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In order to correctly analyse high-resolution rocking curves of high-quality

crystals, a special effort is needed to estimate the systematic contributions

coming from the experimental setup. This article highlights the main areas that

require special analytical treatment and presents results obtained using different

approaches to the problem, as well as some typical results for high-quality silicon

and diamond crystals.

1. Introduction
The study of materials by diffraction methods started about

100 years ago with the pioneering experiment of Laue, Fried-

rich and Knipping, when the first X-ray diffraction patterns of

single crystals were obtained (Friedrich et al., 1912). This was

the beginning of a rapid development fostering many

diffraction-based methods and techniques, which is still

continuing. The measurement of rocking curves and the

associated derived quantitative parameters, such as the ‘full

width at half-maximum’ (FWHM) of the curves, has been

performed since at least 1921 (Davis & Stempel, 1921) by

exploiting the X-ray diffraction (XRD) properties of crystals.

Since then, this has become one of the most powerful methods

for the diffraction-based characterization of crystalline mate-

rials. The experimentally closely related method of X-ray

diffraction imaging or X-ray diffraction topography has been

used since about 1931 (Berg, 1931). Soon after World War II,

the requirements of the electronics industry for the nondes-

tructive analysis of defects in semiconductor materials like

silicon and germanium (and others) boosted the improvement

of these methods to their modern high-resolution variants like

high-resolution X-ray diffraction and in particular high-reso-

lution and high strain sensitivity X-ray topography (Bond &

Andrus, 1952; Lang, 1957). This evolution was additionally

accelerated in the late 1970s by the use of synchrotrons as

dedicated X-ray sources and later on, starting in the 1990s, by

the use of third-generation synchrotron sources.

The measurement of X-ray rocking curves is a rather simple

and fast integral method which provides characteristic quan-

titative values. The broadening of the FWHM is primarily due

to the presence of defects and other imperfections in the

crystals (or on their surfaces). This means that it depends

directly on the crystal quality. By controlling the dimensions of

the X-ray beam by slits, it is possible to collect this averaged

information from the complete sample or from local areas of

different size. It appears that this kind of measurement is

particularly well suited to studying samples of lower quality.

However, the better the crystal quality, the less efficient this

method becomes and the more problems appear in the data

analysis. The origin of the problems is that the broadening of

the rocking curve may be well below the theoretical FWHM of

the reflectivity curve of a perfect crystal (in short called the

‘Darwin width’, but more precisely it should be called the

Prins–Darwin width). For crystals like silicon or diamond (and

in the case of strong reflections or hard X-rays) this effect may

occur for FWHMs of the order of or below one arcsecond.

One may get the impression that for this classical and well

established method all is known and there is nothing new to

learn from it. However, when dealing with high-quality

samples for X-ray optical applications with high-quality X-ray

beams, it is necessary to extend this method to its limits. Our

aim was to study the degree of crystal quality that it may be

possible to quantitatively characterize reliably by measuring

the broadening of the rocking curve of a crystal containing

defects compared to that of a perfect crystal. Several issues

were encountered, indicating that there is still much to be

learned with regard to high-precision rocking curve

measurements.

The present study is based on two experimental goals. The

first is the characterization and quantification of the surface

quality of silicon crystals after different surface processing

treatments. The second is the determination of the contribu-

tions to the rocking curve broadening from both the bulk and

the surface defects in synthetic diamonds. Silicon and diamond

are very important materials used to manufacture X-ray

optical elements (like simple monochromators, beam-splitter

monochromators or phase plates) for beamlines at (high-

energy) synchrotron light sources and free-electron lasers. Of

course, rocking curve measurements were not the only means

utilized to study the material bulk and the surface processing
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quality for these applications. In addition, we extensively used

X-ray diffraction topography (Burns et al., 2009; Masiello,

2011).

2. Some basics

In analogy to classical optics, we define the reflectivity (Rh) or

‘reflectivity curve’ of a perfect crystal as the dependence of the

power diffracted by that crystal on the incident angle of a

plane and monochromatic X-ray wave. This may be calculated

using the formulas from the dynamical theory of X-ray

diffraction from perfect crystals. The ‘reflectivity curve’ of a

perfect crystal is a theoretical response function for the

diffraction of a plane monochromatic wave by that crystal. It is

a theoretical limit that may only be approached in an

experiment by using dedicated X-ray optical experimental

conditions to measure rocking curves. We define the ‘rocking

curve’ of a real crystal (this may be a nearly perfect crystal or a

crystal with defects) as a rather complicated multiple integral

containing both the reflectivity curve of that crystal and the

‘instrument response function’, also called ‘instrumental

broadening’ or ‘apparatus function’, depending on spatial,

angular and energy coordinates. The apparatus function

contains all geometrical, angular and spectral properties of the

radiation emitted by the source and modified on its pathway to

the crystal by the entire optical system (filters, slits, other

crystals etc.) (Azároff, 1974; Härtwig & Grosswig, 1989;

Härtwig et al., 1993). The first reflectivity curve was simulated

very early on by C. G. Darwin in 1914 (Darwin, 1914), just

after the discovery of the diffraction of X-rays by crystals. The

first experimental curve that approached the theory was

published only in 1962 by Bubáková (1962). In most cases (see

Härtwig et al., 1993, and citations therein) a rocking curve is, to

a good approximation, just the convolution of the reflectivity

curve and the apparatus function, and we consider this valid

within the scope of this work.

