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Abstract 

 
A hybrid scheme called finite element method of lines is 
described and proposed for modelling and analysis of 
generalized computational electromagnetic problems with 
emphasis on a number of irregular waveguide. This finite 
element based method of lines is developed by combining 
finite element method and the method of lines, so that it not 
only has high flexibility to treat geometrically and 
compositionally complex problems but also maintains high 
accuracy of semi-analytical technique. Analytical and 
numerical algorithmic building blocks of this new scheme 
are discussed such as geometry discretization, element 
mapping, element trial functions, reformulation and 
computational issues of non-linear ordinary differential 
equations. The results therefore show that this new 
technique is able to efficiently solve complex problems as 
compared with the conventional method of lines. MATLAB 
was used to compute the solutions of various problems. 
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I: Introduction 
The dynamic technological progress that are 
occurring in telecommunication and 
information systems in the recent years, 
including high frequency 
telecommunications and navigation, radar 
systems and computer networks created a 
very big demand for better and accurate 
modelling of electromagnetic systems. We 
cannot run away from electromagnetic 
processes since they are everywhere in our 
daily life thus in generators, transformers 
and motors, converting mechanical to 
electric energy and vice versa. 
Electromagnetic waves in free space also 
enable wireless communication and also a 
vastly growing application in 
electromagnetics is in optics. 
  
According to Chen et al, 1998, microwave 
technology is a novel finite element method 
of lines to analyse electromagnetic 
problems. Optical fibers allow the transport 
of light pulses over much longer distances 
than achieved by electric signals through 
cables. Short light pulses are generated by 
laser resonators. Optical multiplexers 
realized by photonic crystals have obtained 
much attraction over recent years. All these 
applications are rather complex, hence for 
further technical developments and 
optimization a deeper insight into 
electromagnetic processes is necessary, 
Microwave and Optical Technology, 1998. 
Recent research in computational 
electromagnetic has been widely focused on 
the development of general-purpose solution 
methods for electromagnetic problems such 
as scattering, dielectric cavity resonators, 
dielectric waveguides, integrated optical 
waveguides, EMI and EMC studies, VLSI 
chips and packages, and computer-aided 
design. Similar to many other physical and 
technical effects such as solid and fluid 
mechanics, heat transfer, quantum 

mechanics, geosciences, astrophysics, etc). 
Electromagnetic phenomena are modelled 
by partial differential equations (PDEs).  
This is the basis for the mathematical 
analysis and numerical treatment. 
The main idea of the MOL is to replace the 
spatial (boundary-value) derivatives in the 
PDE with algebraic approximations. Then 
the spatial derivatives are no longer stated 
explicitly in terms of the spatial independent 
variables meaning that only the initial-value 
variable, typically time in a physical 
problem, remains. In other words, with only 
one remaining independent variable, we 
have a system of ODEs that approximate the 
original PDE. The challenge, then, is to 
formulate the approximating system of 
ODEs. Once this is done, we can apply any 
integration algorithm for initial-value ODEs 
to compute an approximate numerical 
solution to the PDE. Thus, one of the salient 
features of the MOL is the use of existing, 
and generally well-established, numerical 
methods for ODEs. 
A: Aim 
 to demonstrate the use of method of 

lines based on finite element 
technique to analyse computational 
electromagnetic problems 

B: Objectives 
• To solve irregular electromagnetic 

problems 
• To generate a reasonably accurate 

solution on the basis of a semi-
discrete scheme 

• To analyse and compare selected 
numerical properties of different 
operator projection  

• To perform numerical validation of 
the proposed methods applied to 
solving selected electromagnetic 
problems. 
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II: OVERVIEW 
Classical electromagnetics treats electric and 
magnetic macroscopic phenomena including 
their interaction.  Electric fields which vary 
in time cause magnetic fields and vice versa.   
James Clark Maxwell described these 
phenomena in his ”Treatise on Electricity 
and Magnetism” in 1862. The classic theory 
mainly involves the following four time- and 
space-dependent vector fields: 
 the electric field intensity denoted  

by E [V /m], 
 the magnetic field intensity H 

[A/m], 
 the electric displacement field 

(electric flux) D [As/m² ], 
 The magnetic induction field 

(magnetic flux) B [V s/m²]. 

