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This study investigated the effect of internal stress of mild steel on its corrosion behaviour in apple 

juice by weight loss and microstructural analyses.  The stress in the mild steel samples was induced by 

heat treatment at three different austenitic temperatures of 800, 850 and 900
o
C, followed by rapid 

quenching in cold water.  The analyses of the results obtained showed that the heat treatment of mild 

steel at different temperatures followed by cold water quenching, changed the microstructure of the 

mild steel.  The weight loss measurements obtained were at the highest of  0.009894 g/cm
2
 for the non-

heat treated mild steel, 0.007831 g/cm
2
 for 900

o
C heat treated mild steel, 0.006394 g/cm

2
 for the 

sample heat treated at 850
o
C, and 0.005287 g/cm

2
 for the sample heat treated at 800

o
C.  The analyses 

of these results showed that the sample heat treated at 800
o
C was more resistant in apple juice having 

the lowest average corrosion rate of 53.23 μm/y. The resistance of mild steel to corrosion in this 

medium decreased with the increase in austenitic temperature, which is observed from corrosion rate 

of 53.23 μm/y for sample heat treated at 800
o
C, 65.05 μm/y for sample heat treated at 850

o
C, and 

80.630 μm/y for sample heat treated at 900
o
C, while 99.83 μm/y is recorded for the control sample.  

Intergranular corrosion with traces of pitting was observed in the heat treated samples immersed in the 

apple juice and the acidity of the medium increased with increase in exposure time. 
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1. INTRODUCTION 

The importance of mild steel has been established and reported in many fields. Singh et al [1] 

reported that mild steel is the preferred materials for many industrial applications due to its easy 
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availability and its excellent physical properties. Compared to wrought iron, mild steel is cheaper, 

stronger and more workable than cast iron. More applications of mild steel have been reported in 

fabrication of containers such as reaction vessels, storage tanks for industries. Mild steel also finds 

application for packaging in agro fluid industries, but its usage in acidic environments is restricted 

because of its susceptibility towards corrosion. The concentration of 20-25% of acids has been found 

to be most corrosive [1]. The composition of agro juice and especially the relative acidity is the most 

important factor that may influence the choice of this material as packaging due to corrosion attack [2]. 

It has been reported that apple (Malus domestica) has been the leading fruit variety according 

to its world production and that the most important industrial utilization of apple is the juice 

production [3].  The processing equipment has been identified among the sources of contaminants in 

apple juice production. The other contaminants being, soil, faeces, water, air, ice, handling of products, 

harvesting and transport [4]. The mean composition of apple juice is composed of acids such as; malic, 

quinic, isocitric, citric, furmaric, and shikinic [5].  The reaction of these acids with steel during 

processing of this agro fluid is a major cause for concern as its resulting corrosion effect could be 

devastating in terms of human safety, financial cost and environmental [6–7]. 

Corrosion involves both chemical and electrochemical reaction of a metal with its environment. 

This means that corrosion process requires at least two reactions namely anodic and cathodic reactions 

to form a current flow. The metal transfers electrons to the electrolyte and give the anodic reaction 

which is a chemical or electrochemical oxidation process. The various mechanisms involved in these 

processes have been reported by many researchers [7–8]. 

Stress corrosion cracking (SCC) is as an environmentally cracking of ductile material in an 

apparently brittle manner under tensile stress and it occurs for specific material in a specific 

environment [9]. The crack appearance could be transgranular, intergranular, and branched. The 

various factors that influence SCC have been well reported by many authors [10–15]. The combination 

influence of corrosive medium and tensile stress usually results to SCC on a particular metallic 

material. The tensile stresses may be in the form of directly applied stress or residual stress [15].  

The mechanism of SCC is such that it is initiated in many ways such as; from notches created 

by intergranular corrosion, from pitting damage of a passive film, from pits formed by crevice 

corrosion or erosion corrosion, or from localized attack of slip traces on film protected surfaces [16]. 

The corrosion produces a surface product layer in the mechanism of film induced cleavage, which can 

inject cracks into the underlying metal [10]. The transgranular SCC occur by intermittent 

microcleavage event due to a thin film. The cleavage of transganular SCC appears to propagate 

discontinuously. The time between cracks growth are determined by the film formation. The film 

mismatch and thickness influence discontinuous cleavage crack growth [9]. 

Heat treatment can be used to improve some properties of steel to obtain the desirable 

properties such as mechanical, corrosion, electrical and magnetic [17]. This heating process also 

allows steel to change its microstructures and crystallographic phases which subsequently has effect on 

the corrosion, mechanical and electrical properties of the steel [17]. Mild steel is most frequently 

selected for equipment construction because it is amenable to heat treatment for varying mechanical 

properties [2]. 
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In this study, the heat treatment of mild steel is investigated to assess its corrosion behaviour in 

apple juice. More is known on the SCC of mild steel in different environments, but not much is known 

and reported of SCC of mild steel in apple juice. This study is expected to provide information on the 

selection of this material for application in a typical juice processing industry to protect the integrity of 

this material in this medium. 