To separate explicitly the broadening of the crystal reflec-

tivity curve due to the presence of defects, we assumed a

rather general case (as used in line profile analysis) where the

experimental rocking curve of a high-quality yet defective

single crystal is the result of the convolution of three curves

(Fig. 1). These are, firstly, the reflectivity curve of a perfect

crystal, secondly, the instrumental broadening represented by

the apparatus function, which takes into account all contri-

butions from the optical elements conditioning the beam

impinging on the sample, and, thirdly, the broadening due to

crystal defects, which is the effect produced by the presence of

defects in the bulk of the crystal, as well as defects on its

surface and in the subsurface region. The difficulty in the case

of crystals with rather high quality is at least twofold. In the

first place, as known from information theory, for precise

results the apparatus function should be well known and as

narrow as possible (as close as possible to a � function),

something that is often not easy to achieve in practice. In the

second place, the broadening due to defects may be narrower

than the width of the reflectivity curve itself. This poses

considerable problems in numerical fitting and de-convolution

procedures. In addition, one has to remember that the FWHM

as a characteristic parameter is not sufficient for a reliable

description of the influence of crystal bulk and subsurface

defects on the broadening of a rocking curve. The whole

rocking curve (including the wings far away from the

maximum) contains important information and has to be

measured and taken into account in the analysis. Its maximum

position and in particular the detailed shape may strongly

depend on local variations of lattice parameters and lattice

tilts (diagonal and off-diagonal components of the strain

tensor). This is due to the presence of defects in the crystal

volume, contributing to the (integrated) diffracted intensity

and proportional to the extinction depth of the X-rays in the

crystal. The height of the wings is known to be influenced by

the diffuse scattered radiation. In order to extract the effect of

crystal imperfections from a measured rocking curve, it is

necessary to separate their contributions from the reflectivity

curve of a perfect crystal as well as from the apparatus func-

tion. The reflectivity curve is known with high precision from

the dynamical theory of X-ray diffraction; however, the

apparatus function must be determined experimentally and/or

theoretically with high precision.

3. Experimental

In order to use rocking curve measurements for characterizing

high-quality crystals foreseen as Bragg diffracting optical

elements, one has to achieve high strain sensitivity. Additional

effort has to be expended to decrease the width of the appa-

ratus function as much as possible and determine its form with

the utmost accuracy. This suggests a nondispersive config-
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Figure 1
Pictorial example of a rocking curve, assumed to be the convolution of three distinct curves: the reflectivity curve (theoretical), the apparatus function
and a function describing the broadening due to defects via an integral expression. Experimental data were obtained on a high-quality IIa HPHT
diamond crystal, 400 reflection, E = 14.413 keV.
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uration, which can be obtained in at least three different

fashions:

(1) Using an (n, �n) double-crystal geometry, where the

same material and the same reflection are used for both

sample and beam-conditioning (monochromator) crystals

(Bond & Andrus, 1952; Burns et al., 2009).

In that case it is advantageous to use the monochromator

crystals in asymmetric geometry with grazing incidence. The

bulk and surface quality of these crystals must be close to

perfect, thus severely reducing the range of applicability of

this approach to a few high-quality crystals. We used such a

popular and rather simple configuration, consisting of an

asymmetrically cut silicon monochromator (to obtain a good

collimation) and symmetrically cut samples, for our studies of

silicon processing (see x5.1). For our purpose this was enough

to obtain the desired resolution.

We did not use this kind of setup to investigate the quality

of synthetic diamond for the simple but very important reason

that in the early phase of these studies we had no diamond

plates with large enough perfect areas. They were not (yet)

usable as perfect collimator–monochromator crystals. The

background to our studies was just to help crystal growers to

produce high-quality crystals (Burns et al., 2007).

(2) Reducing the wavelength spread by using a high-reso-

lution monochromator, combined with an (asymmetrically

cut) collimator crystal.

We used this configuration at the nuclear resonance

beamline ID18 (Rüffer & Chumakov, 1996) of the ESRF

(energy resolution �E/E = 3 � 10�8) and carried out crystal

quality measurements. For this purpose we added an asym-

metrically cut collimator crystal to also reduce the beam

divergence. In this way, we studied silicon crystals after

different crystal processing steps, as well as diamond plates

with different crystal growth histories and/or different crystal

surface processing procedures. Most rocking curve measure-

ments, in particular the diamond ones, were done with this

configuration (see Fig. 2).

