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Abstract
The identification of translation initiation sites (TISs) constitutes an important aspect of

sequence-based genome analysis. An erroneous TIS annotation can impair the identifica-

tion of regulatory elements and N-terminal signal peptides, and also may flaw the determi-

nation of descent, for any particular gene. We have formulated a reference-free method to

score the TIS annotation quality. The method is based on a comparison of the observed

and expected distribution of all TISs in a particular genome given prior gene-calling. We

have assessed the TIS annotations for all available NCBI RefSeq microbial genomes and

found that approximately 87% is of appropriate quality, whereas 13% needs substantial

improvement. We have analyzed a number of factors that could affect TIS annotation quality

such as GC-content, taxonomy, the fraction of genes with a Shine-Dalgarno sequence and

the year of publication. The analysis showed that only the first factor has a clear effect. We

have then formulated a straightforward Principle Component Analysis-based TIS identifica-

tion strategy to self-organize and score potential TISs. The strategy is independent of refer-

ence data and a priori calculations. A representative set of 277 genomes was subjected to

the analysis and we found a clear increase in TIS annotation quality for the genomes with a

low quality score. The PCA-based annotation was also compared with annotation with the

current tool of reference, Prodigal. The comparison for the model genome of Escherichia
coli K12 showed that both methods supplement each other and that prediction agreement

can be used as an indicator of a correct TIS annotation. Importantly, the data suggest that

the addition of a PCA-based strategy to a Prodigal prediction can be used to ‘flag’ TIS anno-

tations for re-evaluation and in addition can be used to evaluate a given annotation in case

a Prodigal annotation is lacking.
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Introduction
The ab initio identification of coding sequences is the first step in the annotation of a genome.
Various computational methods have been developed to identify coding sequences from Open
Reading Frames (ORFs) with low error rate. Automated identification of the Translation Initia-
tion Sites (TISs) associated with the protein-encoding genes has proven to be more difficult.
The difficulty probably relates to the fact that the sequence signatures that are associated with
the initiation of translation can be diverse. In prokaryotes, the translation of the majority of
protein-encoding genes is initiated by the interaction between a short sequence in the 5’
untranslated region (5’-UTR) of the mRNA, referred to as the Shine-Dalgarno (SD) sequence
[1], and the 3’-end of the 16S ribosomal RNA. It was observed that the presence of the SD
sequence is correlated with a higher expression level [2]. Similarly, the presence of the SD
sequence correlated with the occurrence of an AUG codon as the translation start [2]. Never-
theless, the SD sequence is not absolutely required as it was found that many, and even some
highly translated, mRNAs lack a (recognizable) SD sequence [3]. So far, two alternative (i.e.,
SD-independent) mechanisms of translation initiation have been identified [4]. The first SD-
independent mechanism involves ribosomal protein S1 (RPS1), which interacts with the 5’-
UTR to initiate translation [5]. The second mechanism involves the 70S ribosome as a whole,
which can interact directly with leaderless genes (genes without a 5’UTR) and uses an N-for-
myl-methionyl-transfer RNA to initiate translation [6,7]. The start codon is assumed to be the
most important signal for the translation of leaderless genes. Analysis of 162 completed bacte-
rial genomes showed that the number of genes not preceded by an SD-sequence is highly vari-
able between bacteria, where the reported number varies between 9.2% and 88.4% [8,9].

Currently the most widely used gene-calling tools are GLIMMER3 [10] and Prodigal [11].
Other tools include MED2.0 [12], GeneMarkHmm [13] and EasyGene [14]. The former tools
predict coding sequences with relative low error rates for genomes of well-studied organisms.
Nevertheless, the annotation of genes in high-GC-content genomes using these tools is more
challenging, since the genomes contain fewer random stop codons leading to longer Open
Reading Frames (ORFs) and more mistakes [11]. Three main approaches are in use to improve
upon a given TIS annotation. These are essentially based on: i) post-processing of initial predic-
tions; ii) comparative genomics; and iii) combining multiple predictions. The related tools
commonly start from existing genome annotations or genes identified by the before-mentioned
prediction tools. For instance, TICO [15] was developed to improve the accuracy of TIS anno-
tation by performing an unsupervised classification of strong-TIS and weak-TIS sequences.
Similarly, various resources such as ProTISA [16] and SupTISA [17] have accumulated (post-
processed) predictions from different sources. In ORFcor, orthologous sequences are used to
identify and correct inconsistencies in the gene and TIS annotation [18]. Likewise, Genome
Majority Voting was used to assign TISs based on groups of orthologous sequences [19]. The
pipeline GenePRIMP [20] was developed to improve the gene prediction of bacterial genomes
and to report anomalies including inconsistent start sites, and missed and split genes. Multiple
gene-prediction methods have been combined to improve the accuracy of gene and TIS anno-
tation [21–24]. It was found that the application of a specific path in the combination of predic-
tors can provide a gain in sensitivity while maintaining a high specificity in gene prediction
[21]. Nevertheless, a recent comparison of the various available prediction tools and pipelines
indicated that the best performers achieved a maximal TIS prediction accuracy of around 90%
for a typical genome [11]. Moreover, the addition or combination of tools did not often lead to
an improvement in the estimated quality above 90%.