 

 

2. MATERIALS AND METHOD 

2.1 Mild steel sample preparation  

The mild steel samples were prepared with the dimensions of 59 x 29 x 6 mm.  The surfaces of 

the samples were prepared by mechanical grinding with SiC papers of P120, P180 and P220 grits 

successively to achieve a smooth mild steel surface. The polished surface was cleaned thoroughly with 

distillated water and acetone to expose the microstructure, remove polishing residuals and possible 

grease. After preparation and cleaning, the specimens were allowed to dry in air before further use. 

 

2.2 Mild steel sample heat treatment  

The samples were heated to various austenitic temperatures (800, 850 and 900
o
C) in an 

electronically controlled Lenton furnace. They were soaked at these temperatures for one hour each 

before being quenched in cold water to room temperature. 

 

2.3 Weight loss technique  

The corrosion of mild steel in apple juice was investigated at room temperature using weight 

loss measurements.  The test samples were suspended in the apparatus for complete immersion in the 

apple juice. The exposure was observed for 45 days while the weight loss measurements took place at 

every three days intervals using the electronic digital weighing balance Mettler Toledo which has a 

sensitivity of 0.01mg and a standard deviation of ±0.02 mg. The weight loss measurements were taken 

using the procedures and precautions described elsewhere [18–20]. 

 

2.4 Microstructural studies 

The microstructures of mild steel surfaces before and after immersion were observed using 

scanning electron microscope (SEM) (TESCAN). The TESCAN SEM was applied at different 

magnifications (from 100X to 12,000X) using secondary electron detector to obtain high quality 

images at voltage of 20kV electron beam energy.  The SEM was coupled with energy dispersive X-ray 

spectroscopy (EDX) to determine the surface elements composition. The EDX was also performed on 

the steel samples after heating to evaluate the effect of heat treatment on their composition. 
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2.5 pH measurement 

The pH meter (CRISON CM35) calibrated with distilled water was used to study the acidity of 

the corrosion medium. The pH meter was immersed in the distilled water and shaken to reach the 

neutral pH of 7 before subsequently immersed in the apple juice. The readings were taken at the stable 

points of the pH and these values were recorded at the interval of two days. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Cumulative weight loss 

Weight loss measurement has been identified as ideally good as other techniques for corrosion 

evaluation of metals in an immersion test [21–25]. In this investigation, the weight loss method was 

used to assess the corrosion of mild steel samples in apple juice medium. The weight of each of the 

samples was measured before immersion and then measured after three days’ total immersion in the 

medium to obtain the weight loss. The difference in initial and final weights was used to measure the 

weight loss during the interval period.  The weight loss measurements were analyzed at the intervals of 

three days for the complete period of immersion and the results were presented in the forms of 

cumulative weight loss and total weight loss. The cumulative weight loss per area centimeter square of 

non-heat treated, 800
o
C heat treated, 850

o
C heat treated, and 900

o
C heat treated samples are presented 

in the Figure 1. 

 

 
 

Figure 1. Cumulative weight losses Vs exposure time for mild steel in apple juice 

 

From Figure 1, it can be observed that the sample heat treated at 800
o
C has the highest 

corrosion resistant in this medium since the lowest weight was lost during the exposure period. This is 

followed successively by the samples heat treated at 850
o
C, 900

o
C, and lastly the control sample. The 

general observation on these results is an evident increase of weight loss with exposure time and a 

similar progression pathway of cumulative weight losses for all the samples with increase in exposure 
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time. The reason for the constant difference in cumulative weight loss from the start until the end could 

be the difference in composition and structure generated by the different heat treatment.    

 

3.2 Corrosion rate 

The corrosion rate assists field engineers, scientists to envisage the lifetime of many metallic 

components in service. The corrosion rate of a metallic material is evaluated by considering its density, 

equivalent weight and the area of exposed material.  The corrosion rate was calculated using equation 

(1) [26]. 

        (1) 

where; Rcorr = corrosion rate µm/y, ML = mass loss g, A = area of specimen, cm
2
, t = time of exposure 

year, ρ = density of specimen, g/cm
3
. 

