pakistan (Qudrat-Ullah and Davidsen, 2001), United States (Vicki and Tomas, 2008; Ernest and Matthew, 2009; 
GPO, 2009; China John et al., 1998; Han and Hayashi, 2008; Huang, 2009), India (Huang, 2009), Columbia (Dyner 
et al., 1995), among others. Among the several empirical studies, the central conclusion is that governments and 
stakeholders need to actively increase renewable energy adoption and promote effective policy incentives and policy 
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controls so as to reduce the CO2 emissions prevalent in their countries and regions. Possible policies in this regard 
include, promoting solar energy industry (photovoltaic and solar thermal sectors), promoting solar energy adoption, 
promoting wind energy adoption, as well as promoting the adoption of other renewable energy sources such rain, 
tides, waves and geothermal heat. Subsidies, price cuts, campaigns, promotions and other control policies have a 
potential to contribute significantly to the popularity and adoption of RETs. It is anticipated that this endeavor will 
ultimately reduce CO2 emissions in the medium to long term. 
 
Modeling renewable energy policies is a crucial undertaking that calls for system-wide analysis capabilities so as to 
obtain an in-depth understanding of the complex renewable energy systems. Understanding the complex interactions 
between the variables, the possible alternative decisions, and the likely consequences of the actions taken is crucial. 
A number of factors related to environment, economy, and the community have to be considered from a systems 
engineering point of view. This implies that the population, ground forest, industrial activities, commercial 
activities, transportation, daily domestic energy usage, and CO2 generation are among the several factors that need 
to be taken into consideration when designing and evaluating renewable energy policies. All these and other factors 
form a complex dynamic system with complex causal relationships as far as energy consumption and carbon 
emissions are concerned. 
 
Systems dynamics (SD) has been applied to a number of problem instances in energy policy analysis (Qudrat-Ullah 
and Davidsen, 2001; Qudrat-Ullah and Seong, 2010; Trappey et al., 2012) and assessment of environmental impact 
(Li and Wu, 2010; Ford, 1997; Jan and Hsiao, 2004). Developing robust long term policies is non-trivial due to 
complex dynamics prevalent in those energy policy systems. However, no attempts have been made to consider 
capturing the fuzzy imprecise variables in renewable energy policy design. It is known that energy-low carbon 
economies are humanistic systems that are characterized with linguistic variables that are difficult to interpret and 
model using conventional systems simulation models. Clearly, the presence of fuzzy variables makes policy design 
and evaluation a complex responsibility for the policy maker who has to base his decisions on imprecise variables 
from the trends in the renewable energy marketplace. For instance, the policy maker may need to cautiously 
formulate investment decisions aimed at positively impacting renewable energy adoption which then leads to low 
carbon economy. The task is to utilize the fuzzy information at hand to formulate effective energy-low carbon 
policies in anticipation of long-term improvements in the economy, the environment, and the energy system. Thus, 
systems approaches that address both the complex dynamic features and fuzzy characteristics of renewable energy 
systems are imperative.  
 
Motivated by the above issues, the purpose of this study is to present a framework for evaluating renewable energy 
policies based on a fuzzy system dynamics paradigm. First, we present a high-level causal loop analysis that 
captures the complex dynamic interactions between various energy demand and supply factors, from a fuzzy system 
dynamics perspective. Second, we present a framework for fuzzy system dynamics modeling. Third and finally, we 
propose a fuzzy system dynamics model for renewable energy policy evaluation. 
 
The rest of the paper is organized as follows: The next section presents a background to fuzzy system dynamics. 
Section 3 gives a description of the proposed FSD framework for renewable energy policy design and evaluation. 
Section 4 presents policy scenarios for a simulation study, based on a case study example, together with relevant 
discussions. Finally, we provide conclusions and further research prospects. 
 