Different types of errors are commonly introduced by computational gene calling and anno-
tation methods. First, true coding regions can be overlooked. However, the percentage of
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missed genes is estimated not to exceed 5–10% [25]. Second, some predicted genes do not rep-
resent a true coding sequence [11,21]. Third, the assignment of the correct start codon (i.e., the
translation initiation site (TIS)) can be erroneous. Bakke and colleagues [26] evaluated the per-
formance of three automated genome annotation services for the annotation of the archaeon
Halorhabdus utahensis, namely: IMG [27], RAST [28] and the J. Craig Venter Institute (JCVI)
Annotation Service [29]. There appeared to be considerably more agreement concerning the
identified translation stop codons (90% shared) than concerning the annotated TISs (48%
shared) between the three services. The inconsistency in TIS annotation was also highlighted
by another study, in which it was shown that 53% of the orthologs among 5 Burkholderia
genomes have inconsistently annotated TISs in RefSeq [30]. The incorrect annotation of TISs
can flaw different types of genome analysis such as: the (automated) identification of regulatory
sequences, the construction of reliable phylogenetic trees for homologous genes/proteins, the
function annotation of the gene product and the prediction of the subcellular location of the
gene product.

An important limitation in de novo gene prediction is the need for reference data-sets with
correctly identified TISs to test the quality of annotations. Unfortunately, large sets of trans-
lated proteins where the N-terminus has been experimentally verified are scarce [31]. A fre-
quently used dataset of verified protein sequences is available for Escherichia coli K12 MG1655
from EcoGene [32]. The translation start sites (926) in this dataset are reported to be experi-
mentally determined using N-terminal protein sequencing. In this paper we present a strategy
that avoids the need of reference datasets to assess the accuracy of genome-wide TIS annota-
tion. The strategy involves a comparison between the distribution of alternative TISs around
the annotated TISs within a genome, and an expected distribution that can be calculated based
on simple and transparent criteria. Such a comparison appeared to provide an intrinsic quality
metric for genome-wide TIS-prediction accuracy. We have evaluated the TIS quality for all
sequenced genomes and found that the majority was reasonably well annotated, but a substan-
tial minority (~13%) clearly needs to be improved.

In addition, we have developed an iterative Principle Component Analysis (PCA)-based
strategy that uses the sequences surrounding all putative TIS for a gene, to identify the most
likely TIS. The strategy neither involves training nor reference data, and is not based on any
additional assumptions. It can thus be used for any genome. We have implemented the strategy
and assigned TISs to all genes for a set of 277 representative bacterial genomes. Comparison of
the TIS annotation for the E. coli K12 MG1655 genome as obtained with the PCA-based
method to the annotation obtained using the standard tool Prodigal revealed a clear advantage
of using both methods simultaneously.

Results

An inherent metric to assert the quality of genome-wide gene-predictions
We identified all alternative in-frame translation initiation sites (TISs) for the annotated genes
in the complete archaeal and bacterial genomes available via NCBI in January 2013 (see meth-
ods). We plotted the distribution of the position of all alternative TISs with respect to the anno-
tated TISs (dataset available at Figshare; http://dx.doi.org/10.6084/m9.figshare.1460717). For
the well-studied bacterium E. coli K12 MG1655 we found a characteristic distribution, where
the number of alternative TISs in the coding part of the gene was reasonably constant and
where the number decreased nearly exponentially upstream of the annotated start (Fig 1A).
Furthermore we observed that in E. coli K12 MG1655 the first 5 to 10 codons of the coding
sequence showed a relative underrepresentation of alternative TISs. In fact, the genomes of
other well-studied bacteria such as Bacillus subtilis str. 168, Lactobacillus plantarumWCFS1,
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Listeria monocytogenes EGD-e, Pseudomonas putida KT2440,Mycobacterium tuberculosis
M37Rv and Salmonella typhimurium LT2, showed a very similar distribution (S1 Fig). More-
over, the distribution of Bacillus subtilis str. 168 showed a characteristic peak of alternative
starts 3 codons upstream from the annotated TIS. The same peak was observed for the other
species of the phylum Firmicutes (S1 Fig panels D,C,F). We have also determined the distribu-
tion of alternative TISs in Saccharomyces cerevisiae S288C (S1 Fig panel H). The distribution
of alternative TISs in this eukaryote appeared highly similar to the ones of the well-studied bac-
teria. At the same time, we found that a considerable number of genomes (~13%) showed a
dissimilar distribution. The dissimilar distributions were of two types: i) a distribution that sug-
gested alternative TISs upstream of the annotated TISs were absent (Fig 1B); and ii) a distribu-
tion that suggested that there was a relatively low probability to find a stop codon upstream of
a TIS (Fig 1C). The former distributions commonly showed a peak of alternative TISs in the
first 10 codons of presumed coding sequence. The latter distributions showed a peak of alterna-
tive TISs around 30 to 120 nucleotides upstream of the annotated TISs.

While studying the relative positions and frequencies of alternative in-frame TISs we real-
ized that the overall distribution of the alternative start codons should in fact be a very good

Fig 1. Three typical distributions of alternative start codons found for genomes in the NCBI RefSeq
database. (A) The distribution of alternative starts in Escherichia coli K12 MG1655; (B) Bacillus thuringiensis
str. Al Hakam; and (C) Acinetobacter baumannii ATCC 17978. For all ORFs that included an annotated gene
and TIS, the total number of alternative start codons for each codon position relative to the annotated
translation start were counted. The green line represents the expected distribution as determined using
formula 1 In genomes that adhere to Fig 1A the observed and expected distribution are alike, whereas for
genomes that adhere to B or C the observed distribution of alternative start codons given the annotation is
clearly deviating from the expected distribution (green line). A comparison of the observed and expected
distribution provides an inherent quality measure for genome-wide gene-prediction accuracy.

