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Abstract: In this study, we present and apply a new, ac-
curate and easy to implement numerical method to real-
ize and verify the synchronization between two identical
chaotic Lorenz, Genesio-Tesi, Rössler, Chen and Rikitake
systems. The proposed method is called the multi-stage
spectral relaxation method (MSRM). We utilize the active
control technique for the synchronization of these sys-
tems. To illustrate the effectiveness of the method, simu-
lation results are presented and compared with results
obtained using the Runge-Kutta (4, 5) based MATLAB
solver, ode45.
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1 Introduction

Since the introduction of the Lorenz system [17], the con-
cept of chaos has been extensively studied by various re-
searchers. Chaos has numerous applications in a variety
of systems such as electrical circuits, lasers, fluid dynam-
ics, mechanical devices, population growth and many
other areas of scientific applications. In recent years, sci-
entists have focused on the control and synchronization
of chaotic systems. Synchronization of chaos is a process
in which two or more chaotic systems adjust a given
property of their motion to a common behavior, due to
coupling or forcing [4]. Chaos synchronization is used
in applications such as secure communication, chaotic

broad band radio, encryption, etc. The idea of chaos con-
trol and synchronization was first introduced by Pecora
and Carroll [24] by synchronizing two identical chaotic
systems with different initial conditions. Since then
chaos control and synchronization has received increas-
ing attention. After Pecora and Carroll’s method a wide
variety of control approaches have been proposed for
the synchronization of chaotic systems such as the ac-
tive control method [1–3, 36], adaptive control method
[7, 10, 15], backstepping method [37], sliding mode con-
trol method [14], linear and nonlinear feedback control
method [13, 28].

In this work, we utilise the active control method for
the chaos control and synchronization of two identical
chaotic systems. Bai [3] used the active control method
for the synchronization of two identical Lorenz systems.
The synchronization of the Rössler and Chen systems by
the active control method was considered by Agiza and
Yassen [2]. Vincent [32] and Umut [31] applied the ac-
tive control method to synchronize the Rikitake and the
Genesio-Tesi system respectively. Chaos synchronization
between two different chaotic systems by the active con-
trol method has also been considered (see [1, 36]). The
active control systems consists of two coupled chaotic
systems, one called the drive/master system and the
other called the response/slave system. The output of the
drive system is used to control the response system so
that the output of the response system tracks the output
of the drive system asymptotically. Then the drive and
response systems are said to be synchronized. Conse-
quently computing the solutions of the chaos control
systems involves more tedious computations since two
coupled chaotic systems are involved.

Wang et al. [34] used the multi-stage homotopy per-
tubation method to find analytical solutions of active
control systems to realize and verify the synchronization
between the Lorenz and Chen systems.

The main objective of this work is to apply a new
multi-stage iterative scheme called the multi-stage spec-
tral relaxation method (MSRM) to solve active control
systems and verify the synchronization of two identical
chaotic systems. The MSRM have been successfully ap-
plied in solving chaotic and hyperchaotic systems by
Motsa et al. [22, 23]. The aim of this work is to determine
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if the MSRM is applicable for larger chaotic systems like
the control systems. We consider control systems for the
chaotic Lorenz, Genesio-Tesi, Rössler, Chen and Rikitake
systems. This paper is organized as follows, Section 2
gives a brief description of the proposed MSRM algo-
rithm. A brief description of how the active control
method is used for the synchronization of chaotic sys-
tems is given in Section 3. In Section 4 we present the
numerical implementation of the MSRM on several exam-
ples of chaos control systems. In Section 5 we present
and discuss numerical results to demonstrate the effec-
tiveness of the proposed MSRM. Finally, Section 6 con-
tains a summarized conclusion of the results.

