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Abstract 

 
In the presence of imprecise management targets, staff preferences, and patients’ expectations, the healthcare staff 
scheduling problem becomes complicated. The goals, preferences, and client expectations, being humanistic, are 
often imprecise and always evolving over time. We present a fuzzy genetic algorithm (FGA) approach for 
addressing healthcare staff scheduling problems in fuzzy environments. The proposed FGA-based approach can 
handle multiple conflicting objectives and constraints. To improve the algorithm, fuzzy set theory is used for fitness 
evaluations of alternative candidate schedules by modeling the fitness of each alternative solution using fuzzy 
membership functions. Furthermore, the algorithm is designed to incorporate the decision maker’s choices and 
preferences, in addition to staff preferences. Rather than prescribing a sing solution to the decision maker, the 
approach provides a population of alternative solutions from which the decision maker can choose the most 
satisfactory solution. The FGA-based approach is potential platform upon which useful decision support tools can be 
developing for solving healthcare staff scheduling problems in a fuzzy environment characterized with multiple 
conflicting objectives and preference constraints. 
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1. Introduction 
The nursing staff scheduling problem (NSSP) is a serious challenge to healthcare operations planners concerned 
with the assignment of shifts to nursing staff on a daily, weekly or monthly basis (Cheang et al., 2003). The 
goodness of nurse schedules has a great impact on the quality of health care, the recruitment of nursing personnel, 
the development of healthcare budgets and various operations of the healthcare organization. Though duty rosters 
may be generated manually on a smaller scale, scheduling nurses has always been a hard optimization problem for 
most practical situations (Topaloglu and Selim, 2010). The major factors behind this are that (i) health care 
organizations are staffed 24 hours a day and seven days a week, (ii) nursing staff are allowed to request for specific 
shifts, (iii) legislative restrictions are imposed on staff rosters (Alfares, 2004). In case of many staff requests, more 
time is consumed in re-rostering staff. For these and other reasons, the NSSP is has attracted much attention among 
the practicing healthcare operations managers and the research community. 
 
The NSSP has been studied widely researched over the years. Remarkable literature surveys can be found in (Burke 
et al., 2004; Ernest et al., 2004a; Ernst et al., 2004b). A notable annotated bibliography of personnel scheduling and 
rostering studies is presented in Ernst et al. (2004b). Cheang et al. (2003) presented a bibliographical survey 
specifically on the nurse rostering problem. Various empirical and hypothetical studies have pointed out that the 
NSSP is a hard combinatorial problem that is best solved using heuristic methods, metaheuristic approaches, and 
other expert intelligent systems methods (Cheang et al., 2003; Topaloglu and Selim, 2010; Burke et al., 2004; Ernest 
et al., 2004a; Ernst et al., 2004b; Shaffer., 1991). To achieve the best results when solving hard combinatorial 
problems, metaheuristics such as genetic algorithm (Mutingi, Mbohwa, 2013), particle swarm optimization 
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(Akjiratikarl, 2007) and evolutionary algorithms (Jan et al., 2000) are normally combined with problem specific 
heuristics (Inoue et al., 2003). However, in most cases, the healthcare environment is characterized by multiple 
conflicting objectives that are difficult to formulate and evaluate in closed form. It is often difficult to achieve the 
required fairness when allocating schedules to nursing staff. In addition, it is difficult to incorporate the choices and 
preferences of the decision maker who has to take into account the wishes and preferences of the patients and the 
nursing staff, not forgetting the management goals which are often expressed imprecisely (Topaloglu, and Selim, 
2010; Mutingi and Mbowha, 2013). 
 
In view of the above discussions, the most common shortcomings of conventional staff scheduling approach are as 
follows: 

 The scheduling problem is multi-objective; has a number of objectives, some of which are difficult to 
evaluate sufficiently; 

 The solution methods prescribe a single, rather than provide a population of alternative solutions for 
decision support; 

 The solution methods are often trapped in local optima before obtaining the desired solution; 
 The methods often consume a lot of computation time. 