doi:10.1371/journal.pone.0133691.g001
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measure of TIS annotation quality. The distribution should ideally follow the distributions as
found in the well-studied organisms, which all displayed a near exponential decrease upstream
of the annotated TISs. We calculated the expected distribution for every individual genome
given two simple premises: i) the probability of finding alternative TISs in coding sequence is
constant on average and likewise in non-coding sequence; and ii) the probability of finding an
in-frame stop-codon upstream of the TIS is constant on average. To take variation in AT or
GC content in account we calculated genome specific in-frame alternative start codon frequen-
cies and genome specific stop codon frequencies (see methods). The difference between the
observed and the calculated distribution could then be used directly as a quality measure of
TIS annotation. To probe the difference between the given and the expected distribution we
decided to use a correlation measure since such a measure should be relatively insensitive to
deviations at particular codon positions. We calculated a Spearman correlation coefficient
between the given and expected distribution for all sequenced genomes in the NCBI RefSeq
database of January 2013. The calculated correlations of both the upstream and the complete
distribution for all analyzed genomes can be found in S1 Table. We observed striking differ-
ences between the given and expected distribution of alternative TISs for various genomes and
found that these differences were more prominent in the upstream region. We therefore
decided to use only the upstream correlation for comparison. Based on our two simple prem-
ises the calculated correlation coefficient should be a good measure of TIS annotation quality.
Indeed the genomes known to be well annotated, like those of Escherichia coli K12 MG1655
and Bacillus subtilis str. 168, showed a high correlation coefficient (0.98 and 0.98, respectively).
On the other hand, the distributions with a low correlation coefficient coincided with the a-typ-
ical distributions of alternative TISs similar to those depicted in Fig 1B and 1C. In case we used
a correlation coefficient of>0.85 for genomes from 500–1500 ORFs and>0.9 for genomes
from 1500 ORFs (see discussion) as indicative, the majority of genomes would be qualified as
appropriately annotated (Fig 2). We found that in 88% of the bacterial genomes and in 71% of
the archaeal genomes the TIS annotation quality measure was above the threshold (bacteria:
1936 of 2205, archaea 107 of 150).

Factors that affect the quality of the annotation of TISs
The correlation between the given distribution of alternative TISs and the expected distribution
was calculated per genome. An important consequence of this way of calculation was that it
abolished the need for a reference gene-set and allowed a direct comparison of TIS annotation
quality between genomes of varying GC content. For instance, we used the correlation measure
to test the change in TIS annotation quality throughout the years. It has been assumed that the
quality of the gene calling procedure, which includes the identification of TISs, has decreased
in time due to the relative decrease in the number of manually curated annotations and the
strong increase in the number of automated annotations [33]. Contrary to expectation, a com-
parison of the alternative TIS distribution correlation coefficients against the year of publica-
tion (Fig 3A) did not show such a trend.

Other factors, including GC-content, have also been proposed to be correlated to TIS anno-
tation quality. We found that GC-content indeed correlated with the alternative TIS distribu-
tion correlation coefficients. Both high GC-content (>60%) and low GC-content (<40%)
genomes showed a relatively low correlation between the given and expected alternative TIS
distribution (Fig 3B). Using a Fisher exact test we determined that the occurrence of above-
average quality gene annotation (correlation score> 0.85/0.9) for low and high GC-content
genomes compared to the occurrence of high quality gene annotation in moderate GC-content
genomes was significantly lower in all cases (p-value 0.0001 or smaller; S2 Table). We also
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Fig 2. Correlation coefficients between observed alternative start frequencies and expected alternative start frequencies for microbial genomes.
(A) Spearman’s rho coefficients for all bacterial RefSeq genomes with > 500 ORFs. (B) Spearman’s rho coefficients for all Archaeal RefSeq genomes
with > 500 ORFs.

doi:10.1371/journal.pone.0133691.g002
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observed a decreased correlation score for particular phyla (Fig 3C). However, the effect of
phylum could be explained completely by the difference in the GC-content of the species
within the phyla.

The number of genes preceded by a Shine-Dalgarno sequence within the genomes was
another factor that we considered. We found that genomes with a lower SD presence on aver-
age had a lower TIS annotation quality (Fig 3D and S2 Fig). Yet, this tendency was not uniform
as the group with the lowest SD presence (mostly Cyanobacteria and Bacteroidetes) had a rela-
tive higher TIS annotation quality. Vice versa, the group with a SD presence between 0.6 and
0.7 (mostly Firmicutes and Proteobacteria) had a relative decreased TIS annotation quality.
Finally, we observed small differences in TIS annotation quality between genomes sequenced
and annotated by the large sequencing centers (S3 Fig).

The use of principal component analysis to identify TISs
Although the observed distributions of alternative TISs overall followed the expected distribu-
tion well, this was much less true for the sequence region directly upstream and downstream of
the annotated TISs. For example, in B. subtilis str. 168 and E. coli K12 MG1655 a relative low
number of alternative TISs were found in the first codons of the coding sequence, and peaks of
alternative TISs were present in the upstream codons preceding the annotated TISs (Fig 1A
and S1 Fig). In fact, the observed deviations should be expected in case recognition of the TIS
requires a specific sequence signature. As a consequence, we reasoned, the true TISs should be
separable from the alternative TISs based on the signature. Furthermore, the sequence signa-
ture related to translation initiation should stand out when the variability of the sequence
directly upstream and downstream of potential TISs would be analyzed. The upstream and
downstream sequences of all potential TISs for every annotated ORF in a particular genome
were therefore converted to binary vectors (as described in the methods). A PCA was initiated
using the vectors corresponding to the three longest potential gene-products for every ORF.
Given the available data on model organisms (e.g., the E. coli reference set in EcoGene 3.0 [32])
the resulting set of vectors should represent a substantial number of true TISs (estimated num-
ber>20%) whilst ensuring that the majority of vectors represented false TISs (>66%). To
enrich the set with true TIS corresponding vectors we iterated the PCA procedure (see meth-
ods). We found that the analysis converged within ten iterations for every genome analyzed.
We thus have formulated an iterative PCA-based procedure to separate true TISs from alterna-
tive TISs (S4 Fig).