(3) Using a bendable monochromator, which is able to

locally adapt the Bragg angle (Altin et al., 2002) to that of the

investigated samples and thus to obtain a nondispersive

geometry even though different crystal

materials and/or reflections are

employed.

This approach was mainly used for

the study of diamond plates by X-ray

diffraction imaging and rocking curve

imaging, with the aim of measuring very

low residual strains in nearly defect-free

samples (Masiello, 2011). The classical

rocking curve measurements were in

this case mainly meant for the sample

adjustment.

For completeness it is worth

mentioning that it is possible to use also

so-called quasi-nondispersive config-

urations. In this case, the two flat crys-

tals in the double-crystal setup (case 1

above) may be made of different materials, but the used

reflections must exhibit very similar values of the lattice plane

distances (d spacing) and therefore also similar Bragg angles.

This configuration was, for example, used by Sellschop et al.

(2000). However, in this case the resulting rocking curves

suffer an additional broadening due to dispersion, which

decreases along with decreasing differences of the Bragg

angles. This additional broadening must be determined for

high-accuracy measurements.

The rather general theoretical approach mentioned above

(whereby the experimental rocking curve is modelled as a

convolution of three curves) is well adapted to analyse results

from all the three configurations described above.

Since most of the rocking curve measurements, in particular

those referring to diamond crystals, were conducted at the

ESRF nuclear resonance beamline ID18, we present here one

of the standard layouts we used (Fig. 2). The most often used

X-ray energy was 14.413 keV.

4. Main problem – determination of apparatus
functions

It is possible to describe the effect of the instrumental

broadening by a convolution integral:

eðtÞ ¼ R1
�1

f ð�Þiðt � �Þ d� ¼def ð f � iÞðtÞ: ð1Þ

The function f(t) represents the theoretical apparatus function

one attempts to measure. The function e(t) is the measured

rocking curve, i.e. the weighted average over i(t) of the true

curve f(t).

We decided to determine the apparatus function both

theoretically and experimentally. Actually, three different

methods have been used for evaluating the apparatus func-

tions:

(1) Theoretical approach – direct calculation

(2) Experimental approaches –

(2.1) extrapolation via a model function

(2.2) direct deconvolution
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Figure 2
ID18 experimental configuration used for high-resolution X-ray diffractometry of synthetic
diamonds. From the right to the left one sees a silicon double-crystal pre-monochromator (red
circle), a set of compound refractive lenses (CRL), a three-crystal very high energy resolution
monochromator (red ellipse) and an asymmetrically cut silicon collimator, followed by the slits, the
sample and a detector/counter.
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4.1. Theoretical approach – direct calculation

The calculation of the apparatus function was performed

using a program written by one of the authors (GC) (Masiello,

2011). This program works out the apparatus function by

taking into account all the optical elements present on the

beamline (slits, monochromators, compound refractive

lenses). The overall curve, as obtained downstream from the

sixth crystal in Fig. 2, has an FWHM of 0.03700. It is important

to highlight that this estimation is done without taking into

account any imperfection in the system. It is therefore to be

considered as a theoretical lower limit of the real apparatus

function.

4.2. Experimental approaches

4.2.1. Model and fit approach. In order to measure the

apparatus function it would be necessary to sample the

incoming beam (measure the rocking curve) with a �-shaped

reflectivity curve, obtaining in the instrument response the

apparatus function itself. This is impossible, but one can

approximately model the actual situation. Firstly, one has to

use an analyser crystal the perfection of which is such that one

may ignore the broadening due to defects. Secondly, it is

possible to approach a � function in a stepwise fashion by

measuring the incoming beam by means of different reflec-

tions with decreasing Darwin widths associated with this

‘perfect’ sample, in our case a well processed 111 1 cm-thick

silicon sample. The apparatus function analysis has been

carried out in two independent ways: in the first, the apparatus

function has been fitted via a model curve with a set of free

parameters; in the second, direct deconvolution algorithms

have been used. One of the most serious problems in both

methods has been the fact that the apparatus function from

the optical system installed at ID18 is indeed very narrow,

thanks to the high beam collimation and energy resolution. To

extract tiny broadenings from a series of measured rocking

curves is therefore a complicated task.

The apparatus function was modelled by the sum of a

Gaussian and a Lorentzian function [similar to a pseudo-Voigt

curve, often used in the description of a diffraction peak

shape, for example by Ida et al. (2000)]:

appð��Þ ¼ AL

2

�

!

4��2 þ !2
þ AG

1

�ð2�Þ1=2
exp ���2

2�2

� �
; ð2Þ

where AL and ! are the area and the FWHM, respectively, of

the Lorentzian term, and AG and � are the area and standard

deviation, respectively, of the Gaussian term. These four

parameters are used as free model parameters. The code was

written in Mathematica (Wolfram Research, 2009) and uses

the GlobalSearch algorithm within the Global Optimization

6.0 package (https://www.wolfram.com/products/applications/

globalopt/manual.pdf) to minimize the difference between

experimental data and the convolution of the apparatus

function with the theoretical reflectivity. Owing to the large

number of convolution integrals required in this procedure,

the code is quite slow. Equation (2) was used for all results

mentioned in this section.

