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Abstract 

The use of bivalves such as the brown mussel (Perna perna) and the black mussel 

(Choromytilus meridionalis) is common in the study of marine pollution and the effect 

of these pollutants on ecosystems and are important in both economic and 

ecological roles. Namibian marine ecosystems are threatened by pollution from 

mining, commercial fishing and population growth. The aims of this study were to 

determine baseline metal concentrations, spatial variation and variation between 

species. Metal levels in C. meridionalis from Guano Platform (GP) are the lowest of 

all the sites. The most polluted sites are Rocky Point (RP), Halifax Island (HIL) and 

between Walvis Bay and Swakopmund (WS). The bioaccumulation of metals 

between P. perna and C. meridionalis were not uniform for all metals. Overall the 

study indicates the condition of the coastline to be mostly normal, with Cd and Pb 

levels being of concern.   
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Human development has brought about an assemblage of negative consequences 

for the natural environment, especially for the marine environment. Riverine systems 

continuously carry an array of pollutants from the continents to the oceans including 

raw sewage, domestic waste, agricultural waste and industrial waste to name a few 

(Meybeck, 2009). The contamination of marine ecosystems with these pollutants, 

both organic and metals, induce stress in marine life, especially in sedentary 

organisms such as bivalve molluscs (Sindermann, 2005).  

The use of bivalves such as the brown mussel Perna perna (Linnaeus, 1758) and 

the black mussel Choromytilus meridionalis (Krauss, 1848) is common in the study 

of marine pollution and the effect of these pollutants on ecosystems (Vosloo et al. 

2012; Angulo, 1996; Greenfield et al. 2011). Mussels are often used as indicators in 

trace metal analyses in marine habitats due to their filter-feeding abilities, the fact 

that they are bio-accumulators and ultimately because of their sedentary nature 

(NOAA, 1995).  

Perna perna is a rock mussel species that is found not only in the tropical areas of 

southern Africa but also in the cooler waters along the Namibian coastline, caused 

by the cold Benguela current, whereas C. meridionalis is most common on the west 

coast of Africa (Van Erkom Schurink and Griffiths, 1990). According to Simon (1999) 

both P. perna and C. meridionalis are species that carry significant importance in 

both economic and ecological roles. Perna perna and C. meridionalis inhabit slightly 

different microhabitats: P. perna inhabits sand-free rocks whereas C. meridionalis 

inhabits areas where sand cover is often experienced (Marshall and McQuaid, 

1993). It has been discovered that both species have diets that mainly consist of 

detritus (Griffiths, 1980). 

Both P. perna and C. meridionalis not only serve as a high protein source for local 

Namibian people but also play an economic role in terms of the local markets 

(Bianchi et al. 1999). The excessive consumption of metal contaminated mussels 

can eventually lead to the poisoning of the consumer as it cannot be broken down by 

the human body into more harmless molecules (Kromhout et al. 1985). It is common 

for marine mussels to reside close to estuaries where they are more likely to be 

affected by the pollution carried into the ocean by rivers (Yap et al. 2004). Stress 

syndrome in bivalve molluscs can lead to shell defects, recession of the mantle and 
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deterioration of the epithelium in the digestive tubule (Sindermann, 2005). Almeida et 

al. (2003) established that trace metal contamination also has effects on hormone 

levels in P. perna such as DOPA and 5HT, which in turn affects other physiological 

processes. 

Unfortunately, as always, the human impact on pristine environments will lead to 

habitat destruction by means of pollution from mining, commercial fishing and 

population growth, and Namibia is no exception (Boyer et al. 2000). Constant 

exploration for oil has been going on for years and in 2013 the Brazilian company 

HRT finally found it, although volumes are not yet viable for commercial extraction 

(Immanuel, 2013). In case of oil spills, many fragile species can be affected and can 

ruin the pristine coastline with little human impact that the Namibians pride 

themselves in (Boyer et al. 2000).  

In consideration of these factors, the importance of establishing baseline data for 

future reference is highlighted. No publications have been found to note the metal 

pollution levels along the coast of Namibia using bivalve molluscs. The aim of this 

study is to determine baseline trace metal concentrations by means of Inductively 

Coupled Plasma Optical Emission Spectrometry (ICP-OES). 

Three objectives were identified in our study: 

1) to provide a set of baseline data on metal concentrations along almost 

the entire length of the Namibian coastline. 

2) to provide data on the possible impacts that Walvis Bay Harbour is 

having on the biota and 

3) to compare the metal concentrations in the two sampled species 

namely P. perna and C. meridionalis. 