We have applied the PCA-based procedure for E. coli K12 MG1655 and iteratively scored
all potential TISs. We have included a table containing scores for the 5 best scoring TISs per
gene for E. coli K12 MG1655 (S3 Table). The scripts that were used have been made available
via Github (see methods) and can be used to evaluate the TIS annotation of any genome.
When we employed the simplest assignment scheme, that is using the highest score achieved
on principle component I during the iterations to discriminate the true TIS, ~85% of the TISs
in E. coli K12 MG1655 were assigned identically when compared to the original annotation in
the NCBI RefSeq database (Table 1). The majority of the non-compliant TIS annotations were
located downstream of the annotated TIS, with a clear peak at the first downstream codon (Fig
4). To evaluate the optimal combination of upstream and downstream sequence lengths we

Fig 3. Effects of year of sequencing, GC-content and taxonomy on TIS-prediction accuracy. The boxplots show the distribution of the calculated
correlation values (between the observed and expected distribution of alternative TISs) (Y axis) for: (A) all bacterial and archaeal RefSeq genomes grouped
by year of sequencing (NCBI Bioproject data; [38]); (B) The RefSeq genomes grouped into 6 bins according to their GC%; (C) The RefSeq genomes grouped
according to phylum; and (D) 277 selected bacterial and archaeal genomes with varying SD-index (proportion of Shine-Dalgarno sequence-preceded genes)
[4].

doi:10.1371/journal.pone.0133691.g003
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performed the procedure for the phylogenetically distant model organisms E. coliMG1655 and
B. subtilis str.168 using sequence vectors of varying lengths (see methods; the vector lengths are
given in the caption to Fig 4). We found that for the reference genomes the best annotation
results were obtained with sequence vectors that represented 30 nt upstream and 18 nt

Table 1. TIS annotation for E. coliK12 MG1655. The NCBI RefSeq file contained 4141 annotated genes. The position of the TISs was compared between
the PCA-based prediction, the Prodigal-based prediction and the RefSeq annotation. Recently, the EcoGene annotation has been updated and 13 TISs have
been adjusted (b0259, b0552, b0656, b1994, b2030, b2192, b3218, b3505, b4543, b2803, b1331, b2982 and b3093). The adaptations were compared to the
PCA-based and Prodigal-based predictions.

Annotation consistencya Total Verified set Ecogene Adjusted Ecogene adjustment

RefSeq = PCA = Prodigal 83% (3418) 88.4% (811) 1 12 nt upstream (b4543)

(RefSeq = Prodigal) 6¼ PCA 9.8% (406) 7.8% (71) 0

(Refseq = PCA) 6¼ Prodigal 4% (173) 2.2% (20) 0

RefSeq 6¼ (PCA = Prodigal) 2% (88) 1.4% (13) 12 All in agreement with PCA = Prodigal

Refseq 6¼ PCA 6¼ Prodigal 1% (54) 0.2% (2) 0

(a) The majority of TISs that are different in the PCA-based and Prodigal-based annotation are located close to the RefSeq TIS. For the PCA-based

predictions: 548 were not in agreement with RefSeq, 199 of these where within 30 nt distance and 56 at 3nt distance; For the Prodigal predictions: 241

(6%) were not in agreement with RefSeq (and 74 (2%) were missed): 96 of these were within 30 nt distance and 30 at 3nt distance.

doi:10.1371/journal.pone.0133691.t001

Fig 4. (A) The relative position of PCA-based TIS annotations that deviate from the RefSeq annotation for E. coliMG1655. (B) The effect of sequence
vector length on the number of matching PCA-based and RefSeq TIS annotations in E. coli K12 MG1655 and B. subtilis 168. The following vector lengths
were compared (denoted as: length upstream in nt. and length downstream in nt.): i) 60 & 60, ii) 36 & 36, iii) 30 & 24, iv) 30 & 18, v) 24 & 30, vi) 24 & 24, vii) 24
& 18, viii) 18 & 30 ix) 18 & 24 and x) 18 & 18.

doi:10.1371/journal.pone.0133691.g004
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downstream of the annotated TIS (Fig 4B). We therefore decided to use sequence vectors of
this length to annotate E. coliMG1655 (S4 Table), B. subtilis str.168 and a selected set of bacte-
rial genomes

We applied the PCA-based annotation strategy to the 277 genomes selected by Nakagawa
and colleagues [4]. The selection of genomes was made to provide a balanced representation of
the bacterial and archaeal kingdom in terms of number of genomes per phylum. We found
that using the iterative PCA procedure and simple scoring the calculated correlation of the dis-
tribution of alternative TISs with respect to the annotated start codon improved significantly
for genomes with a poor correlation (and hence a poor TIS annotation quality) (Fig 5A). Only
some of the high quality TIS annotations became slightly worse when applying our simple
PCA-based ranking (see quality scores in S5 Table). Moreover, the quality of the PCA adjusted
TIS annotation appeared to depend hardly on GC-content. An average quality measure of 0.91
was achieved, compared to an average score of 0.90 for the RefSeq annotations. The original
genomic distributions of alternative TIS are supplied online (dataset available at Figshare;
http://dx.doi.org/10.6084/m9.figshare.1460717).

For comparison, we also performed a de novo ORF annotation of the 277 bacterial- and
archaeal- genomes using Prodigal [11]. Prodigal achieved a similar increase in the TIS annota-
tion quality score with an average score of 0.92 (Fig 5B). Our PCA-based method and Prodigal
showed a good correspondence in alternative TIS distribution correlation coefficients, where
Prodigal performed only slightly better (Fig 5C and S5 Table). Moreover, we found that for
almost all genomes Prodigal did not provide an ORF and TIS annotation for all ORFs of the
NCBI annotation file. For various genomes the number of ORFs without matching Prodigal
annotation exceeded 10% of the total.