2. Fuzzy System Dynamics 
Tessem and Davidsen (1994) emphasized the need to include a qualitative approach to the simulation and analysis of 
complex dynamics systems, based on the theory of fuzzy sets and fuzzy numbers. Fuzzy system dynamics (FSD) is 
a systems simulation tool that incorporates fuzzy variables into system dynamics models so as to cater for system 
whose structures, state or behavior cannot be described with exact numerical precision (Tessem and Davidsen, 1994; 
Mutingi and Matope, 2013). System dynamics and fuzzy logic are powerful and viable tools in this regard. 
 
2.1 System Dynamics 
System dynamics (SD) is a system modeling tools introduced by Jay Forester in the 1960s (Forrester, 1961). The SD 
methodology follows through a basic simulation procedure (Coyle, 1996; Sterman, 2004). SD utilizes various 
control factors of the system under study and observes how the system behaves in response to time-based trends in 
the variables. Thus, SD can be used to assist in policy design especially when systems are complex and dynamic. SD 
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simulation procedure essentially involves problem understanding and system description, qualitative analysis, 
simulation model development, and policy design and testing. Of particular interest is the development of the causal 
loop diagram which maps the system to show the main causal relationship between the main causal interactions 
between system variables. Consultations with the experts within the domain are essential in the construction and 
revision of the causal loop diagram. Another interesting stage in system dynamics is the model construction in terms 
of stocks and flows of information and or materials. Stocks represent the accumulation of the net inflows of the 
information or material, while flows represent the increase or decrease in the flows of the stocks. Mathematically, 
system dynamics flows can be represented thus; 
 

d
( ) ( ) ( )

dt
S inflow t outflow t            (1) 

 
where, S is the stock at time t; inflow(t) and outflow(t) represent the inflows and outflows at time t, respectively. 
 
SD has been used to assess environmental issues and CO2 emissions (Vizayakumar and Mohapatra, 1993; Anand et 
al., 2005; Qudrat-Ullah and Davidsen, 2001). A dynamic ecological footprint forecasting model for policy modeling 
of urban sustainability was proposed in Jin et al. (2009). Han and Hayashi (2008) developed an SD model to assess 
CO2 mitigation policy for inter-city passenger transport in China. Furthermore, in Trappey et al. (2011), SD was 
used to model life cycle dynamics to control mass customization carbon footprints. Related applications also exist in 
the literature (Trappey et al., 2012). Though the SD paradigm can be applied effectively in system modeling of 
complex dynamic systems, there is need to add to the approach, a method of capturing fuzzy linguistic variables that 
often exist in real world systems. Fuzzy variables can be captured effectively by the use of fuzzy logic. Formal fuzzy 
logic tools have a useful way of incorporating linguistic values into policy design and evaluation models. 
 
2.2 Fuzzy Logic System 
A fuzzy logic system is a logic-based system that uses fuzzy theory. Fuzzy set theory relates to classes of objects 
that have non-crisp boundaries to which membership is a matter of degree (Zadeh, 1978). The most important 
component of every fuzzy logic system is a set of fuzzy rules that converts inputs to outputs (Kosko, 1995). In 
practice, fuzzy approximation theorem is used (FAT) (Kosko, 1992). In practice, the inputs to a fuzzy logic system 
are the information that relates to the state of the system, and the output is a specification of the action to be taken. 
As such, fuzzy logic incorporates a rule-base that contains a set of “if then” rules of the form: 
 

IF  is  THEN  is x A y B            (2) 

 
where, A and B are linguistic values defined by fuzzy sets on the ranges X and Y, respectively.  
 
According to fuzzy logic concepts, “x is A” is the antecedent, while “y is B” is the consequent. This provides strong 
constructs for fuzzy inference, a process of formulating the mapping from a given input to an output based on some 
fuzzy logic set of rules (Sugeno, 1985; Mamdani, 1975). The mapping provides a basis from which decisions can be 
made based on a set of linguistic control rules obtained from experienced decision makers. The process of fuzzy 
inference involves the following constructs: membership functions, logical operations, and if-then rules. The fuzzy 
inference process involves crisp (non-fuzzy) inputs, linguistic (fuzzy) rules, and defuzzifier and the crisp output. 
 