The corrosion rates of different mild steel samples were calculated at different intervals of 

exposure time and the data obtained were plotted in Figure 2. 
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Figure 2. Corrosion of mild steel samples Vs exposure time in apple juice medium 

 

The corrosion kinetics of mild steel samples in apple juice as observed from Figure 2 is 

composed of two phases. The first phase was the initiation phase which is characterized by a strong 

linear decrease in corrosion rate, which started from the beginning of exposure time until the about 9th 

day of exposure.  The reason for this decrease in corrosion rate can be attributed to the formation of a 

passive film on the surface of mild steel which displayed a protective layer that slowed down the 

corrosion rate.  
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The mechanism of mild steel dissolution in a typical organic acid (such as acetic acid) follows 

a direct reduction of this acid at the metal surface and reduction of the hydrogen ions, of which the rate 

of the dissolution of this metal at the anodic site depends on the cathodic reaction, which can be 

summarized as shown in equations 1 – 3 [27 – 30]. 

2 +
(  ) + 2 −

 ⇌  2( )                                                                                 (1) 

   2    + 2 −
 ⇌  2( ) + 2  −

(  )                                                                                      (2) 

Hence, the anodic reaction involves the dissolution of the metal at the in order to balance the 

charge as shown in equation (3): 

  ( ) ⇌   2+
(  ) + 2 −       

  (3) 

In a more precise mechanism, the dissolution of the mild steel in the acetic acid and consequent 

formation of the protective film on the surface of the metal may be summarized as shown in the 

equations 4 – 6 [45 xx] 

Fe + CH3COO
–
 ⇌ [Fe(CH3COO)]

+
 + e

–
      (4) 

[Fe(CH3COO)] ⇌ [Fe(CH3COO)]
+
 + e

–
      (5) 

[Fe(CH3COO)]
+
 + H

+
   ⇌ Fe

2+
   + CH3COOH     (6) 

The dissociation of the acetic acid is reduced appreciably and hence sufficient number of H
+
 is 

not available for the last reaction (equation 6) to proceed in significant manner and the salt film 

remains intact on the surface which led to passivity which is thus an adherent, non-porous and 

protective film on the metal substrate [1, 7, 31]. 

The second phase is the propagation phase which is characterized by a slightly constant 

corrosion rate, which started from the 12th day and progressed until the end of exposure. For example, 

the corrosion rate of the sample heat treated at 800
o
C started at a value of 148.97 μm/y on the third day 

of exposure and was 56.37 μm/y at ninth day, with a decrease of about 62.2% during this period. From 

day 12 until the end of 45 days, the corrosion rate was at an average of 40.82 μm/y (±12.6 μm/y). The 

initiation stage of material decomposition plays a special role since the corrosion starts generally on 

weakest locations which can be, the surface defects, the grain boundaries, the segregations or 

inclusions. The corrosion resistance of many industrially used alloys with passive system is the result 

of the formation of a stable surface of oxide layer films [6]. 
 

3.3 Average corrosion rate 

The average corrosion rates of the samples in apple juice during the exposure period are 

presented in Figure 3. It can be observed from the Figure that the lowest average corrosion rate of 

about 53.23 μm/y is observed for the sample heat treated at 800
o
C. The highest average corrosion rate 

of 99.84 μm/y is observed for the control sample and this is followed by 80.63 μm/y for the sample 

heat treated at 900
o
C, 65.05 μm/y for the sample heat treated at 850

o
C and lastly 53.23 μm/y for the 

sample heat treated at 800
o
C. 
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Figure 3. Average corrosion rates of mild steel during exposure period 

 

It can also be inferred from the Figure that the sample heat treated at 800
o
C displays more 

passive behaviour than other samples and this can be attributed to the composition and structure 

modification because of the specific heat treatment at 800
o
C. The comparison of average corrosion rate 

showed that, the sample heat treated at 850
o
C is 1.2 times higher than the sample heat treated at 800

o
C, 

while the sample heat treated at 900
o
C is 1.5 times higher than the 800

o
C heat treated sample, and the 

control sample is 1.9 times higher than the 800
o
C heat treated sample. 

 

3.4 Microstructural analyses of the samples 

The effects of heat treatment on the microstructures of the samples were studied using the SEM 

analysis (Figure 4). It was observed that the morphologies of the mild steel samples changed with the 

increase of heat treatment temperatures. Some grains are noticed within structures of the samples as 

the austenitic temperature increased. This significantly alters the orientation of the grains in these 

samples and it was expected that this change will affect the corrosion behaviour of these samples when 

immersed in the juice medium.  

The SEM images of the control sample mild steel before immersion was observed and 

presented in the Figure 4 (a). From this image, it can be seen that there is uniform distribution of the 

phases present in the microstructures of the steel sample. The grain boundaries are even hardly visible 

due to homogeneity of the constituents in the material. The SEM image of the mild steel sample heat 

treated at the 800
o
C is shown in Figure 4(b). 
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A     B 

   
C     D 

Figure 4. SEM images of (a) control sample (b) sample heat treated at 800
o
C (c) sample heat treated at 

850
o
C (d) sample heat treated at 900

o
C before immersion in apple juice. 