Two working hypotheses were considered: 

1) anthropogenic activities are having a negative effect on metal concentrations 

in mussels in Walvis Bay Harbour and 

2) P. perna and C. meridionalis accumulate metals at similar concentrations. 

Mussels of the species P. perna and C. meridionalis were collected from various 

sites along the Namibian coastline from 01/10/2012 to 12/10/2012. Figure 1 indicates 
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the distribution of sampling sites along the Namibian coastline and which species 

were collected at each site. Perna perna were collected from Bosluis Bay (BB), 

Guano Platform (GP), Griffiths Bay, Lüderitz (GBL), Halifax Island, Luderitz (HIL), 

Mile 17 (M17), Rocky Point (RP), between Walvis Bay and Swakopmund (WS) and 

Walvis Bay Harbour (WBH). Choromytilus meridionalis samples were collected from 

GP, GBL and M17. Choromytilus meridionalis were collected from sites where they 

were present. Table 4 indicates the GPS coordinates of the sampling sites. Twenty 

samples from each site and of each species were collected where possible. Samples 

were air dried and sealed into air-proof containers and stored until use.  

0.5g dry weight of each sample was digested using a Mars Microwave Digester. The 

samples were placed into individual digesting containers. To each container, 10ml of 

Suprapur 65% nitric acid as well as 1ml Suprapur hydrogen peroxide was added 

using a manual 1000µl pipette. Samples were left for 10 minutes at room 

temperature for the nitric acid and hydrogen peroxide to properly react before placing 

them into the digestion machine. Containers were placed into the Teflon holder and 

placed into the digester. The samples stayed in the high temperature and high 

pressure system for 70 minutes at a holding temperature of 200⁰C including a 15 

minute warm-up period followed by a 35 minute holding period and a 20 minute cool-

down period. After digestion the bombs were emptied into their respective 50ml 

Falcon tubes. The samples were diluted gravimetrically to 50 grams with deionised 

Milli-Q water (Degger, 2010). 

Samples were filtered using BOECO Germany 65g/m2 Filter paper. From all sites, all 

20 samples collected were read using the Spectro Arcos FSH 12 Inductively 

Coupled Plasma Optical Emission Spectrometer. The ICP-OES was calibrated using 

10ppm and 50ppm standards. Certified Reference Material (CRM) (Dogfish Liver 

Tissue [DOLT]) was used for most of the metals tested, of which data were 

expressed in Table 3. The percentage recoveries of most of the metals tested were 

in the 80-110% range required. The recovery level of Pb was deemed unacceptable.   

Data were statistically analysed using JMP and IBM SPSS 21. Raw data were 

normalised by using a log transformation after which descriptive analysis was 

conducted on the data. The log transformed data were then tested using the Tukey-

Kramer Method (McDonald, 2009). The Tukey-Kramer method yielded Analysis of 
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Variance (ANOVA) for the determination of significant differences spatially and 

between the two species analysed. Pearson’s correlation analysis was also 

performed to determine correlations between the two species from all of the different 

sites.   

The mean metal concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn for all 

sites sampled are graphically represented in Figure 2. No concentrations were found 

to be below detection. All concentrations are presented in µg/g dry mass.  

The highest concentration of Al (2.588µg/g) was found in C. meridionalis from GBL 

and the lowest in P. perna from WBH. Aluminium (Al) is not only found in marine 

sediments as aluminosilicates but also in other chemical junctions and complexes 

(Mao et al. 2011). Joyner (1964) reported that the concentrations of aluminium found 

in seawater can range between 2-150µg/L-1. Studies have shown that aluminium can 

lead to neurotoxic symptoms in marine fauna (Mao et al. 2011). When compared to 

similar studies along the entire coastline of South Africa by Degger (2010), it is clear 

that conditions along the Namibian coastline are good. Degger (2010) shows that Al 

levels for Cape Town, Durban, East London, Mossel Bay, Port Elizabeth and 

Richards Bay harbours had mean concentrations that were 100-200 times the 

concentrations obtained in this study. 

The highest Cd concentrations were discovered at HIL with P. perna having a mean 

of 1.29µg/g. The lowest Cd concentrations were found in C. meridionalis from GP 

(0.399µg/g). Griffiths Bay had the lowest concentrations of Co (0.469µg/g). Perna 

perna from RP had a higher Co concentration (0.907µg/g) than the rest of the sites. 