Fuzzy logic builds on the experience of experts who understand the system under study. It is built on the structures 
of qualitative description used in everyday natural language, which makes it easy to use. This is because, oftentimes, 
systems do not have enough precise data to allow statistical analysis which normally demand data collection over a 
long time. Fuzzy logic, being tolerant of imprecise data, builds this understanding into the process rather than 
tacking it onto the end. Moreover, fuzzy logic can model nonlinear functions of arbitrary complexity. A fuzzy logic 
system can be described in three steps: fuzzification, fuzzy rules, and defuzzification (Labibi et al., 1998). 
 
3. FSD Modeling Framework 
Fuzzy system dynamics inherits its concepts from system dynamics and fuzzy theory. Figure 2 shows a set of steps 
to guide a systems analyst in a thorough and sound dynamic simulation study in a fuzzy environment. The FSD 
simulation methodology generally follows through 6 phases: (1) identification of problem situation, (2) causal loop 
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analysis, (3) model formulation and development, (4) verification and validation, (5) policy analysis and 
improvement, and (6) implementation. Descriptions of each phase are presented, following the framework structure. 

 
 

Figure 2: Steps in a fuzzy system dynamics study 
 
Phase 1. Identification of problem situation: This phase is concerned with the identification and understanding of 
the problem situation, which leads to a clear problem statement. Trends in the key variables relating to the identified 
problem are identified and investigated. Based on the principles of cybernetics, variables relating to the problem 
situation are filtered out and related to find out the causal linkages between them and the feedbacks in the system. 
This leads to system conceptualization stage in the next phase, which is known as causal loop analysis. 
 
Phase 2. Causal feedback loop analysis: This stage involves system conceptualization, which is concerned with 
identification of the linkages and interactions between the main variables of the problem. Main variables are those 
that have significant influences on the overall behavior of the system, in the context of the identified problem. A 
causal link is indicated by an arrow that connects the causal variable at the tails of the arrow, to the effect variable at 
the head of the arrow. A “+” sign close to the arrowhead indicates that both the causal and the effect variables 
change in the same direction, while a “-” sign indicate that the tail-head variables change in the opposite direction. 
 
Phase 3. Model formulation and development: The end product of model formulation is the FSD model. Two 
activities are involved in coming up with an FSD model, that is: (i) identify fuzzy variables and their fuzzy 
relationships, and develop a suitable fuzzy rule base, using suitable fuzzy logic tools, (ii) develop a stock flow 
diagram and build the relevant SD equations. The final FSD model is then obtained by linking the fuzzy rule base 
with the stock flow model. Central to the fuzzy system dynamics paradigm, is the development of the fuzzy logic 
system that can address the fuzzy variables of the system under study. This can be implemented using system 
dynamics software tools such as Simulink® on a Matlab® platform, and Vensim®. 
 
Phase 4. Verification and validation: In this stage, the fuzzy system dynamics model is verified to check for any 
bugs in the logical flow of the model. This is followed by model validation which determines whether or not the 
model is an accurate representation of the real system. Validation is usually achieved through an iterative 
comparison of the model with the actual response of the system under study. Any discrepancies between the two are 
used to improve the system model. The availability of data is crucial for the success of this stage. In practice, when 
developing the fuzzy system dynamics model, an appreciable set of validity test methods are commonly adopted 
with success (Sterman, 2004; Qudrat-Ullah and Seong, 2010). Table 1 lists the methods that are generally accepted 
for validation. 
 