To evaluate the differences in performance between the PCA-based TIS annotation and the
TIS annotation by Prodigal in more detail, we compared the PCA-based annotation and the
Prodigal annotation with the RefSeq annotation for the model organism E. coli K12 MG1655
and with the TIS annotation present in the well-curated Ecogene database (see Table 1). For
the majority (82.6%) of genes the TIS annotation based on the PCA-based method and on
Prodigal corresponded to the RefSeq annotation. For 406 (9.8%) genes the TIS annotation
using the PCA-based method conflicted with the Prodigal and Refseq annotation. Vice versa,
for 173 genes (4.2%) the PCA-based prediction was consistent with the RefSeq annotation but
conflicted with that of Prodigal. These included 74 genes that were not called using Prodigal
(e.g. no matching stop codon was found). Interestingly, for 88 genes (2.1%) the TIS annotation
of both the PCA–based method and Prodigal were identical but conflicted with the RefSeq
annotation. Moreover, we observed that for a large number of the genes in the latter group the
distance between the annotated TISs was less than 30 nt (see Table 1 and Fig 4). Only in 54
cases (1%) all three annotations disagreed.

Discussion
Two recent comparisons of the common gene identification algorithms showed that the algo-
rithms mostly agree on the location of the genes but quite often provide an inconsistent posi-
tioning of the TISs [21,30]. Due to the availability of only a limited number of reliably curated
genome annotations, TIS identifications might be biased. In fact, even for model organisms the
number of datasets containing experimentally validated TISs is scarce [31]. The effect of bias
on prediction quality is potentially underestimated given the fact that the identification algo-
rithms have mostly been benchmarked using the same reference data.

We argue that quantification of the similarity between an observed (genome-wide) and the
expected distribution of alternative TISs with respect to the annotated TISs provides an
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inherent measure of TIS annotation quality. The measure solely depends on the genome
sequence that is being analyzed and is therefore reference independent. It is easy to establish,
compare and interpret. We have implemented the proposed quality measure and found that in
all the genomes assumed to have a high quality TIS annotation (i.e., reference genomes used
in other papers) the observed distribution of alternative TISs corresponded well with the distri-
bution that we calculated based directly on expected triplet frequencies. Therefore, the correla-
tion between the observed distribution of alternative TISs and the expected distribution of
alternative TISs appears indeed to be a good measure for TIS annotation quality. Moreover, the
outcome of a similar analysis of TIS distribution for all chromosomes of the reference yeast
Saccharomyces cerevisiae S288c (correlation: 0.98) suggests the quality measure can as easily be
applied to eukaryotic genomes.

Our TIS distribution-based correlation measure was used to score TIS annotation quality
for completely sequenced bacterial and archaeal genomes. Although a score of 1.0 reflects a
perfect correlation, it must be noted that a somewhat smaller score probably already reflects
the “perfect” score as the occurrence of some abnormal TIS sites could decrease the correlation
slightly. Moreover, the number of alternative upstream TISs is in all cases relatively low–the
number was lower than 150 directly upstream of the annotated TIS and decreased to zero
within ~200 nucleotides for all genomes that were studied- and the related distribution should
be relatively noisy as a consequence, thus reducing the correlation. Indeed, the well-annotated
prokaryotic genomes of E. coliMG1655 and B. subtilis str.168 and the eukaryotic genome of
S. cerevisiae S288c showed such a slightly reduced supposed optimal correlation of 0.98. We
have used a correlation score>0.9 as indicative of appropriate TIS annotation. A correlation
value>0.9 was obtained for all genomes with more than 1500 ORFs in the set of 277 selected
genomes using either the original RefSeq TIS annotation, or the PCA-based annotation, or the
Prodigal annotation (S5 Table). We observed that for smaller genomes the spread in correla-
tion values became somewhat larger (S5 Fig). For genomes comprising 500 to 1500 ORFs
therefore a correlation higher than 0.85 can be used as indicative of appropriate annotation.

We found that the genomes with a relative poor TIS annotation quality (500–1500 ORFs
and score�0.85;>1500 ORFs and score�0.9) comprised about 13% of the genomes deposited

Fig 5. A comparison of TIS prediction accuracy between RefSeq, PCA-based and Prodigal annotation. Scatterplot of the correlation between
observed alternative start codon frequencies and expected alternative start codon frequencies (i.e., the TIS annotation quality measure) for both the original
TIS annotation as found in the RefSeq database (Y axis) and the adjusted annotations (X axis) based on (A) our iterative PCA pipeline and (B) Prodigal. (C)
Scatterplot for PCA-based annotation versus Prodigal. The color scale represents the GC% of the corresponding genome (blue: high, green: average, red:
low)

doi:10.1371/journal.pone.0133691.g005
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in the Refseq database in January 2013. The TIS annotation of archaeal genomes is relatively
more frequently of lower quality. For some genomes a very atypical distribution of alternative
TIS was found, resulting in a very low annotation quality in the NCBI genome database.
These genomes include for instance Rhodospirillum photometricum DSM 122 (0.22), Rothia
mucilaginosa DY-18 (0.32), Clostridium tetani E88 (0.34) and Borrelia turicatae 91E135 (0.43).
We have checked the corresponding publications to find abnormalities in gene-calling proce-
dures and genome sequence characteristics and we found that indeed less common gene-call-
ing procedures were used. Also genomes that are sometimes used as reference genomes were
found to have a questionable annotation quality. For instance, the TIS distribution in Strepto-
coccus pneumoniae R6 had a correlation of 0.83, whereas the correlation for other Streptococcus
pneumonia genomes was>0.9. These observations underline the necessity to be careful in
selecting a reference genome.