2 Multi-stage spectral relaxation
method

In this section, we give a brief description of how the
multi-stage spectral relaxation method (MSRM) algorithm
is developed for the solution of common chaotic systems
governed by nonlinear systems of first order IVPs. A cha-
otic system can be expressed as a system of n nonlinear
first order differential equations of the form

_xrðtÞ ¼
Xn
k¼1

αr; kxkðtÞ þ fr½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ� þ gr;

r ¼ 1; 2; . . . ; n ð1Þ

subject to the initial conditions

xrð0Þ ¼ x�
r ; ð2Þ

where xr are the unknown variables and x�
r are the corre-

sponding initial conditions. αr; k and gr are known con-
stant input parameters and fr is the nonlinear component
of the rth equation and the dot denotes differentiation
with respect to time t.

The scheme computes the solution of Eq. (1) in a
sequence of equal sub-intervals that makes the entire
interval. So, first the interval Ω ¼ ½0;T� is divided into a
sequence of non-overlapping sub-intervals Ωi ¼ ½ti�1; ti�
(i ¼ 1; 2; 3; . . . ; f ) where t0 ¼ 0 and tf ¼ T. We denote
the solution of (1) in the first sub-interval ½t0; t1� as x1r ðtÞ
and the solutions in the subsequent sub-intervals ½ti�1; ti�
ði ¼ 2; 3; . . . ; f Þ as xi

rðtÞ. For obtaining the solution in
the first interval ½t0; t1�, Eq. (2) is used as the initial condi-
tion. By using the continuity condition between neigh-
bouring sub-intervals the obtained solution in the inter-
val ½t0; t1� is used to obtain the initial condition for the

next sub-interval ½t1; t2�. This is applied over the f succes-
sive sub-intervals, that is, the obtained solution for each
sub-interval ½ti�1; ti� is used to obtain the initial condition
for the next sub-interval ½ti; tiþ1� ði ¼ 1; 2; . . . ; f � 1Þ. Thus,
in each interval ½ti�1; ti� we must solve

_x i
r ¼ αr; rx i

r þ ð1� δrsÞ
Xn
k¼1

αr; kx i
k

þ fr½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ� þ gr; ð3Þ

subject to

x i
rðti�1Þ ¼ xi�1

r ðti�1Þ ð4Þ

where δrs is the Kronecker delta. The main idea behind
the MSRM scheme is decoupling the system of nonlinear
IVPs using the Gauss-Siedel idea of decoupling systems
of algebraic equations.

For an n equation IVP system, the proposed MSRM it-
eration scheme for the solution in the interval Ωi ¼ ½ti�1; ti�
is given as

_x i
1; sþ1 � α1; 1x i

1; sþ1

¼ α1; 2xi
2; s þ α1; 3x i

3; s þ � � � þ α1;nx i
n; s

þ f1½xi
1; s; x

i
2; s; . . . ; x

i
n; s� þ g1; ð5Þ

_x i
2; sþ1 � α2; 2x i

2; sþ1

¼ α2; 1xi
1; sþ1 þ α2; 3xi

3; s þ α2;4xi
4; s

þ � � � þ α2;nx i
n; s

þ f2½x i
1; sþ1; x

i
2; s; x

i
3; s; . . . ; x

i
n; s� þ g2; ð6Þ

..

.

_x i
n; sþ1 � αn;nx i

n; sþ1

¼ αn; 1xi
1; sþ1 þ αn; 2xi

2; sþ1

þ � � � þ αn;n�1x i
n�1; sþ1

þ fn½x i
1; sþ1; x

i
2; sþ1; . . . ; x

i
n�1; sþ1; x

i
n; s� þ gn ð7Þ

subject to the initial conditions

xi
r; sþ1ðti�1Þ ¼ xi�1

r ðti�1Þ; r ¼ 1; 2; . . . ; n; ð8Þ

where xr; s is the estimate of the solution after s iterations.
A suitable initial guess to start the iteration scheme (5–7)
is one that satisfies the initial condition (8). A convenient
choice of initial guess that was found to work in the nu-
merical experiments considered in this work is