The first result of the data analysis was the characterization

of the dependence of the apparatus function on the size of the

vertical slits upstream from the sample. The Fraunhofer

diffraction from the slits plays an important role in such a

high-resolution experiment, entailing sub-arcsecond distor-

tions, even if the slits are as large as 200 mm (Fig. 3). This also

shows that the slits in front of the sample were not a good

means to measure local rocking curves; however, there is no

problem when using widely open slits and in this way inte-

grating information over the entire sample width.

The first attempt to solve this problem was to include the

Fraunhofer diffraction from the slits as an additional broad-

ening of the theoretical reflectivity curve. The results were not

satisfactory, especially for slit apertures of less than 100 mm.

We thus decided to include the diffraction from the slits in the

apparatus function. In this way, all identifiable additional
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Figure 3
Comparison of the Si 555 reflectivity curve (E = 14.413 keV) with the
Fraunhofer diffraction pattern at the sample position from rectangular
slits with aperture 200 and 40 mm.

Figure 4
Scan over a narrow angular range. Comparison between the experimental
data (Si 111 reflection; red points) and the fits (curve 1 green, curve 2
blue, curve 3 red lines) with three different apparatus functions (Fig. 5).
Inset: a zoom of the region indicated in the black rectangular frame,
showing that the three solutions are equally good.
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effects, such as diffuse scattering, small-angle scattering or the

non-ideal shape profile of the slits, are automatically included

Therefore, we worked with three different apparatus functions

for the three slit sizes used in the experiments: 700, 200 and

40 mm.

The following task was to measure and analyse rocking

curves using different reflections featuring decreasing Darwin

widths. The initial fitting procedure was insufficiently

constrained and different sets of fit parameters gave similar

results. An example of this is given in Fig. 4. The experimental

data (red points) collected in a rather narrow angular range

around the maximum of the rocking curve (Fig. 4; the inset

zooms into the region indicated) match equally well with the

results obtained from the convolution of the reflectivity curve

with the three different apparatus functions (Fig. 5). The fit

parameters for each of the curves, labelled 1, 2 and 3 in Fig. 5,

are displayed in Table 1. The problem that different sets of fit

parameters gave very similar results was solved by collecting,

in addition to the narrow scans, also experimental data via

much broader scans (in the present case �2500, the only

limitation being the number of experimental data points used

in the software) and by comparing them with the three func-

tions in Fig. 5. To demonstrate this approach, two of the three

results are shown in Figs. 6 and 7. The best result (and actually

the only good one) shown in Fig. 7 is represented by the

second curve from Fig. 5. The black line in Figs. 6 and 7 is the

theoretical rocking curve (perfect crystal without defect

contribution).

Finally, a series of apparatus functions was obtained for the

different reflections used, namely 111, 333, 444 and 555

symmetric Bragg reflections, which have the Darwin widths

4.04, 0.91, 0.69 and 0.3000, respectively. By extrapolating the

results obtained towards a ‘zero-width curve’, e.g. for the

200 mm slit size (Fig. 8), we obtained the final three apparatus

functions for the different vertical slits sizes used during the

experiment, as displayed in Fig. 9 and Table 2. Most experi-

ments were done with a slit size of 200 mm, as will be explained

in x4.2.3.

4.2.2. Direct deconvolution methods. Direct deconvolution

is well defined for continuous analytical functions. However,

experimental data are available only as a discrete set of points

in a restricted finite range with both systematic and statistical

errors. A general feature of the deconvolution procedure in

these cases is its ill-posedness, and the deconvolution algo-

rithm based on equation (1) needs not have a unique solution

(Jones & Misell, 1970). The practical implication of this

property is that the solution of an integral equation may be
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Figure 5
The three apparatus functions, plotted on a log scale over a narrow
angular range. The fit parameters for each of the curves, labelled 1, 2, 3,
are found in Table 1. The parameters and shapes are very different, but
the quality of the fits is very similar.

Table 1
The fit parameters for the curves labelled 1, 2, 3 in Fig. 5.

Curve AL (%) AG (%) ! (0 0) � (0 0)

1 82.7 17.3 0.03 169.9
2 13.6 86.4 3.47 0.23
3 6.3 93.7 2.67 0.11

Figure 6
Comparison of the experimental data collected over a broader range
(�250 0; curve 1 and red points) with the fit using the second curve shown
in Fig. 5, which represents the best result (curve 2, blue line). For
comparison the rocking curve calculated for a perfect crystal (without
defect contribution) is shown as curve 3 (black line).