We have used the correlation measure to evaluate several factors that have been proposed to
affect the TIS annotation quality. Contrary to expectation, we observed no correlation between
the year the genome was published (annotated) and TIS annotation quality (Fig 3). This might
well be related to the substantial increase in the quality of the annotation tools during the last
decade. The sequencing center appears to have a small effect. Surprisingly, also the percentage
of genes preceded by an SD-sequence in a genome does not seem to affect the TIS annotation
quality much. In contrast, we found that genomes with low and high GC-content showed a sig-
nificantly decreased TIS annotation quality. Thus low GC and high GC-content appear to be
more problematic where the proper annotation of TIS by ‘traditional’means is concerned.

Interestingly, the abundance of alternative TIS in the direct context of annotated TISs was
aberrant. For example, in most, if not all, Firmicutes genomes we observed a characteristic
peak of alternative TISs located 9 nucleotides upstream of the annotated TIS. The ribosomal
binding site in these genomes explains this characteristic deviation. The full Shine-Dalgarno
motif (AGGAGGU) needs only to be followed by a G to attain a GUG alternative start-codon.
Genomes that belong to the Firmicutes phylum were among those reported to have the most
genes preceded by a Shine-Dalgarno motif (up to 92%) [34]. In line with this, we observed that
the majority of alternative starts in the observed peaks in the Firmicutes genomes are indeed
GUG-codons. At the same time, relatively few alternative TISs were observed in the first
codons of the coding sequence. Recent analysis of eukaryotic coding sequences also showed
low numbers of AUG codons in the first 5–11 codons following the TIS. The low numbers
were attributed to the prevention of translation of alternative genes [35]. Our observations for
bacterial genes suggest that the low abundance of alternative start codons in the first part of the
coding sequence is a universal trait of genes. Further work is under way to explore the possible
biological relevance of the variability in codon abundance upstream and downstream of the
TISs.

We have formulated a PCA based TIS scoring strategy and applied it to distinguish the true
TISs from alternative TISs. An important advantage of the strategy is that it is self-organizing
and that it thereby circumvents the need for reference data and knowledge of the characteristics
of the genome that is analyzed. Thereby, every genome can be analyzed in the same way with-
out impairing the overall quality. The PCA output can be used directly to manually assess the
TIS annotation of individual ORFs.

A simple scoring scheme was applied to utilize the scores from the different iterations of
PCA in an automated manner. We show that by applying the simple scoring scheme the TIS
annotation quality of many of the relatively bad scoring genomes can be improved (Fig 5A).
Moreover, The TIS annotation quality score observed after the PCA-based re-annotation of
277 representative bacterial genomes supports the reduced dependency between genome char-
acteristics and TIS annotation quality, when compared to other predictors. We compared the
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quality of the PCA-adjusted TIS annotations with the ones derived from Prodigal and found
that both methods improve the gene annotations in various genomes.

To evaluate the quality of the individual TIS annotations provided by the PCA-based strat-
egy we compared the TIS annotation in E. coli K12 MG1655 provided by NCBI’s RefSeq data-
base and by the Ecogene database [32], with the annotations calculated using our PCA-based
strategy and Prodigal. We found that PCA-based- and Prodigal annotations were in agreement
for the majority of genes (83%). The agreement is much better than the overall agreement in
TIS annotation observed by [26] between different much-used annotation services, and the
overlap observed for Burkholderia orthologs [30]. Importantly, the algorithms and information
employed in our PCA-based strategy may be viewed as predominantly independent from the
algorithms and information used by Prodigal. Whereas, Prodigal and most annotation proce-
dures rely on the use of Hidden Markov Models and Dynamic Programming algorithms to
score the TISs [36] and use reference data and the whole genome sequence to make sequence
models, our procedure is devoid of such models and solely employs the sequence surrounding
potential TISs and self-organizes those sequences using PCA. Therefore, the PCA-based strat-
egy adds valuable independently obtained information to the Prodigal annotation.

In E. coli K12 MG1655, we found that in 2% of the cases the PCA-based and Prodigal pre-
dictions complied but were different from the Refseq annotation. Although the Refseq TIS
annotation of E. coli is used as a reference, it does contain mistakes. For instance, in a recent
update of the Ecogene database (Ecogene 3.0 [32]) 13 adjustments (with respect to the Refseq
annotation) were made in the annotation. In fact, all of these were made to genes for which the
PCA-based and Prodigal TIS predictions agreed, further suggesting that a compliance between
the PCA-based and Prodigal annotation is a strong indicator for a correct TIS annotation. The
fact that for the experimentally verified set of genes the correct prediction rate is even higher in
the case of compliancy further supports the assertion. Moreover, recently the fes gene (b0585)
was removed from the experimentally verified set [32] because the N-terminus of the encoded
protein that was reported in literature before [37] was found 26 amino acids too short in a shot-
gun MS experiment [38]. The related TIS annotation, which was located 78 nt upstream of the
TIS annotated in the Refseq database, was assigned correctly by both our PCA-based method
and Prodigal. The incorrect annotation was corrected in the latest update of the E. coli K12
MG1655 Refseq record.