The sources of electromagnetic fields are 
electric charges and currents described by: 
 the charge density ρ [As/m³]) and 
 the current density function j [A/m² 

], 

Where the SI units denotes meter (m), 
seconds (s), Ampere (A), Volt (V). 
A: The finite element method (FEM) 
It is a popular numerical technique for 
obtaining approximate solutions to boundary 
value problems of mathematical physics. 
However, FEM fully discretizes a problem 
into a system of algebraic equations with 
discrete nodal/ edge values as the basic 
unknowns and thus discretization error is 
introduced. It is, of course, desirable to solve 
boundary-value problems analytically 
whenever possible 
B: The method of lines (MOL)  
It is a technique for solving partial 
differential equations (PDEs) in which all 
but one dimension is discretized. The 
method of lines (MOL) is semi-discrete / 
semi-analytical and has found great 
application in multi-layers planar circuits. 

But the above method of lines uses finite 
difference (FD) technique to discretize the 
problem into a system of ordinary 
differential equations (ODEs) with nodal 
line functions as the basic unknowns. 
MOL allows standard, general-purpose 
methods and software, developed for the 
numerical integration of ODEs and DAEs, 
to be used. A large number of integration 
routines have been developed over the years 
in many different programming languages, 
and some have been published as open 
source resources. 
The method of lines most often refers to the 
construction or analysis of numerical 
methods for partial differential equations 
that proceeds by first discretizing the spatial 
derivatives only and leaving the time 
variable continuous. This leads to a system 
of ordinary differential equations to which a 
numerical method for initial value ordinary 
equations can be applied. The method of 
lines in this context dates back to at least the 
early 1960s. Many papers discussing the 
accuracy and stability of the method of lines 
for various types of partial differential 
equations have appeared since. E. Schiesser 
of Lehigh University is one of the major 
proponents of the method of lines, having 
published widely in this field. 
C: Finite element method of lines 
(FEMOL) 
Different from the conventional MOL, the 
finite element based method of lines 
(FEMOL) uses finite element (FE) 
technique in semi-discretization. As a semi-
analytical or semi-discrete method, FEMOL 
make itself distinguished from standard 
FEM in several aspects. This finite element 
based method of lines is developed by 
combining finite element method and the 
method of lines, so that it not only has high 
flexibility to treat geometrically and 
compositionally complex problems but also 
maintains high accuracy of semi-analytical 
technique. 
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Partial differential equations (PDEs) defined 
on some particular domains even though 
they may be arbitrary are semi-discretized 
into a system of ODEs defined on discrete 
mesh lines (straight or curved) via 
variational principles, and then the resulting 
ODE system can directly be solved using a 
standard and robust ODE solver. Due to the 
efficient adaptivity and the super-
convergence capability built into today’s 
ODE solvers, highly reliable and accurate 
solutions of the ODE system can be 
obtained numerically, and hence the semi-
analytical characteristics featured in this 
method are well preserved. As a semi-
analytical or semi-discrete method, the 
FEMOL makes itself distinguished from the 
standard FEM procedures in view of several 
aspects. Intuitively, this method should be 
powerful and e fficient, in particular, for 
those field problems for which solutions, for 
example in a two-dimensional (2D) case, 
may exhibit quite ‘wild’ behaviour in one 
direction and rather ‘mild’ in the other. For 
the standard line meshes, both FEMOL and 
FEM share the same convergence order in 
the formulated energy norms. But the errors 
in a FEMOL solution are independent of the 
true solution variation in the mesh line 
direction. In other words, no matter how 
naughty the true solution behaves along the 
mesh line direction, we will be able to gain 
an equally or consistently accurate FEMOL 
solution as long as the behaviours of the true 
solutions are similar to that of the FEM 
along the discrete direction. This 
characteristic is very attractive when there is 
a singularity in the computational domain. 
On the other hand, the use of robust ODE 
solvers makes the solution of the resulting 
ODEs (generally with variable coefficients) 
unified, efficient, accurate and effortless as 
compared with the conventional MOL in 
which a linear transformation is required to 
de-couple the coupled ODEs 
RELATED WORK 