Figure 7
Comparison of the experimental data collected over a broader range
(�250 0; red points) with the fit (shown by the green curve 1) using the
apparatus function shown as the first curve in Fig. 5, which uses the
parameters shown in Table 1 (fit labelled 1). The bad fit quality becomes
evident on this angular scale. A similar poor result is obtained using the
apparatus function shown in Fig. 5 as the red curve 3, which uses the
parameters shown in Table 1 labelled 3. For comparison the rocking curve
calculated for a perfect crystal (without any defect contribution) is shown
in black (curve 2).
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completely corrupted by an excess of noise propagation.

Actually, deconvolution as applied to a digital data set is still a

problem to work on for mathematicians. In order to tackle this

issue and obtain reliable solutions, approximations are always

necessary. In our case an implementation based on a Mathe-

matica code that uses two different algorithms with several

special features was employed. These algorithms are the

Burger–Van Cittert (Burger & Van Cittert, 1932) and the

Richardson–Lucy algorithms (Richardson, 1972; Lucy, 1974),

applied in order to extract the apparatus function.

4.2.3. Comparison of the results obtained. In Fig. 10 the

results obtained with the above-mentioned and other different

deconvolution methods are presented. We show the case of a

slit of 200 mm size, which was used in most experiments. This

slit size is the result of a reasonable compromise between

moderate diffraction effects on the slits (the slit gap should not

be too narrow – see the discussion in x4.2.1 and the illustration

in Fig. 3) and the dimensions of the beam footprint on the

sample in order to have also rather local information. This

choice gave the best results when analysing the diamond

crystals, which may display regions with both higher and lower

quality. For the wider slit apertures (700 mm) the footprint on

the sample was �1.5 mm for the Si 400 reflection and

�3.4 mm for the Si 111 reflection. These values were too large,

because the high- and low-quality regions of the crystals were

measured at the same time. For the narrower slit gaps (70 mm),

the Fraunhofer diffraction from the slits may be larger than

the ‘broadening due to defects’, which is the effect that we are

interested in, and this fact could complicate the data analysis

by considerably increasing the width of the related apparatus

function.

As discussed previously, the direct calculation provides the

narrowest curve for the apparatus function, i.e. a theoretical

lower limit for the case that no imperfections are present in
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Figure 9
Plot of the global apparatus functions obtained for the three different
vertical slit sizes. The fit parameters and the full widths at different
heights (50, 20, 2%) for these vertical slit sizes are presented in Table 2.

Figure 8
Extrapolation of the apparatus function towards a ‘zero-width’ curve, slit size 200 mm. The points with error bars represent the FWHM values for the
apparatus function corresponding to the different reflections (111, 333, 444 and 555). The four insets show the related measured curves.
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the optical system, including the analyser crystal. It appeared

that the results obtained with the Van Cittert deconvolution

algorithm strongly depend on the different reflections used for

the silicon analyser employed to measure the rocking curves

to be deconvolved. This can be seen by deconvolving rocking

curves measured for the same optical system, once with a

silicon analyser crystal using the Si 333 reflection, with its

rather wide intrinsic reflectivity curve (in angular scale), and

once with a silicon analyser crystal using the Si 555 reflection,

with its rather narrow intrinsic reflectivity curve. This should

not be the case for a robust deconvolution method. However,

when using the Richardson–Lucy algorithm the effect related

to the analyser reflection was not present. Finally, the results

obtained with the model fitting approach compare well with

the direct deconvolution results obtained via the Richardson–

Lucy method, and hence this method has been used for the

rest of the analysis.

Another experiment was performed in order to obtain an

even more accurate estimation of the apparatus function. This

was done by using a different energy (23.879 keV, corre-

sponding to the nuclear resonance of 119Sn) in order to be able

to use even higher order reflections, i.e. Si 777, Si 888 and Si

999, together with the quasi-forbidden Si 222 reflection. The

idea behind this experiment was the same as the previous one,

i.e. approaching by measuring reflectivity curves of higher-

order Bragg reflections a �-shaped function in order to be able

to record only the apparatus function. The FWHMs for the

allowed reflections, 777, 888 and 999, are 0.063, 0.062 and

0.03300, respectively, whilst for the 222 forbidden reflection we

found a value of 0.02500 by using the structure factor value

1.456 determined experimentally by Alkire et al. (1982). Fig. 11

shows a comparison of the experimental data obtained with

the different reflections together with the apparatus function

obtained for a slit size of 200 mm, as well as the theoretical

reflectivity curves for the different reflections (inset). This

graph demonstrates that, even though the theoretical predic-

tions (inset) indicate that the curves are getting narrower for

increasing hkl reflection orders, the experimental rocking

curves stay almost constant, i.e. the contribution of the used

crystal reflection became negligible and we were measuring

directly the apparatus function. Moreover, the agreement

between the experimental data and the apparatus function

determined above is very good, considering that the experi-

mental conditions for the two cases were not the same. In

conclusion, we are confident that the apparatus function

determination by our measurements is accurate and allows a

correct estimation of the broadening due to defects for the

diamond samples.

