
Heat and Mass Transfer in Unsteady Rotating Fluid Flow
with Binary Chemical Reaction and Activation Energy
Faiz G. Awad1, Sandile Motsa2*, Melusi Khumalo1

1 Department of Pure & Applied Mathematics, University of Johannesburg, Auckland Park, Johannesburg, South Africa, 2 School of Mathematics, Statistics and Computer

Science, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa

Abstract

In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial
differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in
presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration
distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various
physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to
highlight the physical implications of the simulations.
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Introduction

The study of boundary layer flow and heat transfer inducted by

stretching surface has attracted considerable interest due to its

wide applications in industrial processes such as the cooling of an

infinite metallic plate in a cooling bath, the aerodynamic extrusion

of plastic sheets, boundary layer along the material handling

conveyers, the boundary layer along a liquid film and condensa-

tion processes. The quality of the final product depends on the skin

friction coefficient and the rate of heat transfer. One of the earliest

studies of the boundary layer flow problem was conducted by

Sakiadis [1,2]. Crane [3] extended this concept to present the

problem of the steady two-dimensional boundary layer flow over

stretching sheet of elastic flat surface with linear velocity. He

demonstrated that the problem was interesting because it

possessed a closed form exact solution. Studies have been carried

out for the case of the axisymmetric and three-dimensional flow by

Brady and Acrivos [4], and Wang [5]. Investigations by, among

others, Afzal [6], Prasad et al. [7], Abel and Mahesha [8], Bataller

[9], Abel et al. [10], have also provided examples of various

aspects of this important field.

Unsteady flows in rotating fluid have numerous uses or potential

applications in chemical and geophysical fluid dynamics and

mechanical nuclear engineering. Using the Fourier series analysis,

Soundalgekar et al. [11] investigated the unsteady rotating flow of

incompressible, viscous fluid past an infinite porous plate. The

boundary layer flow problem formed in a rotating fluid by

oscillating flow over an infinite half-plate has been examined

Bergstrom [12]. Abbas et al. [13] studied the unsteady boundary

layer MHD flow and heat transfer on a stretching continuous sheet

in a viscous incompressible rotating fluid numerically using the

Keller-box method. Nazar et al. [14] investigated unsteady flow

due to the impulsive starting from rest of a stretching surface in a

viscous and incompressible rotating fluid. Zheng et al. [15] studied

the unsteady rotating flow of a generalized Maxwell fluid with

fractional derivative model between two infinite straight circular

cylinders. Using the shooting method Fang [16] studied the

problem of the laminar unsteady flow over a stretchable rotating

disk with deceleration is investigated. Rashad [17] investigated the

unsteady magnetohydrodynamics boundary-layer flow and heat

transfer for a viscous laminar incompressible electrically conduct-

ing and rotating fluid due to a stretching surface embedded in a

saturated porous medium with a temperature-dependent viscosity

in the presence of a magnetic field and thermal radiation effects.

Nageeb et al. [18] used the Runge-Kutta method based on

shooting technique to investigate the unsteady MHD flow and

heat transfer of a couple stress fluid over a rotating disk. For the

case in which steady flow rotating flow involve the powe-law, very

recently, Hajmohammadi et al. [19] developed an analytical

solution for two-phase flow betwen two rotating cylinders filed

with power law liquid and a micro layer of gas. Moreover

Hajmohammadi and Nourazar [20] the problem of heat transfer

repercussions thin gas layer in micro cylindrical Couette flows

involving power-law liquids.

