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SUMMARY

The interaction of microbes with pattern recognition
receptors (PRRs) is essential for protective immunity.
While many PRRs that recognize mycobacteria have
been identified, none is essentially required for host
defense in vivo. Here, we have identified the C-type
lectin receptor CLECSF8 (CLEC4D, MCL) as a
key molecule in anti-mycobacterial host defense.
Clecsf8�/� mice exhibit higher bacterial burdens
and increased mortality upon M. tuberculosis infec-
tion. Additionally, Clecsf8 deficiency is associated
with exacerbated pulmonary inflammation, charac-
terized by enhanced neutrophil recruitment.
Clecsf8�/� mice show reduced mycobacterial up-
take by pulmonary leukocytes, but infection with
opsonized bacteria can restore this phagocytic
defect as well as decrease bacterial burdens.
Notably, a CLECSF8 polymorphism identified in
humans is associated with an increased susceptibil-
ity to pulmonary tuberculosis. We conclude that
CLECSF8 plays a non-redundant role in anti-myco-
bacterial immunity in mouse and in man.

INTRODUCTION

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb)

is one of the leading causes of infectious disease-related death

worldwide. Mycobacterial recognition by innate immune cells

is mediated by several pattern recognition receptors (PRRs),

including members of the Toll-like receptor (TLR), NOD-like re-

ceptor (NLR), and C-type lectin receptor (CLR) families. These

receptors activate inflammatory reactions that are essential for

controlling the infection. Indeed, these early innate responses

determine the outcome of disease and deficiencies in the major

signaling adaptors downstream of these receptors, including

MyD88 and Card9, rendering mice extremely susceptible to

mycobacterial infection (Marakalala et al., 2011). Yet, despite

convincing evidence from in vitro studies, no single PRR has

yet been found to play a non-redundant role in anti-mycobacte-

rial immunity in vivo (Marakalala et al., 2011). This has given rise

to the assumption that recognition of M. tuberculosis involves

multiple redundant interactions with numerous PRRs.

While the susceptibility of the MyD88-deficient mice to TB has

been ascribed to defects in IL-1 receptor signaling (Fremond

et al., 2007), the receptor(s) involved in the Card9-deficient

phenotype has not been fully defined. Card9 is an essential

component of the intracellular signaling pathway utilized by

CLRs, and loss of this molecule leads to neutrophil-mediated

pulmonary inflammation and rapid death in infectedmice (Dorhoi

et al., 2010). Three CLRs that utilize this pathway, Dectin-1,

Mincle, and Dectin-2, have been described to recognize Mtb

or its components. Dectin-1 was found to play a role in dendritic

cell IL-12 production in response to mycobacteria in vitro; how-

ever, loss of this receptor did not alter susceptibility to infection

in vivo (Marakalala et al., 2011). Mincle recognizes trehalose-

6,60-dimycolate (TDM or cord factor) and was found to mediate

robust responses to this mycobacterial cell wall glycolipid both

in vitro and in vivo (Ishikawa et al., 2009; Schoenen et al.,

2010). However, the role of Mincle in vivo is controversial, with

some studies describing no clear role for this receptor during

mycobacterial infection (Behler et al., 2012; Heitmann et al.,

2013). Dectin-2 induces pro- and anti-inflammatory cytokines

in response to mannose-capped lipoarabinomannan, and

knockout mice infected with M. avium presented with altered

lung pathology at early time points during infection (Yonekawa

et al., 2014). However, the importance of Dectin-2 during infec-

tion with Mtb is still unknown.

We recently identified another CLR (CLECSF8; CLEC4D) and

have shown that it also recognizes TDM (Graham et al., 2012;

Miyake et al., 2013). CLECSF8 is a member of the ‘‘Dectin-2
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cluster’’ of CLRs and consists of a single extracellular C-type

lectin-like domain, a stalk and transmembrane region, and a

short cytoplasmic tail. The receptor is expressed by peripheral

blood neutrophils, monocytes, and various subsets of dendritic

cells (Graham et al., 2012). CLECSF8 can associate with FcRg

chain to trigger intracellular signaling, inducing phagocytosis,

the respiratory burst, and the release of proinflammatory cyto-

kines (Graham et al., 2012; Miyake et al., 2013). Moreover, like

Mincle, Clecsf8 can drive both innate and adaptive immunity in

response to TDM (Miyake et al., 2013). In this study, we have

explored the role of Clecsf8 in vivo and have discovered that

this CLR plays a non-redundant role in anti-mycobacterial

immunity.