III: Efficient hybrid scheme of finite 
element method of lines for modelling 
computational electromagnetic problems 
The research was done by Chen et al, 2004 
in which a hybrid scheme called FEMOL 
was introduced for efficiently solving 
irregular electromagnetic problems. Basic 
algorithmic concepts and theoretical 
frameworks of this new approach were 
described in detail through modelling and 
analysis of elliptical problems governed by 
Helmholtz equation. Results of three 
selected examples with arbitrary cross-
sections were presented to show the 
efficiency and accuracy of this new method. 
According to their paper, there seemed to be 
nothing special rather than the combination 
of two trivial techniques. The detailed 
description showed a number of original and 
interesting concepts proposed in this new 
scheme leading to a powerful and efficient 
semi-analytical numerical algorithm. In 
particular, the application of semi-discrete 
FE rather than finite difference (FD) usually 
implemented in the conventional MOL 
allowed a parametric element mapping even 
with arbitrarily curved nodal lines and end-
sides. Therefore, they concluded that  the 
FEMOL is an easy and convenient approach 
in dealing with a problem defined on 
arbitrary domain. As compared with other 
familiar approaches such as FEM, MOL and 
FD techniques, the proposed FEMOL shows 
a resemblance in algorithmic behaviour to 
the FEM and MOL but exhibits more 
features over its counterparts. This method 
could easily be extended and applied to 
model 3D electromagnetic field boundary 
value problems with complex and irregular 
geometry. 

IV: High Order Finite  Element  Methods 
for Electromagnetic  Field Computation 
Linz and Juli (2006)  dealt  with the higher-
order  Finite Element Method (FEM)  for 
computational electromagnetics.  The  hp-
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version  of FEM  combined  local  mesh  
refinement  (h)  and  local increase of the 
polynomial  order of the approximation 
space (p). A key tool in the design and the 
analysis  of numerical  methods for 
electromagnetic problems used was the de 
Rham  Complex relating   the function  
spaces  H 1 (Ω),  H (curl, Ω),  H (div, Ω),  
and  L2 (Ω)  and  their natural differential 
operators. A short outline of the construction 
is as follows. The gradient fields of higher-
order H 1-conforming shape functions were 
H (curl)-conforming and were chosen 
explicitly as shape functions for H (curl).  In 
the next step the gradient functions were 
extended to a hierarchical and conforming 
basis of the desired polynomial space. An 
analogous principle was used for the 
construction of H (div)-conforming basis 
functions. By separate treatment of edge-
based,  face-based,  and cell-based 
functions, and by including the 
corresponding  gradient  function, the local  
exact  sequence  property was established: 
the subspaces  corresponding  to a single 
edge, a single face or a single cell formed an 
exact  sequence.  A main  advantage  is that  
an arbitrary polynomial  order  on each  
edge could be chosen,  face,  and  cell 
without destroying the global  exact 
sequence. The main difficulty in the 
construction of efficient and parameter-
robust preconditioners for electromagnetic 
problems is indicated by the different 
scaling of solenoid and irrotational fields in 
the curl-curl problem.  Robust Schwarz-type 
methods for Maxwell’s equations rely on a 
FE-space splitting, which also has to provide 
a correct splitting of the kernel of the curl 
operator. Due to the local exact sequence 
property this is already satisfied for simple 
splitting strategies. Numerical examples 
illustrate the robustness and performance of 
the method. 
By this transformation, the time-harmonic 
Maxwell equations can be stated as 

curl E(x)  +  iωµH (x)  =  0 
div µH (x)  =  0                                           
 curl H (x)  −  (iωǫ +  σ)E(x)  =  j i (x)                                     
,                               
 Div ǫE(x) = ρ(x).    
Methodology 
Analytical and numerical algorithmic 
building blocks of this new scheme will be 
done following the steps below: 