Cadmium (Cd) is known to have one of the highest toxicities of all metals and it is 

commonly found in polluted water (Choi et al. 2007). Bivalves that have lived in 

environments containing high levels of Cd for extensive periods of time have 

adapted to it by the development of Cd-binding metallothioneins, which lower the 

concentrations of Cd in the body (Choi et al. 2007). Degger (2010) found Cd 

concentrations that were profoundly higher than those in the Walvis Bay Harbour, 

such as Port Elizabeth Harbour with a mean Cd concentration almost 20 times of 

that found in Walvis Bay Harbour.  

The concentrations of Cr were the highest at HIL with 0.971µg/g in P. perna. The 

lowest mean concentration was found in C. meridionalis from GP (0.527µg/g). 



6 
 

Chromium (Cr) is found in two oxidation states in the marine environment Cr (III) or 

Cr (VI) (Li et al. 2009). The reaction of Cr (III) is greatly enhanced in water of a 

neutral pH, whereas its counterpart can easily be accumulated by fauna (Li et al. 

2009). The Cr concentrations obtained by Degger (2010) are relatively close to the 

concentrations obtained in this study, with the highest level being approximately 

3µg/g dry mass. It has been found by many scientists that the concentrations of Cr 

can vary from 0.23µg/g dry mass in normal marine environments to 48.5µg/g dry 

mass in severely polluted environments (Mills, 2005). Results obtained from this 

study show all sites to be quite normal considering Cr concentrations. Chase et al. 

(2001) set out a guideline to Ni concentrations of concern which is only above 

533µg/g dry mass, which is much higher than any of the results obtained in this 

study. 

Species collected from WBH had the highest mean concentration of Cu (1.214µg/g), 

the lowest in P. perna from M17 (0.971µg/g). Copper (Cu) is a naturally occurring 

metal in seawater and according to Al-Subiai et al. (2011) a constant increase in the 

Cu contamination of seawater is imminent in the near future. Copper has negative 

effects on the DNA of marine life as it binds to DNA molecules and causes 

decreased resistance to disease and the development of morphological anomalies 

(Zorita et al. 2006; Lloyd and Phillips, 1999). High concentrations of Cu can become 

toxic and can cause an array of problems including negative changes in 

reproduction, growth and physiological processes (Vosloo et al. 2012).  

Walvis Bay Harbour is the main port in Namibia and also the main fishing harbour 

(Ministry of Environment and Tourism, 2008). Walvis Bay Harbour showed a high Cu 

concentration which indicates the presence of antifouling paints. Antifouling paints 

are usually applied to ship hulls and would therefore be found in higher 

concentrations in the harbour as opposed to any of the other sites (Hall and 

Anderson, 1999). Cu is known to become toxic to invertebrates such as P. perna 

when found in concentrations 10 times higher than the amount necessary to sustain 

life, as copper is an element essential to life (Hall and Anderson, 1999). 

The concentrations of Cu found by Degger (2010) were much higher than the results 

obtained from WBH, with concentrations ranging from negligible amounts to almost 

115µg/g dry mass in Degger’s study. Harbours along the South African coastline 



7 
 

also had substantially higher concentrations of Fe than those found in the WBH, the 

highest being Mossel Bay harbour with approximately 700µg/g. Mn also showed 

dramatic differences between conditions in the South African harbours as opposed 

to WBH. Mn levels in the South African harbours were up to 120 times higher than in 

WBH. Nickel levels in South African harbours were similar to those in WBH.  

The levels of Al were lower in the areas of WBH, which is not an anomaly mainly 

because Al concentrations in marine environments are naturally greatly variable 

(Joyner, 1964). A future problem identified is the development of aquaculture farms 

which will be in close proximity to the dredge dump which is allocated close to WBH 

(Ministry of Environment and Tourism, 2008). 

Another similar study done by Yap et al. (2004) indicated similar levels of Cd from 

the Tolo Harbour in Hong Kong; however Cu levels in Tolo Harbour (6-24µg/g) were 

much higher than levels in the Walvis Bay Harbour.  Levels of Pb in the Tolo harbour 

were approximately double the mean concentration in WBH. Zn concentrations in the 

Tolo harbour ranged from 90-135µg/g, which is more than 50 times the level from the 

WBH.  

Fe concentrations were the highest in P. perna from M17 (2.857µg/g) and lowest in 

C.meridionalis from GP (2.275µg/g). The highest and lowest Mn concentrations were 

measured in C. meridionalis from M17 (1.302µg/g) and P. perna from GP 

(0.993µg/g) respectively. Iron (Fe) and Manganese (Mn) are naturally occurring 

elements in the marine environment due to the make-up of marine sediments 

(Shiller, 1997). Manganese, when consumed in excessive quantities by humans, can 

lead to neurological symptoms similar to Parkinson’s disease (Levy and Nassetta, 

2003). Manganese concentrations in seawater are known to range between 0.4-

10µg/L (Zeri et al. 2000).  