x i
r;0ðtÞ ¼

x�
r if i ¼ 1
xi�1
r ðti�1Þ if 2a ia f

�
ð9Þ
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The Chebyshev spectral method is used to solve Eqs.
(5)–(7) on each interval ½ti�1; ti�. First, the region ½ti�1; ti� is
transformed to the interval ½�1; 1� on which the spectral
method is defined by using the linear transformation

t ¼ ðti � ti�1Þτ
2

þ ðti þ ti�1Þ
2

ð10Þ

in each interval ½ti�1; ti� for i ¼ 1; . . . ; f . We then discretize
the interval ½ti�1; ti� using the Chebyshev-Gauss-Lobatto
collocation points [6, 30]

τ ij ¼ cos
πj
N

� �
; j ¼ 1; 2; . . . ;N ð11Þ

which are the extrema of the Nth order Chebyshev poly-
nomial

TNðτÞ ¼ cosðN cos�1 τÞ: ð12Þ

The Chebyshev spectral collocation method is based
on the idea of introducing a differentiation matrix D
which is used to approximate the derivatives of the un-
known variables xi

r; sþ1ðtÞ at the collocation points as the
matrix vector product

dxi
r; sþ1

dt
¼
XN
k¼0

Djkx
i
r; sþ1 ¼ DX i

r; sþ1; j ¼ 1; 2; . . . ;N ð13Þ

where D ¼ 2D=ðti � ti�1Þ and X i
r; sþ1 ¼ ½x i

r; sþ1ðτ i0Þ;
xi
r; sþ1ðτ i1Þ; . . . ; xi

r; sþ1ðτ iNÞ] are the vector functions at the
collocation points τ ij .

Applying the Chebyshev spectral collocation method
in Eqs. (5)–(7) gives

ArX i
r; sþ1 ¼ B i

r; X i
r; sþ1ðτ i�1

N Þ ¼ X i�1
r ðτ i�1

N Þ;
r ¼ 1; 2; . . . ; n: ð14Þ

with

Ar ¼ D� αr; rI; ð15Þ

and

B i
1 ¼ α1; 2X i

2; s þ α1; 3X i
3; s þ � � � þ α1;nX i

n; s

þ f1½ðX i
1; s;X

i
2; s; . . . ;X

i
n; s� þ g1; ð16Þ

B i
2 ¼ α2; 1X i

1; sþ1 þ α2; 3X i
3; s þ α2;4X i

4; s þ � � � þ α2;nX i
n; s

þ f2½X i
1; sþ1;X

i
2; s;X

i
3; s; . . . ;X

i
n; s� þ g2; ð17Þ

..

.

B i
n ¼ αn; 1X i

1; sþ1 þ αn; 2X i
2; sþ1 þ � � � þ αn;n�1X i

n�1; sþ1

þ fn½X i
1; sþ1;X

i
2; sþ1; . . . ;X

i
n�1; sþ1;X

i
n; s� þ gn; ð18Þ

where I is an identity matrix of order N þ 1. Thus, start-
ing from the initial approximation (9), the recurrence
formula

X i
r; sþ1 ¼ A�1

r B i
r; r ¼ 1; 2; . . . ; n: ð19Þ

can be used to obtain the solution xi
rðtÞ in the interval

½ti�1; ti�. The solution approximating xrðtÞ in the entire
interval ½t0; tF � is given by

xrðtÞ ¼

x1r ðtÞ; t A ½t0; t1�
x2r ðtÞ; t A ½t1; t2�
..
.

xF
r ðtÞ; t A ½tf�1; tf �

8>>>><
>>>>:

ð20Þ

3 Active control method

In this section we give a basic principle behind chaos
synchronization of chaotic systems using the active con-
trol method. The active control systems consists of two
coupled chaotic systems, one called the drive system
and the other called the response system. The output of
the drive system is used to control the response system
so that the output of the response system tracks the out-
put of the master system asymptotically. Then the drive
and response systems are said to be synchronized [1, 29].
As already mentioned above the drive system can be ex-
pressed as a system of n equations of the form