5. Some typical results and discussion

As mentioned in the introduction, the object of this investi-

gation is directly related to two classes/varieties of problems

(Barrett et al., 2010) in the context of developing improved

X-ray optical elements at the ESRF. The first concerns the

quantitative characterization of the surface quality of silicon

crystals. The second concerns the precise characterization of

high-quality synthetic diamonds. In particular, we concen-

trated on the reliable integral measurements of rocking curve

broadenings due to bulk and surface defects in manufactured

diamond plates.

5.1. Surface processing of silicon

Owing to the huge investments made in recent decades by

the electronics industry (Zulehner, 2000), it is nowadays

possible to produce silicon crystals both of a large size and
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Figure 11
Comparison of the rocking curves obtained from high-order reflections
(Si 777, Si 888 and Si 999) and from the Si 222 forbidden reflection
together with the apparatus function estimated from the measurements at
the lower energy (see Fig. 9). The inset shows the much narrower
theoretical reflectivity curves for the different reflections.

Figure 10
Comparison of the apparatus function obtained with the different
methods.

Table 2
The fit parameters and the full widths at different heights (50, 20, 2%) for
three vertical slit sizes.

Slit size
(mm)

AL

(a.u.)
!
(0 0)

AG

(a.u.)
�
(0 0)

FWHM
(0 0)

FW20%M
(0 0)

FW2%M
(0 0)

700 0.006 2 0.07 0.045 0.11 0.16 0.26
200 0.008 1.5 0.035 0.05 0.12 0.18 0.31
40 0.045 2.6 0.06 0.23 0.58 0.93 4.23
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with very high quality. The residual strain in the bulk can be in

the range of 10�8 or even lower (Bonse & Hartmann, 1981). In

order to be used as optical elements like a crystal mono-

chromator, the crystals needs to be cut into specific shapes

(aligned to crystallographic directions) and the surfaces need

to be extremely well polished. This is done in different steps

that are rather similar in most crystal laboratories, starting

with cutting and ending with chemical etching and/or

mechanical–chemical polishing (MCP). The typical problem is

that the processing of crystals induces lattice deformations

(Buck & Meek, 1970; Zhang & Zarudi, 2001) in the form of a

cold deformed layer. This layer creates an elastic strain in the

crystal region beneath the surface, the strength of which

decreases with depth. The thickness of the deformed layer is

roughly proportional to the scale of the polishing grains used.

Consequently, each processing step removes the deformed

layer generated by the previous step, but at the same time it

creates a new thinner deformed layer. One manner of

removing a deformed layer is to chemically etch it away;

however, etching results in a modulation of the surface, known

as an ‘orange peel’ surface. Depending on the applications,

this modulation may be tolerated or not, e.g. for small-angle

scattering it needs to be minimized or even avoided. Another

way of removing a deformed layer is to use a mechanical–

chemical polishing, which uses very small grains and leaves a

flatter surface compared to etching.

The anticipated benefit of this part of our work is the

improvement of the whole crystal polishing process, and in

particular its final steps, using the methods and instruments

available at the ESRF. For that purpose one has to measure

the crystal bulk and the crystal surface quality. One method to

assess whether a crystal is well polished or not is by inspecting

it via optical microscopy. This method is, however, not suffi-

ciently sensitive for the characterization of Bragg reflecting

surfaces to the required standards; hence we adopted for our

studies further methods, namely high-resolution X-ray

diffraction (local rocking curve measurements), X-ray topo-

graphy, optical profilometry and atomic force microscopy

(Masiello, 2011). Here, we will only focus on metrological

aspects and in particular on the possibilities and limits of

rocking curve measurements.

An example of the normalized rocking curves referring to

the Si 111 reflection for a series of silicon samples (Sample 1 to

Sample 6) after different processing steps is shown in Fig. 12. It

is clear that the large difference between the rocking curve for

the polished Sample 2 and the others is a result of the poor

surface state of the latter. However, already after the first

etching the different rocking curves become indistinguishable

and agree perfectly with the theoretical expectation over a

large angular range. Sample 1, which is lapped using 17 mm

SiC grains, is shown as line 1 (black) in Figs. 13 and 14.

Slight differences are detected if higher-order-reflection (Si

444) rocking curves are measured using the extremely

monochromated beam produced at ID18, at E = 23.879 keV

with ��/� = 2.7 � 10�8 (see Figs. 13 and 14). In this case it is

possible to discern a tiny difference in the tails between

Samples 3, 4 and 5. It is also evident that the FWHM as a

characteristic parameter is not sufficient for qualifying

samples of such high grade. One must inspect the whole curve

to extract intrinsic information about the sample. Additional

studies via X-ray topography show that samples that are not

distinguishable at the level of simply the FWHM parameters,

even by accurate rocking curve measurements, do, however,

show clear differences in the related X-ray topographs

(Masiello, 2011).
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Figure 12
Normalized experimental rocking curves of the Si 111 reflections
recorded using a laboratory source of 8.05 keV for a series of silicon
samples produced through different processing steps: Sample 2 – optical
polishing (1 mm diamond grain); Samples 3–5 – like Sample 2 but in
addition one (Sample 3) to three (Sample 5) etching steps of 10 min each;
Sample 6 – like Sample 5 with one MCP step between the optical
polishing and the chemical etching(s); Theo – theoretical curve for a
perfect crystal.