RESULTS

Clecsf8 Is Required for Resistance to Mycobacterial
Infection In Vivo
We previously characterized the effect of Clecsf8 deficiency, but

did not identify a role for this receptor in vivo, despite extensive

analysis (Graham et al., 2012). However, during these experi-

ments we noticed that subcutaneous immunization with com-

plete Freund’s adjuvant (CFA) reproducibly led to ulceration at

the injection site in more than 50% of the Clecsf8-deficient

mice, an effect which was not apparent in the wild-type mice

(Figure 1A; data not shown). Given that the major immune-stim-

ulating component of CFA isMtb, and that Clecsf8 can recognize

TDM (Miyake et al., 2013), we investigated whether this receptor

was required for anti-mycobacterial immunity in vivo.

We first determined whether the loss of Clecsf8 would influ-

ence the survival of mice during infection with live mycobacteria.

In order to explore this possibility, wild-type and Clecsf8�/�mice

were challenged intra-tracheally (i.t.) with the attenuated vaccine

strainM. bovisBacille Calmette-Guerin (BCG), and survival of the

animals was monitored over time. Notably, in contrast to the

wild-type mice, the Clecsf8�/� mice gained less weight (Fig-

ure 1B), and more than 10% of these animals succumbed to

infection between 6 and 14 weeks (Figure 1C). Importantly,

knockout mice aerosol infected with M. tuberculosis H37Rv

also gained less weight, and 20% of these animals succumbed

to the infection within 6 weeks (Figure 1D; data not shown).

Longer-term experiments did not reveal any further reduction

in survival of the Clecsf8-deficient mice compared to wild-type

animals (data not shown).

Zhu and colleagues have recently suggested that Clecsf8 is

also required for control of systemic infection with Candida albi-

cans (Zhu et al., 2013), but only after low-dose infection. These

results are in contrast to previous observations from several lab-

oratories including our own (Graham et al., 2012), and repeated

experiments using high and low doses of C. albicans failed to

demonstrate any role for Clecsf8 in controlling this fungal path-

ogen (Figure S1A). Clecsf8 has also been implicated in immunity

to Klebsiella pneumoniae (Steichen et al., 2013), but as with

Candida, we observed no differences in mortality or weight

loss in the knockout mice following i.t. infection with this organ-

ism (Figure S1B; data not shown). Importantly, K. pneumoniae

and C. albicans both failed to stimulate GFP expression in

Clecsf8-expressing reporter cells (Miyake et al., 2013), whereas

these cells robustly inducedGFP in response to BCG (Figure 1E).

Thus, these data identify Clecsf8 as a PRR with a non-redun-

dant role in anti-mycobacterial immunity in vivo.

Clecsf8 Is Not Required for Adaptive Responses to
Mycobacteria
Purified ligands of many CLRs, including Clecsf8 (Miyake et al.,

2013), can act as adjuvants and direct the development of adap-

tive immunity, but the role of these receptors in driving responses

to intact microorganisms is less clear. Notably, acquired immu-

nity to mycobacteria was unaffected by the loss of the major

CLR intracellular signaling adaptor Card9 (Dorhoi et al., 2010).

Nevertheless, we investigated the possibility that this receptor

may be capable of modulating adaptive immunity using CFA

as an adjuvant. However, no differences were observed in the

Clecsf8�/� mice in terms of the number, division, or activation

of antigen-specific CD4+ T cells in the draining lymph nodes at

the two time points that were examined post immunization (Fig-

ures S1C–S1F; data not shown). The knockout mice also devel-

oped normal antigen-specific immunoglobulin responses

(Figure S1G). There were no defects in CD4/CD8 T cell ratios

in the lungs during mycobacterial infection (Figure S1H).