Ni concentrations were the highest in P. perna from RP (1.557µg/g). The lowest Ni 

concentrations were found in C. meridionalis from GP (0.71µg/g). Hédouin et al. 

(2007) reported the specific bioaccumulation of Nickel (Ni) in bivalves with the vast 

lack of knowledge in this area as a driving factor for the study. This study showed a 

directly proportional relationship between accumulated Ni and Ni available in the 

seawater. A study by Millward et al. (2012) concluded that the long term exposure of 

mussels to Ni can lead to cytotoxic and genotoxic effects.  
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Pb concentrations in P. perna from WS (2.084µg/g) and GP (2.072µg/g) were found 

to be the highest. The lowest Pb concentration was found in the C. meridionalis from 

M17 (1.86µg/g). Lead (Pb) has a tendency to influence naturally occurring metals 

and proteins in marine fauna such as calcium (Ca), zinc (Zn) and iron (Fe), causing 

these molecules to carry out alternative functions or fail to react to certain molecules 

(Company et al. 2011). The study by Company et al. (2011) revealed that elevated 

levels of Pb in marine ecosystems can lead to a reduction in the production of the δ-

Aminolevulinate dehydratase enzyme in mussels, negatively influencing the heme 

biosynthetic pathway.  

Zn concentrations were highest in P. perna from WS (2.422µg/g) and the lowest 

levels were found in C. meridionalis from GBL (1.976µg/g). Zinc is an essential metal 

to many organisms and a study done by Chan (1988) showed that Zn in P. verdis is 

accumulated up to a certain point, then it reaches a plateau and Zn concentrations 

can thus be partially regulated in the body of the mussel.  

The Namibian government follows a set of standards laid out by the Food and 

Agricultural Organization (FAO) in conjunction with the World Health Organization 

(WHO) called the CODEX Alimentarius which determines the levels of heavy metals 

safe for human consumption, however not all heavy metals tested for in this study 

are found in this set of standards (CODEX, 2014). The Codex Alimentarius sets the 

limit of Pb in bivalve molluscs as 1µg/g which means that the mean concentration of 

Pb found in this study is almost double the maximum limit. The Codex Alimentarius 

places the maximum allowed limit of Cd in bivalve molluscs as 2µg/g which is more 

than double the mean concentration of Cd found in this study (CODEX, 2014). 

Therefore, even though most of the metal concentrations found in this study seem 

low compared to other studies, they could still render the mussels inedible.  

The means, standard errors and ranges of all of the metals from all of the sites 

collectively is illustrated in Table 2. As can be seen in Table 5, the mean metal 

bioaccumulation of P. perna is spatially compared to determine statistically 

significant differences between sites. Sites that are connected by letters are 

therefore not significantly different from each other but they are significantly different 

from sites that they are not connected to.  
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The mean concentrations of Al show a strong correlation between all sites except 

GP and the WBH. These two sites have significantly lower concentrations than the 

rest of the sites. Al levels in P. perna from WBH are significantly lower than any of 

the other sites analysed.  

Cd concentrations in P. perna revealed that species from HIL had considerably 

higher levels of Cd accumulated in their tissues than any of the other sites. BB, GP, 

WBH and WS were significantly lower than all the other sites considering Cd 

concentrations (p>0.05).  

Cr concentrations reveal a division into two groups that are significantly different 

from each other. The first group includes HIL and RP which is significantly higher 

than group two which contains the rest of the sites.  

Co concentrations revealed a clear division between the P. perna collected from RP 

and those collected from the six other sites. Perna perna from RP had Co levels that 

are significantly higher than any of the other sites.     

Cu concentrations show WBH to have a significantly higher mean concentration than 

any of the other sites whereas BB, HIL and M17 are significantly lower than any of 

the other sites.  

ANOVA analysis shows significantly lower levels of Fe from WBH while the rest of 

the sites are similar. Considering Mn concentrations, there were no significant 

differences between sites. Significantly lower concentrations of Ni were found in P. 

perna from M17, HIL and WBH.  ANOVA analysis reveals little variation in mean 

concentration of Pb between sites. From Table 5 it is clear that GP, BB and M17 had 

significantly lower concentrations of Zn than the other sites. 