_xrðtÞ ¼
Xn
k¼1

αr; kxkðtÞ þ fr½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ� þ gr;

r ¼ 1; 2; . . . ; n ð21Þ

and the response system is given by

_xnþrðtÞ ¼
Xn
k¼1

αr; kxnþkðtÞ

þ fr½xnþ1ðtÞ; xnþ2ðtÞ; . . . ; x2nðtÞ� þ urðtÞ þ gr;
r ¼ 1; 2; . . . ; n ð22Þ

where xr and xnþr are the unknown variables. αr; k and
gr are known constant input parameters and fr is the
nonlinear component of the rth equation. urðtÞ are the
active control functions. The drive and response systems
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achieve synchronization if appropriate active control
functions are chosen. The drive and response systems
are said to have been synchronized if

lim
t!y

kerk ¼ lim
t!y

kxnþr � xrk ¼ 0 ð23Þ

where er ¼ xnþr � xr are the error states. Therefore, the
error dynamics are given by

_er ¼ _xnþr � _xr ¼
Xn
k¼1

αr; kek

þ Fr½x1ðtÞ; x2ðtÞ; . . . ; x2nðtÞ� þ urðtÞ ð24Þ

where Fr½x1; x2; . . . ; x2n� are the nonlinear and non-
common parts in the drive and response systems.

Since the error vectors should converge to zero, ap-
propriate controllers should eliminate nonlinear terms,
i.e.

urðtÞ ¼ VrðtÞ � Fr ð25Þ

where VrðtÞ ¼
Pn

k¼1 hr; kek are the linear controllers and
hr; k are constant parameters.

Substituting Eq. (25) in Eq. (24) we obtain

_er ¼
Xn
k¼1

αr; kek þ
Xn
k¼1

hr; kek

 !
ð26Þ

which can be written in compact form as

_e ¼ ðAþ HÞe ð27Þ

where e ¼ ½e1; e2; . . . ; en�. A and H are n� n constant
matrices whose entries are αr; k and hr; k respectively. If
the eigenvalues of the matrix (AþH) are negative, then
the error state vectors asymptotically converge to zero.
That is, the drive and response systems asymptotically
synchronize.

There are many possible choices of VrðtÞ satisfying

V1ðtÞ
V2ðtÞ
..
.

VnðtÞ

0
BBBB@

1
CCCCA ¼ H

e1
e2
..
.

en

0
BBBB@

1
CCCCA ð28Þ

The elements hr; k of the matrix H should be chosen
such that the eigenvalues of the matrix (AþH) are
negative.

4 Numerical examples

In this section we demonstrate the applicability of the
MSRM in solving chaotic control systems. First we utilise
the active control method to control and synchronize sys-
tems of IVPs exhibiting chaotic behavior. To verify the
chaos control and synchronization of these chaotic sys-
tems, we then use the MSRM algorithm to solve the result-
ing control systems. We consider the Lorenz, Genesio-
Tesi, Rossler, Chen, and the Rikitake systems.

4.1 Lorenz system

The Lorenz system is a dynamical system commonly used
to explore chaos. It is given by the following set of auton-
omous differential equations

_x1 ¼ aðx2 � x1Þ;
_x2 ¼ �x1x3 þ bx1 � x2;
_x3 ¼ x1x2 � cx3:

8<
: ð29Þ

The Lorenz systems models a three mode approximation
to the motion of a layer of fluid heated from below. Bai
[3] considered the synchronization of the Lorenz system
using the active control method. System (29) is taken as
the drive system and the response is defined by

_x4 ¼ aðx5 � x4Þ þ u1ðtÞ;
_x5 ¼ �x4x6 þ bx4 � x5 þ u2ðtÞ;
_x6 ¼ x4x5 � cx6 þ u3ðtÞ:

8<
: ð30Þ

Applying the active control method, the control func-
tions are defined as

u1ðtÞ ¼ V1ðtÞ; ð31Þ
u2ðtÞ ¼ x4x6 � x1x3 þ V2ðtÞ; ð32Þ
u3ðtÞ ¼ �x4x5 þ x1x2 þ V3ðtÞ: ð33Þ

The matrix H can be chosen as

H ¼
a� 1 �a 0
�b 0 0
0 0 c� 1

0
B@

1
CA ð34Þ

and hence

_x4 ¼ ð1� aÞx1 þ ax2 � x4;
_x5 ¼ bx1 � x5 � x1x3;
_x6 ¼ ð1� cÞx3 � x6 þ x1x2:

8<
: ð35Þ
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The systems (29) and (35) were solved for the param-
eters a ¼ 10, b ¼ 28, c ¼ 8=3 and the initial condi-
tions x1ð0Þ ¼ �10, x2ð0Þ ¼ �5, x3ð0Þ ¼ 35 and x4ð0Þ ¼ 0,
x5ð0Þ ¼ 0, x6ð0Þ ¼ 0 for the drive and response systems
respectively. In this example, the parameters used in the
MSRM iteration

α11 ¼ �a; α12 ¼ a; α21 ¼ b; α22 ¼ �1; α33 ¼ �c;
α41 ¼ 1� a; α42 ¼ a; α44 ¼ �1; α51 ¼ b; α55 ¼ �1;
α63 ¼ 1� c; α66 ¼ �1; f2 ¼ �x1x3; f3 ¼ x1x2;
f5 ¼ �x1x3; f6 ¼ x1x2 ð36Þ

4.2 Genesio-Tesi system

The Genesio-Tesi system, proposed by Genesio and
Tesi [12] is described by the following simple three-
dimensional autonomous system with only one quadratic
nonlinear term:

_x1 ¼ x2;
_x2 ¼ x3;
_x3 ¼ �ax1 � bx2 � cx3 þ x21 :

8<
: ð37Þ

where a; b; c < 0 are parameters. The Genesio-Tesi exhib-
its chaotic behavior when a ¼ �6, b ¼ �2:92, c ¼ �1:2.
System (37) is taken as the drive system and the response
is defined by

_x4 ¼ x5 þ u1ðtÞ;
_x5 ¼ x6 þ u2ðtÞ;
_x6 ¼ �ax4 � bx5 � cx6 þ x24 þ u3ðtÞ:

8<
: ð38Þ

Umut [31] applied the active control method for the
synchronization of the Genesio-Tesi system. The active
control functions are defined as

u1ðtÞ ¼ V1ðtÞ; ð39Þ
u2ðtÞ ¼ V2ðtÞ; ð40Þ
u3ðtÞ ¼ x21 � x24 þ V3ðtÞ: ð41Þ

The matrix H can be chosen as

H ¼
�1 �1 0
0 �1 �1
a b c� 1

0
B@

1
CA ð42Þ

and hence

_x4 ¼ x1 þ x2 � x4;
_x5 ¼ x2 þ x3 � x5;
_x6 ¼ �ax1 � bx2 � ðc� 1Þx3 � x6 þ x21 :

8<
: ð43Þ

The systems (37) and (43) were solved for the param-
eters a ¼ 6, b ¼ 2:92, c ¼ 1:2 and the initial conditions
x1ð0Þ ¼ 0:2, x2ð0Þ ¼ �0:3, x3ð0Þ ¼ 0:1 and x4ð0Þ ¼ 0,
x5ð0Þ ¼ 0, x6ð0Þ ¼ 0 for the drive and response systems
respectively. In this example, the parameters used in the
MSRM iteration

α12 ¼ 1; α23 ¼ 1; α31 ¼ �a; α32 ¼ �b; α33 ¼ �c;
α41 ¼ 1; α42 ¼ 1; α44 ¼ �1; α52 ¼ 1; α53 ¼ 1;
α55 ¼ �1; α61 ¼ �a; α62 ¼ �b; α63 ¼ 1� c;
α66 ¼ �1; f3 ¼ x21 ; f6 ¼ x21 : ð44Þ