Figure 1. Clecsf8 Is Required for Resistance

to Mycobacterial Infection In Vivo

(A) Ulceration in Clecsf8�/�, but not wild-type (WT),

mice at the site of injection with CFA. Change in

weight (B; mean ± SEM) and survival curve (C) of

Clecsf8�/� andWTmice following i.t. infectionwith

5 3 105 M. bovis BCG.

(D) Survival of WT and Clecsf8�/� mice following

aerosol infection with 100 CFU M. tuberculosis

H37Rv.

(E; mean ± SD) Analysis of GFP expression in

Clecsf8-expressing reporter cells following stim-

ulation with BCG (MOI: 1, 5, 15), C. albicans yeast

(CaY; MOI: 5, 50), or hyphae (CaH; MOI: 5, 50), and

K. pneumoniae (KPn; MOI: 5, 50), as indicated.

Values in (B)–(D) are pooled data from at least two

experiments, while the data in (E) are from one

representative experiment. *p < 0.05. See also

Figure S1.
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Clecsf8�/� mice also displayed normal delayed-type hypersen-

sitivity (Figure S1I) and mycobacterial-specific T cell recall

responses (Figure S1J) following BCG vaccination. Thus, defi-

ciency of Clecsf8 does not influence the development of

acquired immunity to mycobacteria.

Clecsf8 Is Involved in Controlling Bacterial Burdens,
Cytokine Production, and Granuloma Formation In Vivo
To examine how deficiency of Clecsf8 was affecting anti-myco-

bacterial immunity, we characterized the lungs of wild-type and

Clecsf8�/� mice following aerosol infection with M. tuberculosis

H37Rv. At early time points after infection, we did not detect any

difference in bacterial burdens, but by 4 months we observed

moderately increased burdens in the infected knockout mice

Figure 2. Clecsf8 Deficiency Results in

Exacerbated Pulmonary Inflammation with

Increased Accumulation of Neutrophils

and Higher Bacterial Burdens

(A) Pulmonary bacterial burdens in wild-type (WT)

or Clecsf8�/� mice following aerosol infection with

100 CFU M. tuberculosis H37Rv.

(B) Pulmonary inflammatory lesion size over time.

Pulmonary bacterial burdens (C) and leukocyte

composition (D) in WT or Clecsf8�/� mice

3 months following i.t. infection with 5 3 105

M. bovis BCG.

(E) Neutrophil levels in WT (n = 3) and Clecsf8�/�

(n = 8) animals that show the greatest change in

body weight (< 10%).

(F) Pulmonary cytokine levels in 3-month M. bovis

BCG-infected animals.

(G) Pulmonary leukocyte composition in WT or

Clecsf8�/� mice 48 hr after i.t. infection with

M. bovis BCG, M. tuberculosis H37Rv, or Beijing,

as indicated.

(H) BAL cytokine levels in mice at 48 hr after

infection with M. tuberculosis H37Rv. Shown are

pooled data (mean ± SEM). *p < 0.05. ns, not

significant. See also Figure S2.

(�0.50 log; Figure 2A). These increased

bacterial burdens could be observed

directly in Ziehl-Neelsen-stained tissue

sections (Figure S2A), and analysis of

the lungs of mice infected with Mtb re-

vealed larger inflammatory lesions in the

Clecsf8�/� mice at later time points (Fig-

ures 2B and S2B). Similarly, increased

bacterial burdens were also observed in

BCG-infected knockout mice at later

time points (Figure 2C), and cellular anal-

ysis of digested lung tissue at 3 months

post infection revealed significantly

more CD11b+Ly6Ghigh neutrophils and

CD11b+F4/80+ macrophages in the

Clecsf8�/� mice (Figure 2D). Strikingly,

Clecsf8�/� mice most affected by infec-

tion, as determined by less than 10%

weight gain, had the highest numbers of

neutrophils in their lung, even when

compared to wild-typemicewith a similar phenotype (Figure 2E).

Consistent with the increased cellular infiltrates, there were

significantly higher levels of inflammatory cytokines, including

TNF-a, IFN-g, andG-CSF, in the lungs of the knockout mice (Fig-

ure 2F). There were no differences in IL-10 levels in the

Clecsf8�/� mice.