 

This Figure reveals visible phases present in the steel and cracks are clearly visible along the 

grain boundaries of the sample. This is an indication that the heat treat this sample was subjected to has 

created some internal stresses which have caused cracks within the phases of the material. The 

quenching heat treatment process actually caused the formation of scattered grain particles which 

spread through in transgranular and intergranular spaces of the materials. More cracks are 

conspicuously visible in samples heat treated at 850
o
C and 900

o
C as shown in the images in Figures 4 

(c & d). 

The SEM microstructural analysis of the samples were also examined after immersion in apple 

juice for 45 days to study the dissolution or resistance of these samples in the corrosive medium. 

Figure 5 shows the SEM images of mild steel samples after immersion in apple juice for 45 days. From 

the Figure, it can be seen that passive layer films are observed for all SEM images. This passive layer 

films appear whitish in colour and cover the corrosion surfaces of the samples. The passive layer 

observed on the surface of these samples is due to the oxidative reaction. The oxidation occurred first 
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at the surface of mild steel and the resulting metal oxide scales forms a barrier, which restrict further 

oxidation as observed in the SEM images in the Figures [1,31]. 

             

   
A     B 

  
C     D 

Figure 5. SEM images of (a) control sample (b) sample heat treated at 800
o
C (c) sample heat treated at 

850
o
C (d) sample heat treated at 900

o
C after of immersion in apple juice. 

 

It can be observed that the control mild steel sample shows less protective passive layer film 

than other samples, and this indicates that the corrosion attack is more in this sample as corroborated in 

Figure 1. It can also be seen that thicker passive layer films were observed on heat treated samples 

which indicates that these samples show more resistance to corrosion in this medium. The behaviour is 

also evident in the weight loss results shown in Figure 1. The possible reason for this behaviour can be 

attributed to the fact that at higher austenitic temperature, the material became harder and brittle thus 

became more resistance to dissolution in this medium. It means that quenching this mild steel sample 

at higher austenitic temperatures actually increased the corrosion resistance of this material in this 

medium. 

Quenching is known to be a hardening process which produces martensitic structure with brittle 

nature. This structure has been known to be inert to some mild corrosive media and in this study, the 

apple medium contains mild organic acid (acetic acid) which is not strong enough to dissolve this 
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structure during the immersion period studied. A more careful observation is the fact that, the little 

attack observed in these samples occurred across the grain boundaries of these samples, which 

indicates that the corrosion is transgranular in nature. Some holes are however observed at the surfaces 

of the passive films of the samples heat treated at 850
o
C and 900

o
C, which might have occurred due to 

breakdown of the passive layers and might lead to pitting after further immersion in this medium. 

 

3.5 pH analysis of the samples 

The pH values of the apple juice of the heat treated samples during the immersion period were 

recorded. Figure 6 shows the plot of the pH data versus the exposure time incorporating the average 

pH. 

 
 

Figure 6. pH variations of heat treated mild steel samples with exposure time. 

 

It can be seen from this Figure that a decrease of pH is observed from the average value of 5.42 

at the start of exposure period to an average of 4.25 at the end of immersion period. This decrease 

showed that the solution became more acidic as the exposure time increases which can be traced to 

breakdown of the protective films on the samples and resulted to some pitting at further immersion in 

the medium. This behaviour is more pronounced in samples heat treated at 850
o
C and 900

o
C 

austenitic temperatures which is further confirmed in the SEM images in Figure 4 (c & d). 
 

4. CONCLUSIONS 

The corrosion behaviour of pre-stressed mild steel immersed in apple juice was investigated in 

this study by weight loss measurement and microstructural analysis. The analyses of the results 
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obtained showed that the water quenched mild steel samples showed significant changes in their 

microstructures. The mild steel heat treated at 800
o
C was found  to be more corrosion resistant with a 

average corrosion rate of 53.23 μm/y than all other samples which had successively; 65.05 μm/y for 

the 850
o
C heat treated, 80.62 μm/y for the 900

o
C heat treated, and 99.84 μm/y for the non-heat treated 

mild steel samples. Thus, these results indicate that heat treatment of this steel samples increased their 

corrosion resistance in apple juice.  The optimum corrosion reduction was obtained in the sample heat 

treated at 800
o
C.  Intergranular corrosion with traces of pitting were observed in the heat treated 

samples immersed in the apple juice medium while the acidity of this medium increased with increase 

in exposure time. 
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