Figure 13
Normalized recorded rocking curves on a linear scale of the 444
reflections at 23.879 keV. Curve 1 (black) is measured as lapped; curve 2
(red) is measured after optical polishing (1 mm diamond grain); curves 3–
5 (green, dark blue and light blue) are measured after 10, 20 and 30 min,
respectively; curve 6 (purple) is measured after one MCP step between
the optical polishing and the chemical etching(s).
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5.2. Perfection of different synthetic diamonds

The first synthetic diamond was successfully grown in

Stockholm, Sweden, in 1953 using high-pressure and high-

temperature (HPHT) processing, but the discovery was kept

secret (Lundblad, 1993). One year later, there were two

reported diamond syntheses at the General Electric Research

Laboratory: one by H. M. Strong and the second by H. T. Hall.

The results were quickly published in Nature (Bundy et al.,

1955) and the method of growing man-made diamond was

patented. Those first diamonds were tiny (1.0 � 0.3 mm) and

hardly reproducible. After further experiments, it became

clear that to synthesize diamonds a metal ‘solvent/catalyst’

bath would be necessary. In 1971, R. H. Wentorf Jr showed the

possibility of growing larger diamonds using the so-called

‘thermal gradient method’ (Wentorf, 1971), which attains the

best results in a large-volume belt-press system. With the

HPHT method, single-crystal diamonds of more than 1 cm

maximum dimension can be grown, and 5–7 mm diamonds

with low nitrogen content are routinely grown by companies

such as Element Six (formerly De Beers Industrial Diamond)

and Sumitomo Electric Industries. An alternative method, the

‘pressure gradient’ method, makes use of a different type of

high-pressure system, called a split-sphere BARS press (from

the Russian acronym of press-free high-pressure setup ‘split

sphere’), to grow large size single crystals (see e.g. Pal’yanov et

al., 1998).

Another technique used for growing synthetic diamonds is

chemical vapour deposition (CVD) (Lee et al., 1999; Ferro,

2002). This is the most widely used technique for depositing

many materials in the semiconductor industry, including a

wide range of dielectrics and many metals as well as metal

alloys. The technique generally involves the growth of a solid

material from the gas phase using a reactive gas mixture,

which supplies the necessary active species (carbon from

methane in the case of diamond) on a controlled surface (or

substrate). The substrate does not have to be diamond, but in

order to grow CVD single-crystal diamonds (instead of poly-

crystalline diamonds) it is necessary to use a diamond

substrate with high bulk quality and a high-quality surface

finish. The main advantages of CVD techniques are the low

pressure needed (consequently a lower cost in terms of

equipment), the possibility of growing large diamonds and

diamonds on different substrates, and the possibility of

introducing dopants in a controlled way during growth.

Unfortunately, to date, the quality of the bulk material has not

met the requirements for use as X-ray optical elements, even

though great improvements were recently made by using high-

quality HPHT IIa diamond single crystals as seeds (Martineau

et al., 2009).

In summary, one may state that, so far, CVD-grown

diamonds may achieve a lower impurity inclusion; however, it

is the HPHT synthesis that allows the growth of diamonds

with the highest structural quality, i.e. crystals that are locally

free from extended defects like dislocations and stacking

faults. More precisely, the highest quality following this

method is achieved for type IIa diamonds, i.e. a material with a

very low concentration of the (single substitutional) nitrogen

impurity, normally less than 1–5 p.p.m. (Chrenko & Strong,

1975). HPHT-grown type IIa diamond crystalline material is

also the best suited for the X-ray optical applications we are

interested in, e.g. high heat load, beam splitter and seeding

monochromators for X-ray free-electron laser sources as well

as phase plates. If one aims to produce a synthetic diamond

where the residual strain arising from the inhomogeneous

distribution of nitrogen is less than 10�8 then the residual

concentration of nitrogen should be less than about 100 p.p.b.

(scaling according to Lang’s dilation formula for this impurity;

Arridge et al., 2002; Davies, 1999). It is in fact possible to have

HPHT-grown type IIa diamond that satisfies this low nitrogen

(and boron) concentration requirement.

After evaluating the experimental apparatus function for

the setup at ID18, it was possible to estimate the rocking curve

broadening due to the presence of defects for different

diamond samples. This has been done by using a procedure

(model and fit) similar to that presented for the definition/

calculation of the apparatus function [see equation (2)].