To gain further insights, we next characterized pulmonary

inflammation 48 hr following the administration of a high dose

of mycobacteria. Similar to the later time points, flow cytometry

analysis and histology revealed a significant increase in

neutrophils in the lungs of Clecsf8�/� mice infected with either

BCG, M. tuberculosis H37Rv, or the more pathogenic

M. tuberculosis strain Beijing (Figures 2G and S2C). The

cellular inflammatory response to M. tuberculosis H37Rv was
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accompanied by increased levels of many proinflammatory

cytokines and chemokines, but also increased levels of IL-10

(Figure 2H). There were no differences in CFU recovered from

wild-type and knockoutmice at this early time point (Figure S2D).

Therefore we conclude that deficiency of Clecsf8 results in

higher mycobacterial burdens and increased pulmonary inflam-

mation, which is predominantly neutrophilic.

Clecsf8 Is Required for Mycobacterial Uptake
We have previously shown that intracellular signaling from

Clecsf8 can trigger particle phagocytosis (Graham et al., 2012;

Miyake et al., 2013), and therefore examined the possibility

that the phenotype of the Clecsf8�/� mice was stemming from

a defect in mycobacterial uptake and clearance by leukocytes.

For these experiments, we infected mice with a GFP-expressing

strain of M. bovis BCG and then characterized bacterial associ-

ation with pulmonary CD45+ myeloid cells 4 hr after challenge.

Notably, while the total number of pulmonary leukocytes was

similar in both groups ofmice at this early time point (Figure S2E),

we observed significantly less mycobacterial association with

leukocytes isolated from the Clecsf8�/� mice, as determined

by GFP positivity (Figure 3A). Characterization of these cells

demonstrated defective mycobacterial association with all

major pulmonary leukocyte subsets, including CD11c+SiglecF+

alveolar macrophages, CD11b+Ly6Ghigh neutrophils, and

CD11b+F4/80+ macrophages (Figure 3B). Consistent with this

observation, there were increased levels of non-cell-associated

mycobacteria in the lungs of the Clecsf8�/� mice (Figure S2F).

To demonstrate that the defect was solely due to loss of

recognition by Clecsf8, we opsonized the bacteria with anti-

BCG antibodies, prior to infection, and observed that association

of the bacteria with leukocytes was fully restored in Clecsf8�/�

mice in vivo (Figure 3C). Unlike with unopsonized bacteria (Fig-

ure 2G), there was no difference in cellular inflammation at

48 hr in the knockout mice when challenged with opsonized bac-

teria (Figure 3D). Importantly, opsonization rescued the pheno-

type of the knockout mice even out to 3 months in terms of

weight gain (Figure S2G), survival (Figure S2H), pulmonary

neutrophil influx (Figure 3E), and bacterial burdens (Figure 3F).

We could also demonstrate defective mycobacterial associa-

tion with Clecsf8�/� thioglycollate-elicited macrophages (Fig-

ure 3G) and neutrophils (Figure 3H) in vitro. Clecsf8 deficiency

specifically affected mycobacterial binding to leukocytes, but

not phagocytosis, as the levels of ingestion of bacteria that

were cell-bound was equivalent to wild-type cells (Figure S2I).

Importantly, bacterial binding to knockout macrophages could

be restored following opsonization, and was specific for myco-

bacteria as loss of Clecsf8 had no effect on association of the un-

related particle zymosan (Figure 3G). Moreover, we could show

that TDM inhibited the binding of unopsonized mycobacteria

with wild-type thioglycollate-elicited macrophages in vitro, but

had no effect on bacterial binding to cells isolated from the

knockout mice (Figure 3I). TDM had no effect on the association

of zymosan with macrophages isolated from either strain of mice

(Figure S2J). Thus, we conclude that the phenotype of the

Clecsf8�/�mice stems from defective mycobacterial recognition

by leukocytes.