 
This research seeks to cover these voids by developing an interactive approach that utilizes fuzzy genetic algorithm. 
The approach uses a unique constraint centered coding mechanism to improve the computational efficiency of the 
algorithm. In this approach, we envisage the following objectives: 

1. Describe the staff scheduling nurse scheduling and its various constraints; 
2. Propose an interactive fuzzy genetic algorithm approach, with a unique constraint centered coding scheme, 
3. Present illustrative examples, demonstrating the effectiveness of the approach. 

 
The remainder of the paper is structure as follows: The next section describes the nursing staff scheduling problem. 
This is followed by a brief background to fuzzy concepts and genetic algorithm (GA) in Section 3. An interactive 
fuzzy genetic algorithm is proposed in Section 4, with its constraint centered coding scheme. Computational 
experiments and results are provided in Section5. Section 6 concludes the paper. 
 
2. The Nursing Staff Scheduling Problem 
The NSSP is a hard optimization problem that involves assignment of shifts and off days to nurses over the planning 
horizon of up to about one month. Oftentimes, the decision maker should consider a myriad of conflicting objectives 
and preferences between the healthcare organization and individual nurses (Cheang et al., 2003). Nurses have 
specific skills and contractual agreements limiting the number of shifts in a week, number of off days, and number 
of nurses for each shift, among other restrictions. Furthermore, personal preferences, though they may be imprecise 
in practice, should be taken into account in order to maximize on job satisfaction (Topaloglu and Selim, 2010; 
Mutingi and Mbohwa. (2013). For instance, nurses may desire specific days off, certain shifts, or number of working 
days per period. From our studies in actual hospitals in country “Z”, each nurse is entitled to three types of shifts: 
day shift d, night shift n, and late night shift l, with some holidays or off days o, as listed in Table 1. 
 

Table 1. Common shift types in country Z 
Shift, w Shift Description Time allocation 
1 d: day shift  0800 - 1600 hrs 
2 n: night shift  1600 - 2400 hrs 
3 l: late night shift  0000 - 0800 hrs  
4 o: off days as nurse preferences 

 
2.1 Problem Definition 
The NSSP is described thus: Let N and M represent the number of nurses and days, respectively. Additionally, let w 
represent the shifts. We further define the following notations: The following notation is used:  
 
Notation 
i Index for nurses, i = 1,…, N 
j Index for days, j = 1,…, M 
w Index for shifts, w = 1, 2, 3, 4 
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Xijw 1, if nurse i works shift w on day j; 0 if otherwise 
 
Then, NSSP is a problem is an M×N matrix such that each Xijw element of the matrix expresses that nurse i works 
shift w on day j. Generally, the objective is to search for a schedule that satisfies a given set of hard constraints. 
However, in practice, the wishes or preferences of individual nurses must be satisfied as much as possible. 
 
2.2 Constraints  
Most healthcare organizations classify shifts into two categories (a) hard constrains, which must always be satisfied, 
and (b) soft constraints, which must be satisfied to the highest degree possible. While violation of hard constraints 
constitutes an infeasible schedule, violation of soft constraints is permissible to some extent, but at the expense of 
the quality of the schedule. Soft constraints are added to improve the quality of the schedule. A study of the NSSP in 
country “Z” yielded the list of constraints as shown in Table 2. From the study, real world constraints can be 
categorized into daily restrictions (hard constraints, C1 to C5) and nursing staff preferences (soft constraints, P1 to 
P3). Our FGA-based algorithm seeks to incorporate these constraints in its coding structure. 
 

Table 2: Typical real world constraints for the nursing staff scheduling problem 
Constraints Description of the constraint 
Daily Restrictions 
 

C1. Assign each nurse at most 1 shift per day. 
C2. The assigned d, n or l shifts ≥ required d, n or l shifts, respectively. 
C3. A (n-d), (n-l), or (l-d) shift combination (sequence) is not permissible. 
C4. Assigned legal holidays = number of legal holidays. 
C5. Interval between night shifts should be at least 1 week. 

Nursing Staff Preferences 
 

P1. Preferred or desired day off or holidays. 
P2. Fairness or equality of shifts for each nursing staff 
P3. Congeniality - Compatible or preferable shift assignments among work mates 

 
3. Preliminaries  
The proposed approach in this study rests upon the mechanics of genetic algorithm and fuzzy set theory concepts. 
 