1. We start with a general PDE system 
in three dimensions (3D) that, with 
some simplifying assumptions, is 
reduced to a 1D linear PDE. Here is 
some terminology: 

a) The starting point of this 
application is a classic PDE 
system, Maxwell’s equations 
of electromagnetic (EM) 
field theory.  

b) After reduction of these 
equations to 1D, followed by 
some additional 
simplifications, we arrive at 
the damped wave equation 
(DWE). 

2.  The uses of coordinate-free PDEs 
that can then be specialized to a 
particular coordinate system; for the 
following analysis, this is Cartesian 
coordinates.  

3. Spatial convergence of the DWE 
numerical solution by h- and p-
refinement. 

4.  The effect of the method of lines 
(MOL) finite-difference (FD) 
approximations on the bandwidth 
and sparsity of the ordinary 
differential equation (ODE) 
Jacobian matrix.  

5. A general method for the 
construction of PDE test problems is 
illustrated by a specific example for 
the DWE. 

6. The physical significance of the 
DWE (which we can say without 
exaggeration is profound). 
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We start the analysis with the differential form of 
Maxwell’s equations for EM field: 

∇ × 𝐻𝐻 = 𝐽𝐽 + 𝐽𝐽𝑑𝑑 = 𝐽𝐽 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                             
(1.1) 
∇ × 𝐸𝐸 = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                                               

(1.2) 
∇ • 𝐷𝐷 = 𝜌𝜌                                                      
(1.3) 
∇ • 𝐵𝐵 = 0                                                       
(1.4) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇ • 𝐽𝐽 = 0                                               
(1.5) 
Where 
H     Magnetic field intensity (amps/m) 
E      Electric field intensity (volts/m) 
D      Electric flux density (coulombs/m) 
B       Magnetic flux density (Weber/m) 
J         Electric current density (amps/m) 
𝐽𝐽𝑑𝑑          Displacement current density 
(amps/m) 
ρ        Charge density (coulombs/m) 
t         Time (s) 
×        Curl vector operator 
•          Vector dot product 
∇       Del vector operator (1/m) 
Equation system above clearly has more 
dependent variables than equations. We 
therefore use some constitutive equations to 
provide the required additional relationships 
between the dependent variables: 
𝐷𝐷 = 𝜖𝜖𝐸𝐸                                                           
(1.6) 
𝐵𝐵 = 𝜇𝜇𝐻𝐻                                                          
(1.7) 
𝐽𝐽 = 𝜎𝜎𝐸𝐸(1.8) 
where 
𝜖𝜖 Capacitivity or permittivity (farads/m) 
µ Inductivity or permeability (henrys/m) 
𝜎𝜎 Conductivity (mohs/m) 
 
Equations (1.1) to (1.8) are a complete set of 
PDEs (number of dependent variables 
=number of equations). We now proceed to 
combine these equations and finally obtain a 
single equation in E 

If Eqs. (1.6), (1.7), and (1.8) are substituted 
into Eq. (1.1), 
�1
𝜇𝜇
�∇ × 𝐵𝐵 = 𝜎𝜎𝐸𝐸 + 𝜖𝜖 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                                   

(2.0) 
Differentiation of Eq. (2.0) with respect to t 
(assuming a linear, homogeneous, isotropic 
medium) gives 
 �1
𝜇𝜇
�∇ × 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜎𝜎 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜖𝜖 𝜕𝜕²𝜕𝜕

𝜕𝜕𝜕𝜕²
                             

(3.0) 
Where the order of the LHS differentiation 
with respect to t and ∇ (space) has been 
interchanged. (3.0) 
Substitution of Eq. (1.2) into Eq. (3.0) gives 
   −𝛻𝛻 × 𝛻𝛻 × 𝐸𝐸 = 𝜇𝜇𝜎𝜎 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜇𝜇𝜖𝜖 𝜕𝜕²𝜕𝜕