Fuzzy Rule Base 

Flow Diagram 

SD Equations 

Policy Design 

Problem Description 

Causal Loop Analysis 

Validated? No

Yes

FSD Model 

Situation 

Decision 
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Phase 5. Policy analysis and improvement: In this phase, alternative scenarios are designed for simulation analysis 
in line with decisions that need to be considered. For each scenario, decisions need to be made in regards to the 
length of simulation runs, the run step, as well as the warm-up period. Simulation runs and their subsequent analysis 
are then used to estimate the performance indicators for the alternative system designs or alternative policy designs. 
 

Table 1: Structural validity testing methods 
No. Validation method Brief Description 

1. Structural verification This method tests whether the model structure is consistent with relevant 
descriptive knowledge of the system being modeled 

2. Extreme conditions This method tests whether the model exhibits a logical behavior when selected 
parameters are assigned extreme values. 

3. Parameter verification of the 
system 

This approach tests whether the parameters in the model are consistent with 
relevant descriptive and numerical knowledge 

4. Dimensional consistency This approach tests whether each equation in the model dimensionally 
corresponds to the real system. 

5. Boundary adequacy This method tests whether the important concepts and structures for addressing 
the policy issues are endogenous to the model. 

 
Phase 6. Decision support and policy implementation: Being the last step of the simulation study, the success of the 
implementation phase is much dependent on how well the previous phases have been performed. The system 
analysis should ideally involve all the ultimate model users. The success of the implementation stage also depends 
on the underlying assumptions that were used in building the model. 
 
4. FSD Model Development 
FSD modeling can be divided into two broad parts, that is, causal feedback loop analysis and FSD model 
construction. A causal feedback loop analysis diagram shows the major causal linkages between the main variables 
of the system under investigation. Identification of the major causal feedback loops of the system is crucial, together 
with the system inputs and outputs. Causal loops are used to estimate the causal linkages between related variables, 
directions of variable influences, and the system boundaries of the system. Our focus is on renewable energy policy 
formulation and evaluation in a fuzzy environment. Figure 3 shows the causal feedback loops, describing the 
relationship between renewable energy policies and the associated carbon emissions. The inputs to the FSD system 
include the information on a particular RET to be implemented, while the outputs of the system are the reduction of 
carbon emissions, the RET dynamic policy, and the associated cost of policy implementation. In a typical 
community, carbon emissions are produced indirectly from industrial and domestic electricity consumption, and 
directly from industry, transportation, and domestic usage. The main variables in the causal feedback loops are 
briefly described as shown in Table 2. 
 
Following the causal loop analysis described above, the FSD model is constructed in order to simulate and evaluate 
alternative RET policy scenarios. The model was developed based on a control-theoretic approach using Fuzzy logic 
tools and Simulink in Matlab, consisting of three stocks, namely: the RET capacity, transport, and the population. 
Through fuzzy system dynamics simulation expert knowledge is built into a fuzzy rule base and simulated to see the 
related effects of alternative dynamic fuzzy rules on the amount of carbon emission. To capture the fuzzy variables, 
the perceived carbon reduction gap is converted to a fuzzy set, called preferred error. The error is defined as a 
function of the difference between the maximum acceptable carbon reduction gap and the perceived reduction gap. 
In essence, the perceived gap should be as close as possible to the maximum acceptable gap, which directly implies 
that the error should be as close to zero as possible. Therefore, perceived error is; 

_
1

_ m

perceived gap
error

perceived gap
             (3) 

 
Here, perceived_gap is the maximum acceptable perceived gap, and perceived_gap is the observed gap. Since 
perceived_gap and perceived_gapm are supposed to be as close as possible, preferred error values close to zero are 
most preferable, and the level of preference diminishes fast as the error magnitude increases. Apart from error, we 
define perceived trend as a function of the observed carbon emissions; 
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2

d
( )

dt
trend CO emissions            (4) 

 
 

 
 

Figure 3: The causal feedback loops for renewable energy policy with fuzzy variables 
 

Table 2: Variables and their descriptions 
Variable Variable Description 

Carbon emissions This refers to total carbon emissions which vary in accordance with industrial, domestic, and transport 
energy usage. 