The above implies that consistency between a PCA-based annotation and Prodigal is a good
indicator of proper TIS annotation and suggests that it will be useful to manually evaluate the
TIS annotation in case the Prodigal/PCA-based annotation disagrees with the existing annota-
tion. A difference between the PCA-based and Prodigal prediction would be another reason to
‘flag’ the annotation for manual curation. We found that for 14% of the E. coli genes either the
PCA-based (406; 10%) or the Prodigal (173; 4%) TIS annotation were not in agreement with
the RefSeq TIS annotation. Considering the numbers, adopting the Prodigal annotation instead
of the PCA-based annotation would lead to a better annotation in the case of E. coli. However,
the performance of both prediction strategies depends clearly on the genome that is being
annotated as is implied by the data in Fig 5. Therefore a preference for one method over the
other cannot be generalized. In addition, we observed that for a large number of the genes with
a different TIS annotation between the PCA-based method and Prodigal the distance between
the annotated TISs was less than 30 nt and was actually peaking at 3 nt (a single codon differ-
ence). Given the self-organizing nature of the PCA-based method it could be that these TIS in
fact have been incorrectly annotated in RefSeq. Importantly, the Refseq and Ecogene database
also contained a number of annotated genes that where not found using Prodigal. For 74% of
these genes (55 out of 74) the PCA-based TIS annotation was the same as the one found in
the reference database. This implies that the PCA-based TIS scoring strategy can be used to
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evaluate the TIS annotation for ORFs that are not recognized by Prodigal or other conventional
gene prediction methods. In fact, we found that for various genomes Prodigal missed more
than 10% of the ORFs reported in the RefSeq database (S5 Table).

The percentage of genes for which the PCA-based prediction was different from the Prodi-
gal prediction and both different from the RefSeq annotation was around 1%. This small num-
ber implies that a combination of the sequence information used in the PCA-based method
and the algorithms used in Prodigal together must capture most of the properties of the tran-
script sequence that determine the location of translation initiation sites in E. coli. In fact, the
deviant TISs might be interesting to investigate in more detail because of their atypical charac-
ter and thus because of a potentially alternative translation initiation mechanism.

Conclusion
The newly defined distribution-based score for TIS annotation provides a powerful tool for the
assessment of TIS annotation quality because it can be employed on any genome sequence
without the need for a reference. We have evaluated the TIS annotation quality of the complete
bacterial genomes present in the NCBI RefSeq database and found that a significant portion of
genomes (~13%) has a questionable TIS annotation. To improve the quality of the genome
annotation data in the public domain we therefore would consider it valuable that the TIS
annotation quality is assessed before researchers publish their genome annotation. Fortunately,
our analysis shows that despite the increased automation the overall TIS annotation quality has
increased over the years.

We have developed an iterative PCA-based strategy to evaluate existing TIS annotations.
The strength of the strategy is that it employs self-organization and is thus independent of ref-
erence data or a priori calculations. We have compared between PCA-based and Prodigal TIS
annotations for the reference genome of E. coli. The analysis showed that both methods supple-
ment each other and that an agreement between the methods is a strong indicator of a correct
TIS annotation. Importantly, the addition of the PCA-based strategy to score potential TISs
can also be used to ‘flag’ particular annotations for manual curation. Currently, the iterative
PCA-based procedure only uses the positions on PCA component I to score TISs. Integrating
scores based on specified features such as RBS sequence, coding/non-coding biases could
potentially further improve the accuracy.

Materials and Methods

Genome sequences, annotations and sequencing meta-data
Genome sequence and annotation information of all bacterial and archaeal genomes was
obtained from the FTP server of NCBI RefSeq (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/) [39].
Genomes with less than 500 ORFs were excluded. The NCBI BioProject database was used to
retrieve metadata on the sequencing projects, such as year of sequencing [40]. For all species
with a sequenced genome that was published before October 2009, additional metadata such as
sequencing center, were derived from the GOLD database [41]. The SD index, that is the frac-
tion of genes preceded by a Shine-Dalgarno sequence, for a selected set of 277 bacterial and
archaeal genomes was taken from Nakagawa et al. [4]. Taxonomic classifications were retrieved
from the NCBI taxonomy database (ftp://ftp.ncbi.nih.gov/pub/taxonomy).
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Scripting and data analysis
All automatic procedures were written and executed in Python, whereas the Principal Compo-
nent Analysis (PCA) and additional statistical analyses were written and executed in R3.0.0
[42]). The distribution plots of alternative TISs were generated using Matplotlib [43].

Identification of alternative TISs in the context of prior annotation
The genomic position of the annotated translation initiation sites (TISs) for all genes within
the microbial RefSeq genomes with>500 annotated open reading frames (ORFs) were taken
from the.PTT files available at NCBI. The corresponding coding DNA sequences and upstream
regions were collected. Alternative TISs were identified using the nucleotide triplets "AUG",
"GUG" and "UUG" as potential start sites and the nucleotide triplets "UAA", "UAG" and
"UGA" as stop codons. To identify potential alternative TISs the following criteria were applied:
(i) the alternative TIS was in-frame with the annotated TIS; (ii) there was no in-frame stop
codon located between the candidate TIS and the annotated TIS; and (iii) the alternative TIS
was either found upstream or maximally 198 nucleotides downstream of the annotated TIS.
For every genome the distribution of the genomic positions of the alternative TISs with respect
to the annotated TISs was calculated. Simultaneously, an expectation of the distribution was
calculated based on the sequence properties of the particular genome at hand. The number of
alternative TISs in a window of 198 nucleotides upstream of the 3’ end of all annotated ORFs
was used to calculate an expected frequency for the occurrence of alternative start codons in
the coding part of any gene in the particular genome. A window of 198 nucleotides was chosen
because for all studied genomes at this distance the expected total number of alternative in
frame TISs has decreased below a total of 10. The expected start codon frequency of occurrence
upstream of an annotated TIS (denoted as fstart(obs_upstream) was considered constant and
was determined on basis of the average number of observed in-frame alternative starts (inde-
pendent of in-frame stops) in a window of 198 nucleotides upstream of the longest possible
ORFs (independent of the annotated TIS). The expected stop codon frequency of occurrence
upstream of an annotated TIS was taken as 3 codons (UAA, UGA and UAG) in 64 and cor-
rected for the AT and GC content of a genome (see formula 1). Using the frequencies derived
above, we calculated the expected number of alternative TISs (nTIS) upstream at codon position
i with respect to the annotated TIS, as described in formula 2 (where N is total number of anno-
tated ORFs):