Many chemically reacting systems involve the species chemical

reactions with finite Arrhenius activation energy, with examples

occurring in geothermal and oil reservoir engineering. The

interactions between mass transport and chemical reactions are

generally very complex, and can be observed in the production

and consumption of reactant species at different rates both within

the fluid and the mass transfer. One of the earliest studies

involving the binary chemical reaction in boundary layer flow was

published by Bestman [21] who presented an analytical solution

using the perturbation method to show the effect of the activation
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energy in natural convection in a porous medium. Using the

Arrhenius activation energy Bestman [22] subsequently investi-

gated radiative heat transfer on the flow of a combustible mixture

in a vertical pipe. Makinde et al. [23] studied the effects of nth

order Arrhenius chemical reaction, thermal radiation, suction/

injection and buoyancy forces on unsteady convection of a viscous

incompressible fluid past a vertical porous plate numerically. They

showed that the effect of the chemical reaction, heat source, and

suction or injection is significant at the wall of the wedge on the

flow field. A numerical study of the unsteady mixed convection

with Dufour and Soret effects past a semi-infinite vertical porous

flat plate moving through a binary mixture of chemically reacting

fluid was conducted by Makinde and Olanrewaju [24]. The most

recent contributions in this area include those of Abdul Maleque

[25–27], who investigated the effects of chemical reactions with

Arrhenius activation Energy on unsteady convection heat and

mass transfer boundary layer fluid flow.

This work deals with the effects of chemical reactions with finite

Arrhenius activation energy on unsteady rotating fluid flow due to

a stretching surface with Binary chemical reaction and activation

energy. The governing partial differential equations are solved

using the spectral relaxation method (SRM). The SRM is based on

simple decoupling and rearrangement of the governing nonlinear

equations in a Gauss-Seidel manner. The resulting sequence of

equations are integrated using the Chebyshev spectral collocation

method. The SRM was introduced in [29] for the solution of the

nonlinear ODE system model of von Karman flow of a Reiner-

Rivlin fluid. A generalised presentation of the method was later

presented in [30] and applied in three ODE based systems of

boundary layer flow equations of varying complexity. The method

has also been successfully used in the solution of chaotic and

hyper-chaotic systems [31,32] which are defined as systems of

ODE initial value problems.

Mathematical Formulation

Consider the three-dimensional, unsteady flow due to a

stretching surface in a rotating fluid. The motion in the fluid is

three dimensional. At time t~0, the surface z~0 is impulsively

stretched in the x direction in the rotating fluid. The velocity

components are assume to be (u,v,w) in the direction of the

Cartesian axes (x,y,z), respectively, and the axes is rotating at an

angular velocity in the z direction. The surface temperature Tw

and solute concentration Cw are higher than the ambient values

T? and Cw, respectively. Assuming a species chemical reaction

with finite Arrhenius activation energy, the governing equations

for the problem can be written in the form

Lu

Lx
z

Lv

Ly
z

Lw
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where p is the pressure, r is the density, is the kinematic viscosity,

T is the fluid temperature, C is the solutal concentration, a is the

thermal diffusivity, D is the solutal diffusivity and +2 denotes the

three-dimensional Laplacian,
T

T?

� �n

exp Ea=fkTgð Þ is the mod-

ified Arrhenius function, k is the Boltzmann constant, k2
r is the

chemical reaction rate constant, n is a unit less constant exponent

fitted rate constants typically lie in the range {1vnv1. Let the

surface be impulsively stretched in the x direction such that the

initial and boundary conditions are

t§0 : u~ax,v~0,w~0,T~Tw,C~Cw, at z~0,

u?0,w?0, T?T? C?C? as z??, ð7Þ

tv0 : u~0,v~0,w~0,T~0,C~0 for all x,y,z: ð8Þ

The following non-dimensional variables are introduced,

g~

ffiffiffiffiffi
a

j

r
z,j~1{ exp ({t),t~at,u~axf ’(j,g),v~axh(j,g),

w~{
ffiffiffiffiffiffiffi
a j

p
f (j,g),h(j,g)~

T{T?

Tw{T?
,w(j,g)~

C{C?

Cw{C?
: ð9Þ

The governing equations (2) – (5) along with the boundary

conditions (7) can be presented as

f ’’’z(1{j)
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f ’’zj ff ’’{f ’2z2lh

� �
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Lj
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1
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� �
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L
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,

ð13Þ
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subject to the boundary conditions

f ’(j,0)~1,f (j,0)~0,h(j,0)~0,h(j,0)~1,w(j,0)~1,j§0,

f ’(j,?)?0,h(j,?)?0,h(j,?)?0,w(j,?)?0,j§0, ð14Þ

where l~ =a is the rotation rate parameter, Pr~
a

is the Prandtl

number, Sc~ =D is the Schmidt number, E~Ea=(kT?) the

non-dimensional activation energy, d~(Tw{T?)=T? is the

temperature relative parameter, s~
kr2

a
is the dimensionless

chemical reaction rate constant.