4.3 Rössler system

The Rössler system was originally studied by Rössler [26]
in 1976. The drive Rössler system is defined by

_x1 ¼ �ðx2 þ x3Þ;
_x2 ¼ x1 þ ax2;
_x3 ¼ bþ x1x3 � cx3;

8<
: ð45Þ

and the response is defined by

_x1 ¼ �ðx5 þ x6Þ þ u1ðtÞ;
_x2 ¼ x4 þ ax5 þ u2ðtÞ;
_x3 ¼ bþ x4x6 � cx6 þ u3ðtÞ:

8<
: ð46Þ

Agiza and Yassen [2] applied the active control tech-
nique for the synchronization of the Rössler system. The
control functions are defined as

u1ðtÞ ¼ V1ðtÞ; ð47Þ
u2ðtÞ ¼ V2ðtÞ; ð48Þ
u3ðtÞ ¼ x1x3 � x4x5 þ V3ðtÞ: ð49Þ

The matrix H can be chosen as

H ¼
�1 1 1
�1 �ð1þ aÞ 0
0 0 c� 1

0
B@

1
CA ð50Þ

and hence

_x4 ¼ x1 � x2 � x3 � x4;
_x5 ¼ x1 þ ð1þ aÞx2 � x5;
_x6 ¼ b� ðc� 1Þx3 � x6 þ x1x3:

8<
: ð51Þ
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The Rössler system exhibits chaotic behavior if the
parameters are chosen as a ¼ 0:2, b ¼ 0:2, c ¼ 5:7. The
system was solved for the initial conditions x1ð0Þ ¼ 0:5,
x2ð0Þ ¼ 1, x3ð0Þ ¼ 1:5 and x4ð0Þ ¼ 6, x5ð0Þ ¼ 3:5, x6ð0Þ
¼ 5 for the drive and response systems respectively. In
this example, the parameters used in the MSRM iteration

α12 ¼ �1; α13 ¼ �1; α21 ¼ 1; α22 ¼ a; α33 ¼ �c;
α41 ¼ 1; α42 ¼ �1; α43 ¼ �1; α44 ¼ �1; α51 ¼ 1;
α52 ¼ 1þ a; α55 ¼ �1; α61 ¼ �a; α63 ¼ 1� c;
α66 ¼ �1; f3 ¼ x1x3; f6 ¼ x1x3; g3 ¼ b; g6 ¼ b: ð52Þ

4.4 Chen system

In 1999 Chen [8] found a similar but topologically non-
equivalent chaotic attractor to the Lorenz attractor called
the Chen attractor. Lü et al. [18] state that it was proven
that the Chen system is dual to the Lorenz system. The
drive and response systems for the Chen system are de-
fined as follows:

_x1 ¼ aðx2 � x1Þ;
_x2 ¼ ðc� aÞx1 � x1x3 þ cx2;
_x3 ¼ x1x2 � bx3:

8<
: ð53Þ

and

_x1 ¼ aðx2 � x1Þ þ u1ðtÞ;
_x2 ¼ ðc� aÞx1 � x1x3 þ cx2 þ u2ðtÞ;
_x3 ¼ x1x2 � bx3 þ u3ðtÞ:

8<
: ð54Þ

The Chen system has a chaotic attractor when a ¼ 35,
b ¼ 3, c ¼ 28. The synchronization of the Chen system
using the control method was considered by Agiza and
Yassen [2]. Applying the active control method, the con-
trol functions are defined as

u1ðtÞ ¼ V1ðtÞ; ð55Þ
u2ðtÞ ¼ x4x6 � x1x3 þ V2ðtÞ; ð56Þ
u3ðtÞ ¼ x1x2 � x4x5 þ V3ðtÞ: ð57Þ