𝜕𝜕𝜕𝜕²
                     

(4.0) 
The identity 

∇ × (∇ × 𝐽𝐽) = ∇(∇ • 𝐽𝐽) − ∇²𝐽𝐽 
Substitution into Eq. (4.0) finally gives a 
single equation for E 
𝜇𝜇𝜖𝜖 𝜕𝜕²𝜕𝜕

𝜕𝜕𝜕𝜕²
+ 𝜇𝜇𝜎𝜎 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∇²𝐸𝐸                                    

(5.0) 
 Equation (5.0) is the time-dependent 
Maxwell equation for the electric field, E. It 
also applies to H and J in place of E. 
Equation (1.8) represents Ohm’s law. For 
the case of a non-conductor where 𝜎𝜎= 0, Eq. 
(5.0) reduces to the wave equation. Equation 
(5.0) is both hyperbolic (from 𝜕𝜕²𝜕𝜕

𝜕𝜕𝜕𝜕²
 and∇²𝐸𝐸) 

and parabolic from ∂E/∂t and ∇E). As 
expressed in terms of ∇, it is coordinate 
independent. If it is reduced to 1D in 
Cartesian coordinates, we have 
𝜇𝜇𝜖𝜖 𝜕𝜕²𝜕𝜕

𝜕𝜕𝜕𝜕²
+ 𝜇𝜇𝜎𝜎 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕²𝜕𝜕

𝜕𝜕𝜕𝜕²
                                     

(6.0) 
Equation (6.0), a linear, constant-coefficient 
PDE, is the starting point for the MOL 
analysis. It is second order in t and x. We 
take as the two required initial conditions 
(ICs) 
𝐸𝐸(𝑥𝑥, 𝑡𝑡 = 0) cos(𝜋𝜋𝑥𝑥)                                     
(7.1) 
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𝜕𝜕𝜕𝜕(𝜕𝜕=0,𝜕𝜕)
𝜕𝜕𝜕𝜕

= 0                                                  
(7.2) 
The two required boundary conditions (BCs) 
we take to be homogeneous Neumann are 
𝜕𝜕𝜕𝜕(𝜕𝜕=0,𝜕𝜕)

𝜕𝜕𝜕𝜕
= 0                                                   

(8.1) 
𝜕𝜕𝜕𝜕(𝜕𝜕=1,𝜕𝜕)

𝜕𝜕𝜕𝜕
= 0                                                  

(8.2) 
Equations (6.0) to (8.2) are the complete 
specification of the PDE problem for the 
following MOL analysis. 
The main program therefore had the 
following: 

1. A global area should be specified to 
share parameters with other routines. 
A for loop then steps through three 
cases for FDs of second, fourth, and 
sixth order. The parameters of Eq. 
(6.0) are set numerically and passed 
to the ODE routine as global 
parameters c1 and c2. We will later 
return to the significance of these 
parameters. 

2. In accordance with the usual naming 
convention, the dependent variable is 
u rather than the E of Eqs. (6.0) to 
(8.2) in the subsequent 
programming. The boundaries and 
number of grid points in x are set. 
Then the grid in x is used to defined 
the ICs (Eqs. 7.0). Note that u(x, t = 
0) is stored in array u0 (i) for 1 = i = 
n and the derivative ∂u(x, t = 0)/∂t is 
also stored in u0 (i) for n + 1 = i = 
2n, so that the 1D array (vector) of 
dependent variables is initialized as 
required by ode15s. 

3. The t interval is 0 = t = 1 with an 
output interval of 0.2 so that six 
outputs are displayed (including the 
initial point t = 0). For the three 
cases ncase=1, 2, 3 (from the for 
loop at the beginning), ndss is passed 
as a global parameter to select one of 
the differentiation routines dss042, 

dss044, dss046, respectively (called 
by the ODE routine pde 1 discussed 
next). The sparse matrix version of 
ode15s integrates the n= (2) (101) 
=202 ODEs using the ODE routine 
pde1.  