Data concerning the metal bioaccumulation of C. meridionalis were only collected 

from three sites. Correlations between the samples collected from GBL, M17 and GP 

were analysed. Table 6 shows the significant differences of the different heavy 

metals between these three sites along the Namibian coastline.  

The mean Al concentrations of samples collected from the three sites revealed that 

they were all significantly different from one another. GBL being significantly higher 

than the other two sites and GP being significantly lower than the other two sites. 
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M17 showed significantly higher concentrations of Cd, Co, Cr, Cu and Ni than GBL 

and GP. Cr concentration in C. meridionalis from GP was significantly lower than 

both GBL and M17.  

M17 and GBL were not significantly different from each other considering Mn 

concentrations. M17 has a significantly lower concentration of Pb than that of GP 

and GBL, which do not differ significantly from each other. Concentrations of Zn did 

not show a substantial difference between sites. 

Therefore GP is the least contaminated of the three sites having the lowest 

concentrations of 6 of the 10 metals tested in this study. GP is an ecologically 

important bird area just north of Walvis Bay. The richness of the area in invertebrates 

attracts a high number of shorebirds (NACOMA, 2013b). The Guano Platform mainly 

houses Cape cormorants, great white pelicans and the crowned cormorants 

(NACOMA, 2013b).  

The presence of metals in marine environments can cause toxicity in marine animals 

when present in high concentrations (Kennish, 1997). Kremling et al. (1997) has 

highlighted the possibility of natural fluctuation of metals in the seawater due to 

changes in salinity, nutrient levels and oxygen availability. With the low rainfall 

experienced along the entire coast of Namibia, the possibility of significant pollution 

by means of storm water runoff is greatly reduced and therefore pollution sources 

can include rivers, mining activities and shipping activities around the harbours 

(Ministry of Environment and Tourism, 2008).  

Halifax Island, WS and RP were found to be three of the most polluted sites in the 

study. The Lüderitz area is the site that experiences the most intense upwelling from 

all of the sites. It is also the only site in the study that is greatly affected by the 

southern Benguela upwelling system throughout the year. Lüderitz is undergoing the 

planning and implementation of mariculture of mussels, lobster and abalone and is 

also experiencing the increased utilization of offshore mining by Namdeb (NACOMA, 

2013a).  

Swakopmund is a town which is predominantly run by the mining sector because of 

the large amounts of Uranium found in the area (NACOMA, 2013b). Other mining 

activities in the area include marble, semi-precious stones, granite, sand and salt 
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(NACOMA, 2013b). Swakopmund is located where there is great seasonal variation 

in upwelling (Central to Northern Namibia) (Boyer et al. 2000). WS had the highest 

levels of both Zn and Pb. Future considerations should be made about the diamond 

mining activities that are continuing without consideration for sensitive areas such as 

the Cunene River Mouth (Ministry of Environment and Tourism, 2008). There is also 

concern about metal prospecting in the dune belt between Swakopmund and Walvis 

Bay as extraction licences have been awarded to a few companies already, and it 

has the possibility of becoming a significant source of marine pollution (Ministry of 

Environment and Tourism, 2008).  

Perna perna populations from BB had the lowest levels of Cd and Co. Ni was the 

only metal tested for that was significantly higher than all sites except RP and GP. 

The low levels of pollution could in part be due to the fact that it is a marine protected 

area and that the area is closely regulated (Ministry of Environment and Tourism, 

2008). The Cunene Region has no natural port and it is this fact that has slowed 

down the development of the area and therefore also explains the lowered levels of 

pollution found in this study (Ministry of Environment and Tourism, 2008).  

Table 7 graphically presents the significant differences between P. perna and C. 

meridionalis from the same sites. For Al concentrations it was found that there were 

no significant differences between the two species for any of the sites. Cd 

concentrations differed significantly between the two species from GBL and HIL, as 

well as the two species from the GP. There was no significant difference between 

the two species from M17 in Cd concentration.  

Cr concentrations also showed significant differences between species for the sites 

inspected. Cu concentrations showed no significant difference between the two 

species from GP or GBL and HIL. The study did however show C. meridionalis from 

M17 to have significantly higher levels of Cu than P. perna from the same site.  

The mean concentrations of Co show significant (p<0.05) differences between the 

two species for all sites. From GBL, HIL and GP, P. perna had significantly higher 

levels of Co than C. meridionalis and M17 showed the opposite. This could possibly 

be due to high natural variation of the metal in seawater. 
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ANOVA analysis of Fe concentrations shows no difference between species from 

GBL and HIL, or GP. On the other hand, M17 shows a significantly higher 

concentration in P. perna than in C. meridionalis. Results showed that Mn 

concentrations were higher in C. meridionalis from each site and that there were no 

significant differences between different species from each site. Concerning Ni 

concentrations, there were significant differences between all species from all sites. 