3.1 Genetic Algorithm 
Genetic algorithm (GA) is a stochastic search and optimization technique developed from the mechanics of genetics 
and the philosophy of survival of the fittest (Holland, 1975; Goldberg, 1989). The algorithm uses a collection of sub 
procedures which are executed iteratively till a desirable solution is obtained. Initially, a population of candidate 
solutions (chromosomes) are generated at random. These chromosomes consist of codes (genes) that represent 
typical candidate solutions to be evaluated for goodness (fitness) calculated according to a given fitness function. 
The codes or genes contain information upon which genetic procedures operate iteratively, transforming the 
chromosomes into increasingly better ones. For instance, the crossover operator probabilistically exchanges partial 
information between chromosomes, so as to improve the fitness of the chromosomes,. Mutation operator acts on an 
individual chromosome by altering individual genes at a very low probability with the aim of improving the fitness 
of the chromosome. Basically, the process of evaluation, crossover, and mutation occurs iteratively, until a 
termination criterion is reached, and the desired final solution is obtained. However, since its inception, various 
additional procedures have been developed to enhance the performance of the algorithm. One possible enhancement 
involves the inclusion of fuzzy theory concepts to enable GA to handle global search and optimization problems 
where some of the goals, the constraints, and the implications of the decisions taken are imprecise. 
 
3.2 Fuzzy Sets 
Fuzzy set theory models imprecision and uncertainty in a non-stochastic sense [6]. A fuzzy number represents 
imprecise quantities, such as “about 10,” and “substantially greater than 10.” Thus, a fuzzy set is a class of objects 
with no sharp boundary between the objects that belong to that class and those that do not. Fuzzy set theory, unlike 
Boolean logic, deals with degrees of membership, rather than membership or non-membership [7]. To further clarify 
the concept of fuzzy theory, we distinguish fuzzy sets from crisp sets: A Crisp Set is defined thus: Let X be the 
universe of objects having elements x, and A denote a proper subset of the universe X; A  X. Then, the membership 
of x in a classical crisp set A is defined by a characteristic transformation function μA from X to {0,1}, such that, 

1 If 
( )

0 If A

x A
x

x A



  

     (1) 
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Contrary to the crisp set, a fuzzy set is defined thus: Let X be the universe of discourse whose elements are denoted 
by x. Then, the grade of membership of x in a fuzzy set A is be defined as μA(x)[0,1], where μA(x) is the 
membership function of x in A, which maps each element of X to a membership value in [0,1]. The closer the value 
of μA(x) is to 1.0, the more x belongs to A, and vice versa. The elements of a fuzzy set indicate the value of each 
element in the set and its grade of membership. Thus, the fuzzy set A in X is a set of ordered pairs; 
 

{ , ( ) | }AA x x x X        (2) 

 
4. Fuzzy Genetic Algorithm Approach 
In this study, we develop an interactive approach which supports the iterative generation and improvement of good 
alternative solutions from the decision maker can select the most appropriate solution. The general flow of the 
interactive approach is shown in Figure 1. A population of candidate solutions is generated based on a set of rules 
pre-set by the decision maker. The rules are defined by hard or absolute constraints, thus, ensuring feasibility right 
from the start of the search process. This is followed by the FGA–based global optimization from which a 
population of good solutions are obtained and displayed. Subsequently, the solutions are evaluated by the decision 
maker who then selects a satisficing solution, based on other practical considerations that could not be captured in 
the objective function formulations. 

 
Figure 1: Interactive nursing staff scheduling approach 

 
The main component of the interactive approach is the FGA search mechanism. The FGA follows through a number 
of stages. The approach and its elements are presented in the next section. 
 
4.1 FGA Coding Scheme 
To enhance the performance of FGA, we develop a unique coding scheme as shown in Figure 2. The scheme covers 
a planning period of 7 days. In this coding scheme, the nursing staff, s1, s2,…,s9, are allocated one of the four shifts 
in each day, including the off shift, o.  