Perceived carbon 
reduction gap 

The perceived difference between the carbon reduction goal and the actual emissions; the variable may 
take values “low”, “ok”, and “high.” 

Perceived carbon 
trend 

The perceived trend, i.e., increase or decrease, of the current carbon emissions; the variable may take 
linguistic values “decreasing”, and “increasing.” 

Energy from RET This variable represents the surplus energy generation saved through the application of the RET such as 
solar water heater systems, photovoltaic systems, and wind energy systems. 

RET policy This variable is influenced by the perceived carbon reduction gap and the perceived carbon trend. 

RET capacity The capacity of renewable energy in use, which varies according to the RET policy, that is, policy 
incentives, promotion policy, and policy control. 

RET policy cost The cost of RET policy is influenced by the subsidy policy cost, the installation costs, and the capacity 
of the RET. 

Total energy This is the total energy in form of electricity generated by thermal production for industry consumption 
and domestic consumption. 

 
The perceived trend, defines whether the quantity of carbon emissions is increasing or decreasing. It follows that if 
the trend is increasing, then the intensity of the corresponding energy policy initiatives should be increased. 
Conversely, if the trend is decreasing, then the desired policy efforts should be decreased. The set of these expert 
rules can form an effective platform for managing investment, promotional, and incentive policies that influence the 
adoption of renewable energy which ultimately leads to low carbon societies. Based on the fuzzy causal loop 
analysis explained earlier, a fuzzy rule base is constructed to represent the fuzzy policy design for the renewable 
energy market place. As an illustration, let the variable policy_change represent the desired policy adjustment. Then, 
a fuzzy rule base can be constructed as illustrated in Fig. 4. 
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R1: IF (error is ok) THEN (policy change is zero); 

R2: IF (error is low) THEN (policy change is reduce fast); 

R3: IF (error is high) THEN (policy change is increase fast); 

R4: IF (error is ok) and (trend is positive) THEN (policy change 
is reduce slow); 

R5: IF (error is ok) and (trend is negative) THEN (policy change 
is increase slowly); 

 

Figure 4: Fuzzy rule base for renewable energy policy evaluation 
 
According to rule R1, since the error is ok, the desired policy change is zero. With reference to rule R2, when the 
error is low, it follows that the desired policy change is to reduce the current policy fast since the perceived carbon 
reduction gap is much lower than acceptable. On other hand, if the preferred error is high, then the policy should be 
increase fast. In addition, if the error is ok, that is, in the neighborhood of zero, then the actual decision depends on 
whether the current trend (rate) of carbon emissions is increasing or decreasing. If the trend is positive then policy 
should ideally be reduced slowly. Conversely, if rate is decreasing, then policy should be increased slowly since the 
trend shows that carbon emissions are somewhat on the increase. The FSD model was tested and verified using the 
following methods: 

 Extreme conditions: test whether the model exhibits a logical behavior when selected parameters are assigned 
extreme values (Qudrat-Ullah and Davidsen, 2001;  Qudrat-Ullah and Seong, 2010) 

 Structure verification: test whether the model structure is consistent with relevant descriptive knowledge of the 
system being modeled Sterman (2004). 

 
We present experimental simulation approaches essential for further evaluation and analysis of renewable energy 
policies in a fuzzy environment, deriving useful managerial insights. A case example is provided for discussions. 
 
4. Experimental Simulation Approaches 
Further to the formal FSD framework outlined, this section selects a case example of South Africa (SA) as a base 
example for analysis and discussion. 
 