P. perna from GP had significantly higher levels of Pb than C. meridionalis from that 

site. It is interesting that the adjacent GP and M17 P. perna populations had 

significant differences in Pb levels whereas the C. meridionalis populations did not.  

Zn concentrations show a significant difference between P. perna and C. 

meridionalis from GBL and HIL; however the other two sites show no significant 

differences between species.  

Cd, Cr and Zn concentrations in both sampled species show P. perna to have 

significantly higher concentrations than C. meridionalis in two of the three sites, with 

only Mile 17 showing different results. Ray (1984) highlights the fact that 

concentrations of Cd can be higher in coastal areas due to pollution and weathering. 

Studies by Ray (1984) also showed levels of Cd much higher than the 

concentrations we obtained along the Namibian coastline. There are several factors 

that have an effect on the bioaccumulation of Cd which include biotic (body size, sex, 

age) and abiotic (salinity, pH, temperature) factors (Ray, 1984).  

A greater variation in metals can be seen in the samples collected from M17 than the 

other two sites. This could be because of natural variation or different 

bioaccumulation rates of the two species. The concentrations of Mn showed C. 

meridionalis to have higher mean concentrations than P. perna from the same sites; 

however these differences were not statistically significant and therefore it is not of 

major concern. Mean concentrations of Ni showed that P. perna of all sites had 

higher concentrations than their counterparts; however they were only significantly 

higher in P. perna from GP and M17, but not from GBL or HIL. It is interesting to note 

that the P. perna from adjacent sampling sites GP and M17 have significant different 

levels of Pb whereas C. meridionalis from those sites did not. 
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This study has shown that levels of pollution in GP and BB remain the lowest of all 

the sites because of restricted access and protected areas. The most polluted sites 

are HIL, RP and WS. The reason for this could include anthropogenic substances 

carried into the ocean by the Swakop River or the high nutrient load created by the 

intense upwelling along the southern coastline. Conditions in WBH were found to be 

better than anticipated with only Cu levels being significantly higher than the rest of 

the sites.  

When comparing the bioaccumulation of metals between P. perna and C. 

meridionalis, it was discovered that results are not uniform for all metals. Perna 

perna had significantly higher bioaccumulation in most sites for Cd, Cr and Zn. 

However, the bioaccumulation of Mn shows C. meridionalis to have higher 

concentrations than P. perna, although not statistically significant. Ni concentrations 

showed that P. perna had higher concentrations than C. meridionalis for all sites, but 

these differences were also statistically insignificant. It is important to also note that 

the results of the other metals did not show any significant differences between 

species, and for those metals the two species may be of equal use as sentinel 

organisms. Therefore Hypothesis 1 is accepted as human impacts are having 

negative effects on the metal concentrations in the WBH. Hypothesis 2 is rejected as 

the levels of bioaccumulation for some metals are significantly different between the 

two species. Pearson’s correlation analysis showed only one significant correlation 

between the two species for Fe from one site.   

Overall, the study indicates the marine environment in relation to heavy metal 

contamination as normal, with only the Cd and Pb levels being of concern as they 

are above CODEX levels and can be dangerous when ingested. Special attention 

must be given in the future to mining activities, the conditions in the harbour and the 

effect of these activities in the pollution of the rich and diverse marine ecosystem to 

ensure that the conditions do not deteriorate any further in the current age of 

development. 
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Table 1: Showing the mean size and standard deviation of mussels (n=20) from all sites. 

Species Collection Site Mean Size (cm) Standard Deviation 

P. perna WBH 55.4 5.580323 

 GP 62.6 11.08783 

 M17 88.65 16.26738 

 RP 69.65 6.373971 

 BB 62.75 8.251515 

 WS 56.05 6.726626 

 HIL 50.55 5.545043 

C. meridionalis GP 73.8 8.749857 

 M17 64.55 8.440823 

 GBL 59.05 5.563048 
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Heavy Metals 
 