The matrix H can be chosen as

H ¼
a� 1 �a 0
a� c �ð1þ cÞ 0
0 0 b� 1

0
B@

1
CA ð58Þ

and hence

_x4 ¼ �ða� 1Þx1 þ ax2 � x4;
_x5 ¼ �ða� cÞx1 þ ð1þ cÞx2 � x5 � x1x3;
_x6 ¼ �ðb� 1Þx3 � x6 þ x1x2:

8<
: ð59Þ

The systems (53) and (59) were solved for the param-
eters a ¼ 35, b ¼ 3, c ¼ 28 and the initial conditions
x1ð0Þ ¼ 0:5, x2ð0Þ ¼ 1, x3ð0Þ ¼ 1 and x4ð0Þ ¼ 10:5, x5ð0Þ
¼ 20, x6ð0Þ ¼ 38 for the drive and response systems re-
spectively. In this example, the parameters used in the
MSRM iteration

α11 ¼ �a; α12 ¼ a; α21 ¼ c� a; α22 ¼ c; α33 ¼ �b;
α41 ¼ 1� a; α42 ¼ a; α44 ¼ �1; α51 ¼ c� a;
α52 ¼ ð1þ cÞ; α55 ¼ �1; α63 ¼ 1� b; α66 ¼ �1;
f2 ¼ �x1x3; f3 ¼ x1x2; f5 ¼ �x1x3; f6 ¼ x1x2: ð60Þ

4.5 Rikitake system

The Rikitake system is a two-disc dynamo system which
is a simple mechanical model used to study the rever-
sals of the earth’s magnetic field [16]. The system was
idealised by Rikitake [25]. It is governed by the follow-
ing three dimensional system of nonlinear differential
equations

_x1 ¼ �bx1 þ x2x3;
_x2 ¼ �bx2 þ x1ðx3 � aÞ;
_x3 ¼ 1� x1x2;

8<
: ð61Þ

where a; b > 0. The Rikitake system exhibits chaotic be-
havior for a ¼ 5 and b ¼ 2. System (61) is taken as the
drive system and the response system is given by

_x4 ¼ �bx4 þ x5x6 þ u1ðtÞ;
_x5 ¼ �bx5 þ x4ðx6 � aÞ þ u2ðtÞ;
_x6 ¼ 1� x4x5 þ u3ðtÞ;

8<
: ð62Þ

The snchronization of the Rikitake system using
active control was considered by Vincent [32]. Applying
the active control method, the control functions are de-
fined as

u1ðtÞ ¼ �x5x6 þ x2x3 þ V1ðtÞ; ð63Þ
u2ðtÞ ¼ �x4x6 þ x1x3 þ V2ðtÞ; ð64Þ
u3ðtÞ ¼ x4x5 � x1x2 þ V3ðtÞ: ð65Þ

The matrix H can be chosen as

H ¼
�ð1� bÞ 0 0

a �ð1� bÞ 0
0 0 �1

0
B@

1
CA ð66Þ
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and hence

_x4 ¼ ð1� bÞx1 � x4 þ x2x3;
_x5 ¼ �ax1 þ ð1� bÞx2 � x5 þ x1x3;
_x6 ¼ 1þ x3 � x6 � x1x2:

8<
: ð67Þ

The systems (61) and (67) were solved for the param-
eters a ¼ 5, b ¼ 2 and the initial conditions x1ð0Þ ¼ �4,
x2ð0Þ ¼ 2:5, x3ð0Þ ¼ 1 and x4ð0Þ ¼ �2, x5ð0Þ ¼ 0, x6ð0Þ
¼ 5 for the drive and response systems respectively. In
this example, the parameters used in the MSRM iteration

α11 ¼ �b; α21 ¼ �a; α22 ¼ �b; α41 ¼ ð1� bÞ;
α44 ¼ �1; α51 ¼ �a; α52 ¼ ð1� bÞ; α55 ¼ �1;
α63 ¼ 1; α66 ¼ �1; f1 ¼ x2x3; f2 ¼ x1x3;
f3 ¼ �x1x2; f4 ¼ x2x3; f5 ¼ x1x3; f6 ¼ �x1x2;
g3 ¼ 1; g6 ¼ 1: ð68Þ

5 Results and discussion

In this section we present the numerical results of the
implementation of the multi-stage spectral relaxation
method (MSRM) to the examples mentioned above. The
results obtained were compared to those from the MAT-
LAB in-built solver, ode45. The ode45 solver integrates
a system of ordinary differential equations using explicit
4th and 5th Runge-Kutta formula.