  Days    
Nurse Skill 1 2 3 4 5 6 7 d n l 

s1 1 l n l n d l n 1 3 3 
s2 1 o d n l d d l 3 1 2 
s3 1 d d d d o n d 5 1 0 
s4 2 n l l o d d d 3 1 2 
s5 2 d d h n n l n 2 1 1 
s6 2 d o d d l n d 4 1 1 
s7 2 l n d d l d o 3 1 2 
s8 2 n l n l n o l 0 3 3 
 d 3 3 3 3 3 3 3    

n 2 2 2 2 2 2 2    
l 2 2 2 2 2 2 2    

 

Figure 2: An example of a nurse schedule table – a candidate solution 
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4.2 Enhanced Initialization Algorithm 
We propose an enhanced coding algorithm that satisfies all hard constraints of the NSSP, as shown in Figure 3. An 
initial population of candidate solutions size p is created by random assignments. The enhanced algorithm begins by 
randomly allocating days off, that is, the “o” shifts to individual staff, where each staff is probabilistically assigned 
at most 2 off shifts.  
 

 
 

Figure 3: Enhanced initialization algorithm 
 
4.4 Fitness Evaluation 
In this study, the goodness or fitness of a solution is a function of how well it satisfies the soft constraints. As such, 
fitness is obtained from the weighted sum of the satisfaction of each of the soft constraints. We assume that the 
weights normalized. Furthermore, we represent each soft constraint as a normalized fuzzy membership function 
whose values are in the range [0,1].  
 
4.4.1 Membership Functions 
To model the goodness of a schedule (shift allocation) in relation to staff preferences, we use three fuzzy 
membership functions to represent the measure of satisfaction of specific preference functions. 
 
Membership function 1 
This membership function measures the quality of shift allocation in terms of compatibility (congeniality) of staff 
allocated similar shifts. Clearly, the higher the number of uncongenial shift allocations, the less the quality of that 
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particular schedule, and vice versa. A practical approach would be to set a range of acceptable number of 
uncongenial allocations within which the acceptability of the schedule is 100%, for instance, range [0,c], where c is 
the maximum. Figure 4 demonstrates this phenomenon as a membership function. Therefore, the membership 
function is represented by expression (4). 

 

 
Figure 4: Linear membership function for congeniality 
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where, b is the maximum limit to the number of uncongenial shift allocations; a is the upper limit to the most 
preferred number of uncongenial shift allocations; nu is the actual number of uncongenial allocations.  
 
Membership Function 2 
Regarding the workload, that is, the total number of hours allocated to each staff i, the aim is to minimize the 
variation of each staff workload hi from the average workload a. This is equivalent to minimizing a function f,  
 

i
i

f h a        (5) 

 
Since the workload assignment should be as fair as possible, the workload variation should be close to zero as much 
as possible. Therefore, we define the following membership function; 
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where, d is the maximum limit to the workload variation; c is the upper limit to the most preferred workload 
variation; vw is the actual workload variation from the mean workload.  
  
Membership Function 3 
This membership function measures the quality of shift allocation in terms of the variation of the allocated days off 
or holidays from the mean number of allocated off days or holidays. 
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Here, q is the maximum limit to the number of days off shift allocations; p is the upper limit to the most preferred 
variation of the number of days off shift allocations; nu is the actual variation of days off shift allocations from the 
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mean. Other membership functions can also be included in the same manner, to improve the quality of the schedule. 
The overall fitness function is formulated as a function of these normalized membership functions. 
 
4.4.2 The Overall Fitness Function  
Since fitness is obtained from the weighted sum of the satisfaction of each of the soft constraints. As such, the final 
objective function is a function of the normalized functions (membership functions) as follows; 
 

f f
f

z w        (7) 

 
where, wf is the weight of each objective function f, such that ∑wf = 1.0. The weight wf offers the modeller an 
opportunity to model his/her choices or preferences to reflect the preferences of the management and the nursing 
staff. Thus, the approach provides FGA an advantage over other metaheuristic approaches. 
 