The non-dimensional skin friction in both x and y directions,

the local Nusselt number, the local Sherwood number are defined

in the form

Cx
f ~

tx
w

r(ax)2
, C

y
f ~

ty
w

r(ax)2
,Nux~

{x

Tw{T?

LT

Lz

� �����
z~0

,Shx~
{x

Cw{C?

LC

Lz

� �����
z~0

,

ð15Þ

where the wall shear stresses tx
w, ty

w, respectively, are given by

tx
w~m

Lu

Lz

����
z~0

, ty
w~m

Lv

Lz

����
z~0

, ð16Þ

substituting (9) and (16) into (15) it gives
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2
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2
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����
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,

where Rex~
(ax)x

is the local Reynolds number.

Numerical Solution

In this section, the spectral relaxation method (SRM) is applied

to solve the governing nonlinear PDEs (10 – 13). For the

implementation of the spectral collocation method, at a later stage,

it is convenient to reduce the order of equation (10) from three to

two. To this end, we set f ’~u, so that equation (10) becomes

u’’z
1

2
g(1{j)u’zj½fu’{u2z2lh�~j(1{j)

Lu

Lj
, ð17Þ

f ’~u: ð18Þ

The spectral relaxation method algorithm uses the idea of the

Gauss-Seidel method to decouple the governing systems of

equations (10 – 13). From the decoupled equations an iteration

scheme is developed by evaluating linear terms in the current

iteration level (denoted by rz1) and nonlinear terms in the

previous iteration level (denoted by r). Applying the SRM on (11 –

13) and (17 – 18) gives the following linear partial differential

equations;

u’’rz1za1,ru’rz1za2,r~j(1{j)
Lurz1

Lj
, ð19Þ

f ’rz1~urz1, frz1(0,j)~0, ð20Þ
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, ð21Þ

1
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1
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urz1(0,j)~1, urz1(?,j)~0,

hrz1(0,j)~0, hrz1(?,j)~0,
ð24Þ

hrz1(0,j)~1, wrz1(0,j)~1, ð25Þ

hrz1(?,j)?0, wrz1(?,j)?0, ð26Þ

where

a1,r~
1

2
g(1{j)zjfr, a2,r~{ju2

r z2jlhr,

b1,r~c1,r~
1

2
g(1{j)zjfrz1,

d1,r~{l2
1jw(1zndhrz1) exp {

E

1zdhrz1

� �
:

The initial approximation for solving equations (10 – 13) are

obtained as the solutions at j~0. Thus f0(g,j), u0(g,j), h0(g,j),
q0(g,j) and b0(g,j) are given by

f0(g,j)~gerfc
g

2

� 	
z

2ffiffiffi
p
p 1{ exp {

g2

4

� �
 �
,

u0(g,j)~erfc
g

2

� 	
,

ð27Þ

h0(g,j)~1{erf

ffiffiffiffiffiffi
Pr
p

g

2

� �
, w0(g,j)~1{erf

ffiffiffiffiffi
Sc
p

g

2

 !
: ð28Þ

Starting from given initial approximations (27 – 28), the

iteration schemes (19 – 26) can be solved iteratively for urz1(g,j),
frz1(g,j), etc, when r~0,1,2,:::. To solve equation (19 – 26) the
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the linear equations are discretized using the Chebyshev spectral

method in the g-direction and use an implicit finite difference

method in the j-direction. For brevity, the details of the spectral

methods are omitted. Interested readers may refer to Refs. [28,33].

Before applying the spectral method, it is convenient to transform

the domain on which the governing equation is defined to the

interval [21,1] where the spectral method can be implemented.