Table 3 shows a comparison of results obtained for four

different typical diamond plates, selected from all the samples

analysed. We chose the following samples:

(1) A rather high quality type IIa 100-oriented HPHT-

grown diamond plate with a few isolated defects visible on the

white beam X-ray topograph and with a very low nitrogen

content (about 10 p.p.b.) (measurements using high-sensitivity

secondary ion mass spectrometry carried out by the synthesis

team for this sample, not published).

(2) A rather high quality type Ib 100-oriented HPHT-grown

diamond plate with well advanced growth sectors and growth

sector boundaries (nitrogen content typically about

1000 p.p.m.).

(3) A medium-quality 100-oriented CVD-grown diamond

plate with well developed dislocation bundles.
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Figure 14
Normalized experimental rocking curves (on a logarithmic scale) of the Si
444 reflections at 23.879 keV. Curve 1 (black) is measured as lapped;
curve 2 (red) is measured after optical polishing (1 mm diamond grain);
curves 3–5 (green, dark blue and light blue) are measured after 10, 20 and
30 min respectively; curve 6 (purple) is measured after one MCP step
between the optical polishing and the chemical etching(s).
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(4) A medium-quality type IIa 111-oriented HPHT-grown

plate with partly perturbed surface regions.

In order to quantify the broadening of the rocking curve

(without comparing the complete shape of the curves), we

decided to extract the full width at different peak heights,

namely 50, 20 and 2% of the maximum intensity. By doing so

one may evidence also the influence of defects on the wings of

the rocking curve. For comparison, we also show in Table 3 the

intrinsic (theoretical) reflectivity curve widths wh of the

different diamond samples at E = 14.413 keV (used energy)

for different reflections and different sample thicknesses

together with white beam X-ray topographs of the samples to

illustrate the defect density of the selected plates.

The results presented in Table 3 show a negligible broad-

ening for Sample 1 in a region close to the centre of the plate.

For the Ib sample and the CVD diamond the situation is

worse, with a greater broadening recorded at all peak heights.

For Sample 4 the results are different. The bulk quality seems

good (the theoretical rocking curve is broader for the 111

reflections than for the 400 reflections, and hence the increase

of 0.4300 is relatively small), but the full width at 2% of the

maximum is very large. We attribute this to the inferior quality

of the plate surface since the 111 surface is the most difficult to

polish.

As an example, we present for the first plate in Table 3 some

more details regarding the quantitative determination of the

‘broadening due to defects’, using the intrinsic reflectivity

curves and the measured apparatus function. Fig. 15 shows the

experimental values (blue circles) compared with the convo-

lution (red line) of the theoretical reflectivity curve, the

apparatus function and the broadening due to the defects. The

last two were described by the sum of a Gaussian and a

Lorentzian function [cf. equation (2)]. A very good agreement

between the theoretical and measured curves is apparent. In

order to compare the widths of the three functions we

extracted their FWHM values. We found 1.0600 for the reflec-

tivity curve (cf. Table 1), 0.1900 for the apparatus function and

0.0400 for the broadening due to defects. Consequently, we

have been able to detect width increases of an experimental

rocking curve due to the presence of defects in the diamond

plate, which were only a few percent of the curve width itself.

This demonstrates that such very small effects are measurable

using a carefully planned experimental procedure combined

with a very accurate data analysis. This has been a consider-

able effort, but it has been shown that it is possible to push the

used method to an unprecedented upper limit of precision.

6. Conclusion

In order to correctly analyse high-resolution rocking curves of

high-grade crystals, a special effort is needed to estimate the

systematic contributions coming from the experimental setup.

We highlight the main areas that require special treatment and

present the results obtained using different approaches to the

problem, as well as some typical findings for high-quality

silicon and diamond crystals.

The presented results are part of the PhD thesis of one of

the authors (Masiello, 2011).

References

Alkire, R., Yelon, W. & Schneider, J. (1982). Phys. Rev. B, 26, 3097–
3104.
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H. P., Hansen, J. O., Härtwig, J., Hoszowska, J., Masiello, F.,
Mkhonza, L., Rebak, M., Rommevaux, A., Setshedi, R. & Van
Vaerenbergh, P. (2009). J. Phys. Condens. Matter, 21, 364224.

Chrenko, R. M. & Strong, H. M. (1975). Report 75CRD089. Technical
Information Series, General Electric Company, Schenectady, NY,
USA.

Darwin, C. (1914). Philos. Mag. 27, 315–333.
Davies, G. (1999). Physica B, 273–274, 15–23.
Davis, B. & Stempel, W. (1921). Phys. Rev. 17, 608–623.
Ferro, S. (2002). J. Mater. Chem. 12, 2843–2855.
Friedrich, W., Knipping, P. & Laue, M. (1912). Sitzungsber. K. Bayer.
Akad. Wiss. pp. 303–322.
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