4.5 Selection and Crossover 
The selection operator selects the best performing chromosomes into a mating pool, called tempp. We adopt the 
remainder stochastic sampling without replacement approach (Goldberg, 1989; Michalewicz, 1996; Holland, 1975). 
By this method, each chromosome k is selected and stored in the mating pool according to its expected count ek, 
 

1
k

k
kk
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      (7) 

 
Here, zk is the fitness function of the kth chromosome. Furthermore, each chromosome receives copies equal to the 
integer part of ek, plus additional copies obtained by using the fractional part of ek as a success probability of getting 
additional copies the same chromosome k into tempp. Consequently, the best performing candidates are selected 
with higher probability. 
 
Crossover mechanism mates selected chromosomes to produce new offspring, called selection pool. This enables 
FGA to explore unvisited regions in the solution space. Genes in selected chromosomes are exchanged at a 
probability pcross. First, two crossover points are randomly generated. Second, the genes in between the crossover 
points are swapped. Third, the offspring are repaired by the encoding heuristic to ensure that the hard constraints are 
always satisfied. The process is repeated till the desired pool size, poolsize, is achieved. 
 
4.7 Mutation 
Mutation is applied to every new chromosome using single point mutation procedure. Each gene is mutated at a very 
low probability, hoping for an improved structure. This mechanism enables the algorithm to search in the 
neighbourhood in the current solutions in the population, a phenomenon called intensification. 
 
4.8 Inversion and Diversification 
It is critical to control the population diversity. This is because as iterations proceed, the population of candidate 
solutions may prematurely converge to a particular solution. As a result, we apply the inversion operator, a 
mechanism that rearranges, at a very low probability, the genes of a chromosome. For instance, a schedule or shift 
allocation [l n l n d l n ] may be rearranged to [n l d n l n l ] in a reverse order. To check population diversity, we 
define an entropic measure Hj for each shift j; 
 

1

ln( )

ln( )

n jk jk
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x x p
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        (9) 

 
where, xjk is the number of chromosomes in which shift j is assigned position k in the current population; n is the 
number of shifts. Then, diversity H becomes, 
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        (10) 
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Inversion is applied whenever diversity falls below a threshold value, hd. However, the best performing candidates 
are preserved (we preserve 3 candidates in this application). 
 
4.9 Overall FGA Algorithm 
FGA incorporates the operators discussed in the previous sections, starting with the selection of suitable input 
parameters. The selected input parameters were: crossover probability (0.4), mutation probability (0.1), and 
inversion probability (0.05). An initial population, P(0), is generated randomly by an enhanced heuristic that seeks 
to satisfy absolute constraints during chromosome encoding. The enhancing heuristic is also useful for chromosome 
repair. FGA then follows through an iterative loop involving selection, crossover, mutation, inversion, and until 
termination condition, based on maximum number of pre-specified T. Figure 5 presents the overall structure of the 
proposed FGA. We present illustrative examples, computational results, and relevant discussions in the following 
section. 
 

Algorithm 1. Fuzzy genetic algorithm 
1.  BEGIN 
2.   Input: parameters; t = 0; 
3.   Initialize population, P(0); 
4.       REPEAT 
5.   Selection: 
6.          Evaluate P(t); 
7.          Create temporal population, tempp(t); 
8.  Crossover: 
9.          Select 2 chromosomes from tempp(t); 
10.          Apply crossover operator and repair as necessary; 
11.  Mutation:  
12.          Mutate P(t); 
13.          Add offspring to newpop(t); 
14.  Replacement strategy: 
15.          Compare successively, spool(t) and oldpop(t) strings; 
16.          Take the ones that fare better; 
17.          Select the rest of the strings with probability 0.55; 
18.  Inversion and diversification: 
19.          Compute diversity H; 

        IF (H < hd) THEN diversify till H ≥ hd; 
        Re-evaluate P(t); 

20.  New population:  
21.          oldpop(t) = newpop(t); 
22.          Advance population, t = t + 1 
23.        UNTIL (t ≥ T) 
24.  END 

 
Figure 5: Overall FGA pseudo-code 

 
5. Computational Experiments, Results and Discussions 
The proposed FGA procedure was implemented in JAVA on a 3.06GHz speed processor with 4GB RAM. For the 
purpose of illustration, we present a typical experiment, together with computational results and pertinent 
discussions. 
 