4.1 Case study: South Africa 
South Africa intends to lower its carbon emissions to 34 % below current expected levels by 2020 and to about 42% 
below current trends by 2025 (NER, 2006). Currently, the country is dependent on thermal power which accounts 
for 80 to 90 % of the total primary energy supply in the year 2010. SA’s renewable sources include solar, wind, 
hydro, biomass, geothermal and ocean energy. This shows that the country need to put in place an active policy to 
pursue RETs and set up effective policies in order to reduce carbon emissions (Winkler, 2006). For instance, such 
policies should promote the development of solar energy industry and the utilization of solar energy products, which 
have an availability factor of 60% (NER, 2006). Thus, the SA government intends to promote her renewable energy 
policy by promoting the utilization of solar-energy products, including photovoltaic systems and solar water heating 
systems. Several households, clinics, and schools have photovoltaic systems. There is a steady increase of solar 
water heater installations in households, with more than 100,000 installations every month. In addition to solar 
energy, wind energy is also harvested and the installations are on the increase (Winkler, 2006). The government 
reports that at least 10,000 GWh per year of final energy demand should be met by renewable energy sources, 
including solar, wind, and small hydro (NER, 2006) 
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Figure 5: Carbon emission projections (Letete et al., 2009) 
 
The National Integrated Energy Plan for South Africa (DEES, 2004) estimates that the economic growth of the 
country in terms of GDP is 2.8% per annum and the population growth rate is about 1.3% per annum. The energy 
demand growth is expected to grow by a margin of about 2 to 3% per annum (NER, 2006). Figure 5 shows carbon 
emission projections. The start now scenario refers to the use of basic mitigation actions such as energy efficiency 
and waste minimization strategies (Letete et al., 2009). The “scale up” scenario, extends the using basically extends 
all the extendable mitigation actions in the start now scenario, while the “use the market” scenario uses economic 
instruments such escalating CO2 tax on the energy sector to generate revenue for provision of incentives for 
renewable electricity, wind and solar water heating. To reach the goal, people-oriented or market-oriented measures 
may be useful, therefore need further investigations (Letete et al., 2009; SBT, 2007). This implies that a more 
dynamic approach based on market behavior is practical and effective in reaching the desired carbon reduction goal. 
 
The SA energy policy has five objectives for the energy sector: (a) increased access to affordable energy services; 
(b) improving energy governance; (c) stimulating economic development, (d) managing energy related 
environmental impacts, and (e) securing diversity through diversity, which addresses the need to provide alternative 
renewable energy sources (NER, 2006). It recognizes the potential of RETs in securing supply through diversity. 
 
4.2 Policy Scenarios for Simulation 
SA endeavors to implement a renewable energy policy in form of wind and solar energy resources, with the aim of 
reducing carbon emissions from thermal production of electricity, industry and domestic use (MED-SA, 2003). In 
this connection, the policies can be matched into three possible scenarios. The first scenario, the base case, is aimed 
at benchmarking the carbon emissions without promoting any renewable energy policies. On the contrary, the 
second scenario observes the variation of carbon emissions when solar energy policies are implemented. It is 
important to note that policies can be deterministic, whereby the intensity of the promotion is constant or increasing 
periodically, or fuzzy dynamic, in which case the policies are adjusted according to the observed fuzzy trends in the 
3Es system. In this frame of mind, this scenario is twofold: first, the simulation is carried out based on the 
assumption that a deterministic control policy is used without incorporating the fuzzy-based dynamic policy, and 
second, the simulation is run assuming that a fuzzy dynamic control policy is implemented based on the two fuzzy 
variables: perceived carbon trend and perceived carbon reduction gap. In a similar, the third scenario observes the 
variation of carbon emissions when wind-based RET polices are implemented. The scenario is twofold; first, with 
deterministic promotion policies without dynamic fuzzy feedback from the market trends. Table 2 provides a 
summary of the policy scenarios for simulation and evaluation. The next section presents concluding remarks, 
contributions, and further research. 
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Table 1. A summary of policy scenarios for simulation and evaluation 
No. Scenario Description 

1 Bases case This scenario represents the as-is model aimed at benchmarking the carbon 
emissions of SA without any renewable energy promotion policies. 