f stopðcalc upstreamÞ ¼ ð½fractionðGCÞ þ fractionðATÞ=2� � fractionðATÞ2Þ=4 formula 1

nTISðiÞ ¼ N � f startðobs upstreamÞ � ð1� f stopðcalc upstreamÞÞ formula 2

The similarity between the distribution of alternative starts-derived using the provided
annotation- and the expected distribution of alternative starts-calculated on the basis of the
genome sequence- was quantified using a Spearman’s rank correlation coefficient.

Principal component analysis procedure to assess TISs
An iterative procedure of ten subsequent rounds of PCA was implemented to distinguish
TISs on basis of common sequence patterns (procedure depicted in S4 Fig). For each identified
candidate TIS in a genome a fixed number of nucleotides upstream and downstream of the
annotated start codon were extracted from the sequence file. The upstream and downstream
nucleotide sequences were fused to the first nucleotide of the corresponding start codon. The
resulting nucleotide sequence was converted to a binary vector in which each position within
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the sequence was represented by four binary values corresponding to the four different bases
(e.g., CTT was thus expressed as 0010 0100 0100). For each annotated ORF the TISs that
resulted in the three longest ORFs were used as input for the initial round of PCA. We assumed
such a selection included a sufficient number of true TISs to direct the initial PCA. After each
round, all alternative and annotated TISs were projected on the linear combination of the first
principle component (PC1) and the PC1-score for each candidate start was computed. The
three top scoring candidate TISs for each ORF were then included in the next round of PCA.
The number of iterations was set to 10, which was sufficient to converge the PCA results for all
genomes tested.

Supporting Information
S1 Fig. Distribution of alternative start codons for well-studied bacteria and Saccharomyces
cerevisiae. For all ORFs per genome that included an annotated gene and TIS, the total number
of alternative start codons for each codon position relative to the annotated translation start
were counted. The distribution of alternative start codons with respect to the annotated start
in the RefSeq database are given for (A) Bacillus subtilis str. 168, (B) Escherichia coli K12
MG1655, (C) Lactobacillus plantarumWCFS1, (D) Listeria monocytogenes EGD-e, (E)Myco-
bacterium tuberculosisH37Rv, (F) Pseudonoma Pseudomonas putida KT2440, (G) Salmonella
typhimurium LT2 and (H) Saccharomyces cerevisiae S288c.
(PDF)

S2 Fig. Effect of Shine-Dalgarno presence on TIS-prediction accuracy. Scatterplot showing
the relationship between TIS annotation quality (i.e. the correlation between observed alterna-
tive start codon frequencies and expected alternative start codon frequencies) (Y axis) and
adjusted SD-index (proportion of Shine-Dalgarno sequence-preceded genes [4]) (X axis) for
277 bacterial and archaeal genomes with varying SD-index ([4]).
(TIF)

S3 Fig. Effect of sequencing center on TIS-prediction accuracy. Boxplot of the distribution
of TIS prediction accuracy values for the genomes in the GOLD database [39], grouped accord-
ing to sequencing center.
(TIF)

S4 Fig. Schematic overview of the iterative principal component analysis procedure to
assess TISs.
(TIF)

S5 Fig. Relation between number of ORFs and annotation score. Scatterplot showing the
relationship between TIS annotation quality (i.e. the correlation between observed alternative
start codon frequencies and expected alternative start codon frequencies) (Y axis) and number
of ORFs in a genome (X axis) for 277 bacterial and archaeal genomes ([4]).
(TIF)

S1 Table. TIS annotation quality for all RefSeq genomes. The file contains the spearman
rank correlation between observed alternative start codon frequencies and expected alternative
start codon frequencies for each microbial RefSeq genome. In addition taxonomic information
and the number of ORFs are given.
(XLSX)

S2 Table. Fisher exact p-values for GC-content significance. The file contains the fisher exact
p-values of the comparison of the TIS annotation quality (high:> = 0.9 or low:< 0.9) of
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moderate (bins: 0.4< 0.5 & 0.5< 0.6) GC% genomes to low- (bins:< 0.3 & 0.3< 0.4) and
high- (bins: 0.6< 0.7 &> 0.7) GC% genomes.
(XLSX)

S3 Table. Results of PCA procedure for Escherichia coli K12 MG1655. The file contains
the results of the PCA-based scoring of TISs. Per ORF, a maximum of 5 potential TISs are
included, for which the genomics positions, the positions on PC1, PC2 and PC3 and a rank
based on the PC1 position are given for 10 PCA iterations.
(XLS)

S4 Table. PCA-adjusted annotation for Escherichia coli K12 MG1655. The file contains the
genomic positions and the PC1, PC2 and PC3 position in the 10 PCA iterations for each TIS
that was selected using our PCA-based procedure. It also provides the TIS position predicted
by Prodigal, the TIS position provided by RefSeq and the comparison among the 3 annotations
(1 = True and 0 = False).
(XLSX)

S5 Table. TIS annotation quality of RefSeq-, PCA-adjusted and Prodigal annotations for
277 species. The file contains the calculated quality measure of the TIS annotation based on
the PCA-based prediction, the Prodigal-based prediction and the RefSeq annotation for the
277 species selected by Nakagawa and colleagues [4]. In addition, it provides the number of
ORFs for which predictions were made and the GC% of each genome.
(XLSX)
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