Figure 6 (a) presents a typical candidate solution obtained using our proposed enhanced coding method. The 
solution satisfies all the hard or absolute constraints. Furthermore, the solution shows a schedule or shift assignment 
covering a planning horizon of 7 days, where 9 nursing staff is allocated shift types d, n, l, or o. The initial 
population normally comprises a number of candidates obtained in a similar manner.  In this problem, combinations 
(s1,s2), (s5,s8) and (s6,s9) are known to have a very low congeniality, and we should avoid, as much as possible, 
assigning them the same shifts. The workload assignment is fair across all the staff. However, hard constraints are 
always satisfied. Figure 6 (b) shows an improved solution obtained after 150 iterations, considering the congeniality 
preferences.  
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  Days       Days    
Nurse Skill 1 2 3 4 5 6 7 d n l  Nurse Skill 1 2 3 4 5 6 7 d n l 

s1 1 o d l l  o n  n 1 1 2  s1 1 o l  l l  o n  n 0 2 3 
s2 1 d  d d  o l  l o 3 0 2  s2 1 d d d o l  l o 3 0 2 
s3 1 o d d d l  n  o 3 1 1  s3 1 o d d d l  n  o 3 1 1 
s4 2 d l  o l n o d 2 1 2  s4 2 d d o l n o d 3 1 1 
s5 2 d l l o d d n 3 1 2  s5 2 l  l l o d d n 2 1 3 
s6 2 n n o  d d d l 3 2 1  s6 2 n n o d d l  l 2 2 2 
s7 2 n o  d d d l l 3 1 2  s7 2 n o d d d d l 4 1 1 
s8 2 l  o n n n o d 1 3 1  s8 2 d o n n n o d 2 3 0 
s9 2 l n n n o d  d 2 3 1  s9 2 l n n n o d  d 2 3 1 
 d 3 3 3 3 3 3 3      d 3 3 3 3 3 3 3    
 n 2 2 2 2 2 2 2      n 2 2 2 2 2 2 2    
 l 2 2 2 2 2 2 2      l 2 2 2 2 2 2 2    
     (a)             (b)       

 
Figure 6: Initial candidate solution and final solution 

 
Further experimentations with large numbers of staff indicated that FGA can solve large scale scheduling problems 
within a reasonable computation time, while respecting all the hard constraints and fulfilling preference constraints 
as much as possible, in the range of 80%.  
 
6. Conclusions 
Designing decision support tools that can address the healthcare staff scheduling problem is a cause for concern in 
most healthcare organizations, such as hospitals. Schedule quality is necessary to maintain or improve worker moral 
and avoid absenteeism and attrition. In an environment where staff preferences are ill-defined or imprecise, the use 
of fuzzy set theory concepts is beneficial. In this paper, a FGA with a fuzzy goal-based fitness function coupled with 
heuristic chromosome generation is proposed to solve the healthcare staff scheduling problem, producing near-
optimal solutions. Experimental results demonstrated that FGA is capable of solving large scale staff scheduling 
problems. The approach provides useful contributions to academicians as well as practitioners in the health service 
industry. 
 
The proposed algorithm is a contribution to the Industrial engineering and operations management community as it 
provides an approach to solve staff scheduling problems where the desired goals and preferences are ill-structured. 
Unlike other metaheuristic approaches, our approach incorporates more realism to the solution process. As opposed 
to conventional linear programming methods, FGA is capable of handling large-scale problems, while providing 
good solutions within a reasonable computation time. The approach can be developed further into a decision support 
system to assist decision makers in the field. The method also provides useful contributions to the practicing 
decision maker. 
 
By providing the user an opportunity to use weights, the decision maker can incorporate preferences and choices in 
an interactive manner. The use of interactive decision support tools that provide a list of good alternative solutions is 
more acceptable to practicing decision makers than prescriptive optimization methods that provide a single solution. 
Hence, the decision maker can use information from staff and management to make adjustments to the solution 
process based on weights. In sum, FGA is an effective and efficient approach, a platform for developing decision 
support tools for staff scheduling problems in a healthcare setting. 
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