2 Promote solar RET with/without 
fuzzy policy control 

The scenario observes the variation of carbon emissions when solar RET policies 
are enhanced, first without fuzzy control then with fuzzy control promotion. 

3 Promote wind RET with/without 
fuzzy policy control 

This scenario observes the variation of carbon emissions when wind RET policies 
are promoted; first with deterministic policies, then with fuzzy-based policies. 

 
5. Conclusions 
This paper provides a formal framework for realistic formulation and evaluation of renewable energy policies. 
Unlike previous simulation models and frameworks, the current framework considers that real world low-carbon 
energy, environment and economic systems are inundated with fuzzy variables which make the whole system 
complex. As such, policy makers rely on imprecise information from the renewable energy marketplace so as to 
formulate appropriate medium to long-term policies. With this realization, the framework identifies two major fuzzy 
variables: perceived CO2 reduction gap and perceived CO2 trend that are modeled as linguistic variables from a 
fuzzy causal loop perspective. Drawing from a fuzzy causal loop analysis, the framework provides a step-wise guide 
to building a fuzzy system dynamics model based on fuzzy logic tools and control theoretic simulation on a Matlab 
platform. Overall, this work contributes to the existing body of knowledge in policy formulation and evaluation for 
the 3Es concept of energy, economic development, and the environment aimed at building a low carbon society. 
 
5.1 Contributions to Theory 
The 3Es concept of energy, economy and environment is a complex system characterized with dynamic and fuzzy 
variables. No doubt, the policy formulation and evaluation for such as system demands the application of system 
modeling tools that address both dynamic and fuzzy features of the problem. This work points to the existence of 
these complexities in the 3Es concept, highlighting the imperative need for developing simulation approaches that 
can capture the complex features of the system. Therefore, the development of a fuzzy system dynamics model is an 
important contribution to the system dynamics community and to the practicing policy makers in governments and 
other stakeholders. In addition, this research work points out the need to build more realism into systems simulation 
models especially for humanistic models where essential variables involve human judgments and perceptions. Fuzzy 
set theory is a viable and important inclusion into SD models when information is imprecise. 
 
5.2 Managerial Implications 
Policy formulation and evaluation for a fuzzy 3Es system of energy, environment and economy is complex due to 
the presence of fuzzy and dynamic variables. As such, the policy maker needs to have in place an appropriate guide 
for renewable energy policy formulation. First, the policy maker needs to identify dynamic interacting variables in a 
causal loop form. This is followed by identification of fuzzy variables upon which the policies are anchored in order 
to make robust dynamic policies. The approach offers a number of advantages: 

 The method provides key variables upon which dynamic renewable energy policies can be anchored, that 
is, perceived carbon reduction gap and perceived carbon trend; 

 Dynamic policies can be formulated based on dynamic market trends, that is, energy policies are market-
based, as opposed to static policies which do not adjust to dynamic changes in the marketplace; 

 Fuzzy logic and control-theoretic tools are intelligent and fast, which makes FSD model building easy. 
 The fuzzy system dynamics approach builds from the prior knowledge captured from experts in the field 

such that the users gain confidence and trust in the model as it is based on practical knowledge of experts. 
 Expert knowledge can easily be built into the fuzzy rule base and updated with ease. 

 
In light of the above mentioned managerial implications, the application of fuzzy system dynamics offers significant 
advantages to the policy maker concerned with renewable energy formulation and evaluation. Therefore, the 
suggested FSD framework is contributes to the practicing policy makers concerned with low carbon energy, 
economy and environments. 
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5.3 Further Research 
The proposed FSD model presented in this study can be enhanced further. For instance, the fuzzy rule base can be 
optimized, e.g., using genetic algorithms. The rule base and the weights of the specific rules can be fine-tuned and 
optimized using soft computing tools in Matlab. This can further enhance policy formulation for renewable energy 
systems. Furthermore, we note that though FSD was applied on renewable energy policy formulation, its application 
can be extended to other complex systems in supply chains and healthcare. 
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