Range Mean Standard error 

Aluminium 1.02-3.21 2.30 0.0283 

Cadmium 0.12-1.55 0.88 0.0219 

Cobalt 0.36-1.21 0.68 0.0115 

Chromium 0.36-1.20 0.75 0.0116 

Copper 0.73-1.40 1.07 0.0075 

Iron 0.89-3.32 2.60 0.0216 

Manganese 0.64-1.98 1.10 0.0122 

Nickel 0.35-1.95 1.09 0.0243 

Lead 1.55-2.38 1.95 0.0092 

Zinc 1.37-2.92 2.20 0.0167 

Table 2: The range, mean and standard error of the metals collected from seven sites along 

the Namibian coastline 
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Table 3: Metal recovery percentages from the Certified Reference Material (CRM) 

 Cd Cu Fe Ni Pb Zn 

CRT     Value 24.3 ± 0.8 31.2 ± 1.1 1833 ± 75 0.97 ± 0.11 0.16 ± 0.04 116 ± 6 

ICP-OES 
Reading 

29.0 22.3 1546.4 14.9 40.4 2.3 

ICP-MS 
Reading 

23.3 29.5 0.0 0.9 0.2 91.6 

OES % 
Recovery 

  84.4    

MS % 
Recovery 

98.1 94.6  88.3 127.3 78.9 
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Table 4: GPS Coordinates of Sampling Sites. 

Location Abbreviation Latitude (S) Longitude (E) 

Walvis Bay Harbour WBH 22.92487 14.51802 

Mile 17 M17 22.53721 14.50174 

Halifax Island HIL 26.65077 15.08011 

Rocky Point RP 18.83375 12.38696 

Bosluis Bay BB 17.37603 11.75860 
Between Walvis Bay and 

Swakopmund 
WS 22.67578 14.52393 

Guano Platform GP 22.88186 14.54006 

Griffiths Bay GBL 26.65528 15.12824 
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Figure 1: A map of the Namibian coastline showing collection sites of Perna perna and 
Choromytilus meridionalis.  
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Figure 2: Graphical representation of mean heavy metal concentrations and standard error 

accumulated in brown mussels (P. perna) and black mussels (C. meridionalis) collected from 

seven sites along the Namibian coastline.  
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Figure 2 Continued: Graphical representation of mean heavy metal concentrations and 

standard error accumulated in brown mussels (P. perna) and black mussels (C. meridionalis) 

collected from seven sites along the Namibian coastline 
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Table 5: Spatial patterns of heavy metal bioaccumulation in brown mussels (P. perna) 

collected from seven sites along the Namibian coastline. Common superscripts denounce no 

significant differences (p<0.05).  

  HIL RP M17 BB WS WBH GP 
Al a a a a a     
              b 
            c   

Mean 2,51789 2,42958 4,475 2,50046 2,39079 1,80408 2,11324 
SD 0,424415 0,246798 0,8891 0,287209 0,226487 0,18684 0,272519 
Cd a             
    b b         
      c   c c   
        d d d d 

Mean 1,29056 1,12187 1,05015 0,83605 0,94614 0,92771 0,84056 
SD 0,196536 0,098092 0,428 0,141578 0,215424 0,097999 0,110724 
Cr  a a           
      b b b b b 

Mean 0,97106 0,89061 0,66277 0,72483 0,76142 0,73393 0,75458 
SD 0,099452 0,085743 0,3393 0,157691 0,114699 0,112868 0,080215 
Co   a           
  b       b b b 
      c   c c c 
      d d   d d 

Mean 0,75152 0,90731 0,419 0,61099 0,73988 0,68975 0,71975 
SD 0,099662 0,11758 0,3052 0,112839 0,111499 0,109103 0,074734 
Cu           a   
    b   b b   b 
  c     c c   c 
  d   d d       

Mean 1,00092 1,09696 0,97096 1,02226 1,06465 1,21402 1,06519 
SD 0,085783 0,074842 0,452 0,05443 0,073404 0,109483 0,096323 
Fe a a a a a     
  b b   b     b 
            c c 

Mean 2,62804 2,70857 2,85765 2,70606 2,79156 2,37411 2,51066 
SD 0,440405 0,151585 1,0424 0,212612 0,182766 0,17145 0,214863 
Mn a a a a a a   

  b b   b b b b 
Mean 1,05321 1,06386 1,1887 1,07678 1,09341 1,05582 0,99374 

SD 0,092412 0,078185 0,4188 0,140791 0,136506 0,130841 0,138811 
Ni   a   a       
        b     b 
      c   c   c 
  d   d     d   

Mean 0,95036 1,55692 1,10927 1,47875 1,20588 0,9338 1,27168 
SD 0,119729 0,204743 0,2276 0,227572 0,328344 0,099391 0,242759 
Pb a     a a   a 
  b   b b   b   
    c c c   c   