4. The array u returned by ode15s with 
the ODE solutions is transformed 
into two 1D arrays (with u(x, t) and 
∂u(x, t)/∂t) to facilitate the handling 
of the output. 

5. Selected tabular output and plots of 
the solution are then produced. 

The overall code is shown in appendix 1   

V: Examples and discussions 
A: Example 1 
The example demonstrates the skin effect 
when AC current is carried by a wire with 
circular cross section. The conductivity of 
copper is 57 · 106, and the permeability is 1, 
i.e., µ = 4π10-7. At the line frequency (50 
Hz) the ω2ε-term is negligible. Due to the 
induction, the current density in the interior 
of the conductor is smaller than at the outer 
surface where it is set to JS = 1, a Dirichlet 
condition for the electric field, Ec = 1/σ. For 
this case an analytical solution is available, 

𝐽𝐽 = 𝐽𝐽𝑠𝑠
𝐽𝐽0(𝑘𝑘𝑘𝑘)
𝐽𝐽0(𝑘𝑘𝑘𝑘)

 

Where 
𝑘𝑘 = �𝐽𝐽𝐽𝐽𝜇𝜇𝜎𝜎 

R is the radius of the wire, r is the distance 
from the centre line, and J0(x) is the first 
Bessel function of zeroth order. 
Solution  
After using pde tool box a solution was 
reached. The solution of the AC power 
electromagnetics equation is very complex. 
The plots show the real part of the solution, 
but the solution vector, is the full complex 
solution. On that note the solution vector can 
be exported to the main workspace and you 
can plot various properties of the complex 
solution by using the user entry. The skin 
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effect is an AC phenomenon whereby 
decreasing the frequency of the alternating 
current results in a decrease of the skin 
effect. Approaching DC conditions, the 
current density is close to uniform 
(experiment using different angular 
frequencies). 
The solution is simulated at appendix two. 
B: Example 2 
The same criteria can also be used to 
simulate a guided wave with the square 
cross section area. Instead of using the 
pdetool, i used the command window 
instead.   
Given that t is the vector of time and x is the 
spatial discretization, we solve this problem 
using a mesh of 20 nodes and request the 
solution at five values of t. Finally, we 
extract and plot the first component of the 
solution. PDEPE function which solves 
partial differential equations in one space 
variable and time was used. The code for the 
guided wave is as follows: 
x = linspace(0,1,20); 
t = [0 0.5 1 1.5 2]; 
sol = 
pdepe(0,@pdex1pde,@pdex1ic,@pdex1bc,x
,t); 
u1 = sol(:,:,1); 
Surf(x, t, u1); 
xlabel('x');ylabel('t');zlabel('u'); 
hold on 
u1 = sol(:,:,1); 
surf(x,t,u1); 
xlabel('x'); ylabel('t'); zlabel('u'); 
end 
solution 

 
Fig 1.0: One space variable and time for the 
computation of guided wave guides mainly 
use in wireless power transmission.  
 
C: Example 3 
General solution to BVP 

Solving boundary value problems using the 
command window is much easier than other 
means since MATLAB can understand some 
other programming codes e.g. C++. BVP4C 
function solves boundary value problems for 
ordinary differential equations for 
electromagnetic problems. The example 
function TWOODE has a differential 
equation written as a system of two first 
order ODEs. For a TWOODE situation, a 
TWOBC function has to be called to 
evaluate the residual in the boundary 
conditions for TWOBVP. Prior to using 
BVP4C, we have to provide a guess for the 
solution we want represented at a mesh. The 
solver then adapts the mesh as it refines the 
solution. 

BVPINIT assembles the initial guess in the 
form that the function BVP4C will need. For 
an initial mesh of [0 1 2 3 4] and a constant 
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guess of y(x) = 1, y'(x) = 0 we need 
BVPINIT 

The code solution are shown in the appendix 
3 
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