Figure 1 illustrates a comparison of the results ob-
tained using MSRM and ode45. A good agreement of the

results is observed. From Figure 1 it can be seen that the
active controllers have synchronized the Lorenz system
since as the time progresses the response system quickly
follows the drive system. Figure 2 shows the time re-
sponses of the error vectors. It is clear that after control
functions are activated, the error vectors converge to
zero rapidly. Results of the Genesio-Tesi control system
obtained by the MSRM and ode45 are shown in Figure 3.
Again the two sets of results are in good agreement. As
time increases, the response system quickly follows the
drive system which shows that the Genesio-Tesi system

Fig. 1: Comparison between the MSRM (solid line) and ode45 (dots)
results for the Lorenz system

Fig. 2: Errors for the Lorenz system using the MSRM

Fig. 3: Comparison between the MSRM (solid line) and ode45

(dots) results for the Genesio-Tesi system
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have been synchronized. Figure 4 shows the time re-
sponses of the error vectors. It is clear that after control
functions are activated, the error vectors converge to
zero rapidly. We also observe good agreement of results
for the solution of the Rössler system obtained using the
MSRM and ode45 as shown in Figure 5. It can also be
depicted from Figure 5 that the active controllers have
synchronized the Rössler system since the response sys-
tem pursue the drive system as the time increases. This
can also be gathered from Figure 6 which shows the
state errors approaches zero quickly after the control is
effected. Figure 7 illustrates a comparison of the results

obtained using MSRM and ode45. The results obtained
are the same. From Figure 7 it can be seen that the active
controllers have synchronized the Chen system since as
the time progresses the response system quickly follows
the drive system. Figure 8 shows the time responses of
the error vectors. It is clear that after control functions
are activated, the error vectors converge to zero quickly
which confirms that the Chen system has been synchro-
nized. Again the MSRM results agree with the ode45 re-
sults for the Rikitake system. The comparison of the re-
sults is shown in Figure 9. As the time progresses the
response system quickly follows the drive system which

Fig. 4: Errors for the Genesio-Tesi system using the MSRM

Fig. 5: Comparison between the MSRM (solid line) and ode45 (dots)
results for the Rössler system

Fig. 6: Errors for the Rössler system using the MSRM

Fig. 7: Comparison between the MSRM (solid line) and ode45 (dots)
results for the Chen system
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shows that the Rikitake system has been synchronized.
Figure 10 shows the time responses of the error vectors.
It is clear that after control functions are activated, the
error vectors converge to zero quickly.

6 Conclusion

In this work we have applied a new method called the
multi-stage spectral relaxation method (MSRM) for the
solutions of control systems of the chaotic Lorenz,

Genesio-Tesi, Rössler, Chen and Rikitake systems. For
the chaos control and synchronization of these systems
we utilized the active control method. The obtained re-
sults of the MSRM are comparable to results obtained by
the Runge-Kutta (4, 5) based MATLAB built-in solver,
ode45. The advantage of the MSRM over other multi-
stage methods is that it decouples the systems based on
the Gauss-Siedel approach and, therefore is easy to im-
plement. In addition the MSRM does not require any
derivatives or linearization. It is simply based on a sys-
tematic rearrangement of the governing equations and
the subsequent solution in a sequential manner. Thus
we can safely say we have presented an accurate, easy
to implement, and reliable method for solving large sys-
tems which exhibit chaotic behavior.
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