Mean 1,99674 1,87953 1,88775 1,97495 2,0844 1,88506 2,07208 
SD 0,089857 0,091129 0,6685 0,049667 0,118682 0,144655 0,178826 
Zn a a     a a   
  b b   b   b b 
      c c     c 

Mean 2,33903 2,35341 2,06316 2,20259 2,42158 2,29343 2,20259 
SD 0,322272 0,158261 0,9341 0,166257 0,186129 0,200241 0,195392 
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  HIL RP M17 BB WS WBH 
Al a a       a 
    b     b b 
        c c   
      d d     

Mean 1,2557 2,51789 1,2341 2,11324 1,2198 4,475 
SD 0,8708 0,42441 0,7927 0,27252 0,9506 0,8891 
Cd   a         
          b b 
        c c   
  d   d       

Mean 0,5565 1,29056 0,5555 0,84056 0,5773 1,05015 
SD 0,3823 0,19654 0,3541 0,11072 0,4643 0,428 
Cr    a         
        b b   
  c     c   c 
      d       

Mean 0,4489 0,97106 0,4423 0,75458 0,4587 0,66277 
SD 0,3069 0,09945 0,277 0,08022 0,3692 0,3393 
Co   a   a a   
        b   b 
  c   c       

Mean 0,4033 0,75152 0,3936 0,71975 0,4074 0,419 
SD 0,2742 0,09966 0,2433 0,07473 0,3136 0,3052 
Cu     a a a   
  b b b b     
  c c       c 

Mean 0,5525 1,00092 0,5349 1,06519 0,5953 0,97096 
SD 0,3978 0,08578 0,3474 0,09632 0,5021 0,452 
Fe a a       a 
  b b   b b   
      c c c   

Mean 1,3747 2,62804 1,3442 2,51066 1,3899 2,85765 
SD 0,9854 0,4404 0,8736 0,21486 1,1199 1,0424 
Mn a       a a 

  b b       b 
    c c c     

Mean 0,5546 1,05321 0,5386 0,99374 0,5775 1,1887 
SD 0,3859 0,09241 0,3472 0,13881 0,4575 0,4188 
Ni       a   a 
    b       b 
  c c     c   
  d   d       

Mean 0,6876 0,95036 0,6593 1,27168 0,603 1,10927 
SD 0,4879 0,11973 0,4423 0,24276 0,4644 0,2276 
Pb   a   a     
  b b b       
  c   c   c c 

Mean 1,0145 1,99674 0,9757 2,07208 1,0612 1,88775 
SD 0,7713 0,08986 0,6685 0,17883 0,9254 0,6685 
Zn   a   a     
      b b b b 
  c   c   c c 

Mean 1,1997 2,33903 1,1703 2,20259 1,2597 2,06316 
SD 0,8509 0,32227 0,7514 0,19539 1,0219 0,9341 

Table 6: Spatial variation in heavy metal bioaccumulation in the black mussel (C. 

meridionalis) as sampled from three sites along the Namibian coastline. Common 

superscripts denounce no significant differences (p<0.05). 
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  GBL GP M17   GBL GP M17 

Al a     Fe a     

      b     b b 

    c           

Mean 1,2557 1,2341 1,2198 Mean 1,3747 1,3442 1,3899 

SD 0,8708 0,7927 0,9506 SD 0,9854 0,8736 1,1199 

Cd     a Mn a   a 

  b b       b   

Mean 0,5565 0,5555 0,5773 Mean 0,5546 0,5386 0,5775 

SD 0,3823 0,3541 0,4643 SD 0,3859 0,3472 0,4575 

Cr      a Ni     a 

  b       b b   

    c           

Mean 0,4489 0,4423 0,4587 Mean 0,6876 0,6593 0,603 

SD 0,3069 0,277 0,3692 SD 0,4879 0,4423 0,4644 

Co     a Pb a a   

  b b         b 

Mean 0,4033 0,3936 0,4074 Mean 1,0145 0,9757 1,0612 

SD 0,2742 0,2433 0,3136 SD 0,7713 0,6685 0,9254 

Cu     a Zn a a   

  b b       b b 

Mean 0,5525 0,5349 0,5953 Mean 1,1997 1,1703 1,2597 

SD 0,3978 0,3474 0,5021 SD 0,8509 0,7514 1,0219 

 

Table 7: A comparison of heavy metal bioaccumulation between brown mussels (P. perna) 

and black mussels (C. meridionalis) collected from four sites along the Namibian coastline. 

Common superscripts denounce no significant differences (p<0.05). 
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