For the convenience of the numerical computations, the semi-

infinite domain in the space direction is approximated by the

truncated domain ½0,g?�, where g? is a finite number selected to

be large enough to represent the behaviour of the flow properties

when g is very large. We use the transformation g~g?(Yz1)=2
to map the interval ½0,g?� to ½{1,1�. The basic idea behind the

spectral collocation method is the introduction of a differentiation

matrix D which is used to approximate the derivatives of the

unknown variables f ,u,h,h and w at the collocation points (grid

points) as the matrix vector product

df

dg

����
g~gj

~
XNx

k~0

Djkf (Yk,j)~DF , j~0,1, . . . ,Nx ð29Þ

where Nxz1 is the number of collocation points, D~2D=g?,

and

F~½f (Y0,j),f (Y1,j), . . . ,f (YNx ,j)�T ,

U~½u(Y0,j),u(Y1,j), . . . ,u(YNx ,j)�T ,

H~½h(Y0,j),h(Y1,j), . . . ,h(YNx ,j)�T ,

Q~½h(Y0,j),h(Y1,j), . . . ,h(YNx ,j)�T ,

G~½w(Y0,j),w(Y1,j), . . . ,w(YNx ,j)�T

are the vector functions at the collocation points. Higher order

derivatives are obtained as powers of D, that is

f (p)?DpF , u(p)?DpU , h(p)?DpH, h(p)?DpQ, w(p)?DpG,ð30Þ

where p is the order of the derivative. The grid points on (g,j) are

defined as

Yj~ cos
pj

Nx

, jn~n j, j~0,1, . . . ,Nx; n~0,1, . . . ,Nt, ð31Þ

where Nxz1, Ntz1 are the total number of grid points in the g
and j-directions respectively, and j is the spacing in the j-

direction. The finite difference scheme is applied with centering

about a mid-point halfway between jnz1 and jn. This mid-point is

defined as jnz1
2~(jnz1zjn)=2. The derivatives with respect with

g are defined in terms of the Chebyshev differentiation matrices.

Applying the centering about jnz1
2 to any function, say u(g,j) and

its associated derivatives we obtain,

u(gj ,j
nz1

2)~u
nz1

2
j ~

unz1
j zun

j

2
,

Lu

Lj

� �nz1
2
~

unz1
j {un

j

j
: ð32Þ

Thus, applying the spectral collocation method and finite

difference approximation on the SRM scheme (19 – 26) gives

A1Unz1
rz1 ~B1Un

rz1zR1, ð33Þ

A2Hnz1
rz1 ~B2Hn

rz1zR2, ð34Þ

Figure 1. Effect of the rotating parameter l on h(g) for j~0:65, Sc~1,s~5,Pr~0:71,E~1,d~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g001
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A3Qnz1
rz1 ~B3Qn

rz1zR3, ð35Þ

A4Gnz1
rz1 ~B4Gn

rz1zR4, ð36Þ

DFnz1
rz1 ~Unz1

rz1, ð37Þ

subject to the following boundary and initial conditions

urz1(g0,jn)~0, urz1(gNx
,jn)~1,

hrz1(g0,jn)~0, hrz1(gNx
,jn)~0,

ð38Þ

Figure 2. Effect of the rotating parameter l on f ’(g) for j~0:65, Sc~1,s~5,Pr~0:71,E~1,d~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g002

Figure 3. Effect of the rotating parameter l on Cx
f Re1=2 for j~0:65, Sc~1,s~5,Pr~0:71,E~1,d~1 and n~0:5.

doi:10.1371/journal.pone.0107622.g003
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Qrz1(g0,jn)~0, Qrz1(gNx
,jn)~1, frz1(gNx

,jn)~0, ð39Þ

Grz1(g0,jn)~0, Grz1(gNx
,jn)~1, ð40Þ

for n~0,1,2, . . . ,Ntz1: The matrices Aw,Bw,Rw are defined for

w~1,2,3,4 as

A1~
1

2
D2za

nz1
2

1,r D

� �
{

jnz1
2(1{jnz1

2)

j
I,

Figure 4. Effect of the rotating parameter l on Cy
f Re1=2 for j~0:65, Sc~1,s~5,Pr~0:71,E~1,d~1 and n~0:5.

doi:10.1371/journal.pone.0107622.g004

Figure 5. Effect of the rotating parameter l on h(g) for j~0:65, Sc~1,s~5,Pr~0:71,E~1,d~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g005
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B1~{
1

2
D2za

nz1
2

1,r D

� �
{

jnz1
2(1{jnz1

2)

j
I, R1~{a

nz1
2

2,r , A2~
1

2
D2zb

nz1
2

1,r Dzb
nz1

2
2,r

� �
{

jnz1
2(1{jnz1

2)

j
I,

Figure 6. Effect of the rotating parameter l on Nux=Re1=2
x for j~0:65, Sc~1,s~5,Pr~0:71,E~1,d~1 and n~0:5.

doi:10.1371/journal.pone.0107622.g006

Figure 7. Effect of the rotating parameter Pr on h(g) for j~0:65, Sc~1,l~1,s~5,E~1,d~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g007
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B2~{
1

2
D2zb

nz1
2

1,r Dzb
nz1

2
2,r

� �
{

jnz1
2(1{jnz1

2)

j
I, R2~{b

nz1
2

3,r , A3~
1

2

1

Pr
D2zc

nz1
2

1,r D

� �
{

jnz1
2(1{jnz1

2)

j
I,

Figure 8. Effect of the rotating parameter Pr on w(g) for j~0:65, Sc~1,l~1,s~5,E~1,d~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g008

Figure 9. Effect of s on w(g) for j~0:65, E~1, Sc~1,l~1,Pr~0:71,d~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g009
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B3~{
1

2

1

Pr
D2zc

nz1
2

1,r D

� �
{

jnz1
2(1{jnz1

2)

j
I, R3~O, A4~

1

2

1

Sc
D2zc

nz1
2

1,r Dzd
nz1

2
1,r

� �
{

jnz1
2(1{jnz1

2)

j
I,

Figure 10. Effect of E on w(g) for j~0:65, s~5, Sc~1,l~1,Pr~0:71,d~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g010

Figure 11. Effect of the rotating parameter n on w(g) for j~0:65, Sc~1,l~1,Pr~0:71,s~5,d~1 and E~1.
doi:10.1371/journal.pone.0107622.g011
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B4~{
1

2

1

Sc
D2zc

nz1
2

1,r Dzd
nz1

2
1,r

� �
{

jnz1
2(1{jnz1

2)

j
I, R4~O,

where I is an (Nxz1)|(Nxz1) identity matrix and O is an

(Nxz1)|1 matrix of zeros. The boundary conditions are

imposed on the first and last rows of equation each matrix

Aw,Bw,Rw. Thus, starting from the initial conditions U0
rz1, F0

rz1,

H0
rz1, Q0

rz1, G0
rz1 given by equations (27) and (28), the matrix

equations (33 – 37) can be solved iteratively, in turn, to give

approximate solutions for urz1(g,j), frz1(g,j), etc, for r~0,1,2,:::,
until a solution that converges to within a given accuracy level is

obtained.

Figure 12. Effect of the rotating parameter n on Shx=Re1=2
x for j~0:65, Sc~1,l~1,Pr~0:71,s~5,d~1 and E~1.

doi:10.1371/journal.pone.0107622.g012

Figure 13. Effect of the rotating parameter d on w(g) for j~0:65, Sc~1,l~1,Pr~0:71,s~5,E~1 and n~0:5.
doi:10.1371/journal.pone.0107622.g013
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Results and Discussion

In order to determine the evolution of the boundary layer flow

properties, numerical solutions of the set of governing systems of

partial differential equations (10) – (13) along with the boundary

conditions (14), were computed using the proposed spectral

relaxation method (SRM). Starting from the initial analytical

solutions at j~0 (corresponding to t~0), the SRM scheme was

used to generate results up to solutions near the steady state values

at j~1 (corresponding to t??). The effect of the governing

parameters namely, the rotation rate parameter l, the Schmidt

number Sc, the non-dimensional activation energy E, the Prandtl

number Pr, the chemical reaction rate constant s, the temperature

relative parameter d and n on the flow characteristics as well as the

local skin friction, heat and mass transfer coefficients the results are

presented graphically in this section. Fig. 1 and Fig. 2 show the

variation of the velocity profiles h(g) and f ’(g), respectively, for

different values of l. We observe that an increase in the values of l
leads to monotonic exponential decay in the velocity profiles for

small values and it results in oscillatory decay for a large values of

l. The same results have been reported by Nasar et al. [14] in a

related study. Fig. 3 and Fig. 4 show the variation of the skin

friction coefficients in the x and y directions respectively for

various values of the rotation rate parameter l. It is observed that

l decreases both the skin friction coefficients thus reduces the

momentum boundary layers. The effects of the rotation rate

parameter l on the temperature profile is shown in Fig. 5. This

figure shows that the thermal boundary layer thickness decreases

with l, thus an increase in l causing a drop in the temperature.

Fig. 6 illustrates the variation of the Nusselt number Nux=Re1=2
x

with j for some values of l. However increases l decreases the

heat transfer coefficient and the influence of l can be obtained

beyond j§0:4 in the heat. The variations of the temperature

h(g,j) profile with g for several values of the Prandtl number Pr
are shown in Fig. 7. It is observed that the thermal boundary layer

thickness decrease with an increase in Pr. Larger values of Prandtl

number corresponds to the weaker thermal diffusivity and thinner

boundary layer, hence Pr reduces the temperature. Fig. 8 shows

concentration distribution for several values Prandtl number. The

effect of the Prandtl number is to reduce the mass transfer

boundary-layer thickness and so reducing the w(g,j). The

influence of the chemical reaction rate constant s on the

concentration profile within the boundary layer is given in

Fig. 9. An increase in the s effect reduces the concentration

within the thermal boundary layer region. This is because

increasing the chemical reaction rate causes a thickening of the

mass transfer boundary layer. The effects of the non-dimensional

activation energy E on the concentration profile have been plotted

in Fig. 10, it has been notice that increasing the non-dimensional

activation energy E effect increases the concentration boundary

layer thinness which enhances the concentration.

Fig. 11 shows the effect of increasing the dimensionless

exponent fitted rate constant n on the concentration profile. It is

observed that increasing n reduces the concentration within the

thermal boundary layer leading to an increase in the concentration

gradient at the sheet. From Fig. 12 dimensionless exponent fitted

rate constant n leads to a considerable thinning of the

concentration boundary layer, and hence a reduction in mass

transfer rate at the sheet wall. Fig. 13 and Fig. 14 depict the

variation of the solute concentration and the mass transfer rate

Shx=Re1=2
x respectively for different values of the temperature

relative parameter d. It is evident that as d increases, the

concentration boundary layer thickness decreases followed by a

reduction in both the solute concentration and the mass transfer

rate.

Conclusions

In this investigation, we considered the spectral relaxation

method approach to solving an coupled non-linear partial

differential equation system that governs the unsteady flow with

binary chemical reaction and activation energy due to a stretching

Figure 14. Effect of the rotating parameter d on Shx=Re1=2
x for j~0:65, Sc~1,l~1,Pr~0:71,s~5,E~1 and n~0:5.

doi:10.1371/journal.pone.0107622.g014
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surface in a rotating fluid. The effects of the governing parameters

namely the rotation rate parameter, the Schmidt number, the non-

dimensional activation energy, the Prandtl number, the chemical

reaction rate constant, the temperature relative parameter and on

the flow characteristics as well as the local skin friction, heat and

mass transfer coefficients have been studied. Small values the

rotation rate parameter l shows a monotonic exponential decay in

the velocity profiles and there is oscillatory decay for a large values.

Increasing in the non-dimensional activation energy E enhances

the concentration profile within the boundary layer. The spectral

relaxation method used was found to be a very effective method

for solving the type of problem considered in this work.
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