Polymorphisms of Human CLECSF8 Cause
Susceptibility to TB
To determine whether CLECSF8 may also be important for hu-

man anti-mycobacterial immunity, we examined publicly avail-

able micro-array data sets for effects of TB on the expression

of this CLR. Expression ofCLECSF8 in whole blood was strongly

upregulated in HIV-negative patients with pulmonary TB (PTB)

compared to controls in five out of six cohorts from various

geographic areas (Figure S3A). In mice, we observed similar in-

creases in Clecsf8 expression on leukocytes during pulmonary

infection (Figure S3B). In the UK TB cohort, expression data

were also available for uninfected (tuberculin skin test-negative)

and latently infected (tuberculin skin test-positive) controls; there

was no difference in CLECSF8 expression between these two

Figure 3. Clecsf8 Is Required for Mycobac-

terial Binding

(A and B) Total GFP+ CD45+ cells (A) or particular

cell types (B), as indicated, in the lungs of wild-type

(WT) or Clecsf8�/� mice 4 hr after infection with

GFP-expressing M. bovis BCG (n > 14).

(C and D) Total GFP+ CD45+ cells (C) and numbers

of neutrophils (D) in BAL isolated from WT or

Clecsf8�/� mice after infection with opsonized

M. bovis BCG at 4 and 48 hr, respectively (n > 10).

(E and F) Numbers of neutrophils (E) and bacterial

burdens (F) in the lungs of WT or Clecsf8�/� mice

3 months after infection with opsonized M. bovis

BCG (n = 12).

(G and H) In vitro binding of unopsonized (unops)

and opsonized (ops) GFP-expressing M. bovis

BCG, or zymosan, to (G) thioglycollate-elicited

macrophages or (H) neutrophils.

(I) Effect of TDM on in vitro binding of GFP+BCG to

thioglycollate-elicited macrophages isolated from

WT or Clecsf8�/� mice. Shown are pooled data

(mean ± SEM) from at least two independent ex-

periments. *p < 0.05. See also Figure S2.
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groups (Figure S3C). Initiation of treatment in PTB patients led to

normalization of CLECSF8 expression over time (Figure S3D).

The highest levels of expression of the receptor were observed

in monocytes and neutrophils in peripheral blood, consistent

with our earlier observations (Graham et al., 2012), and PTB

was associated with significantly increased levels of expression

on circulating neutrophils compared to healthy controls (Fig-

ure S3E). These differences cannot be explained by differences

in leukocyte numbers, as absolute and relative neutrophil counts

did not differ between active TB patients and controls (Berry

et al., 2010).

As the expression ofCLECSF8 correlated with PTB, and as we

had identified a role for this receptor in anti-mycobacterial immu-

nity in mice, we then determined whether polymorphisms of this

CLR had an influence on susceptibility to TB in humans. We gen-

otyped three CLECSF8 SNPs in a total of 1,000 confirmed PTB

patients and 955 age- and gender-matched community controls

from an Indonesian cohort collected in Jakarta and Bandung,

West Java (Table S1). These SNPs were chosen as together

they covered all haplotypes with a frequency of > 5%, as

described in the HapMap database for Japanese and Han-

Chinese populations (Table S1; Figure S3F). However, we found

that the minor allele frequencies of the three CLECSF8 SNPs

were lower in the control Indonesian subjects than those

described in the HapMap database (Tables 1 and S1).

Of the three polymorphisms, the combined GA and GG geno-

types of the non-synonymous SNP rs4304840 were significantly

associated with disease with an odds ratio (OR) of 1.33 with a

95% confidence interval of 1.02–1.73 (Figure S3F; Table 1). As

the number of patients with theGG genotype was small, it seems

likely that the G allele confers susceptibility in a dominant

fashion. The functional relevance of the rs4304840 polymor-

phism is further demonstrated in available expression quantita-

tive trait locus (eQTL) data, where we found the G allele to be

significantly associated (p < 10�4) with alteredCLECSF8 expres-

sion (data not shown). The intronic SNP rs4486677, which

showed a high degree of linkage disequilibrium with rs4304840

in HapMap, had a similar OR, which bordered significance (Fig-

ure S3F; Table 1). Haplotype analyses showed that the haplo-

types with GG/GA alleles for rs4304840 had similar ORs,

irrespective of the rs4486677 allele (data not shown). The SNP

rs4883165, which is located 12 kb upstream of the CLECSF8

gene, was not associated with disease (Figure S3F; Table 1).

In conclusion, the GG and GA genotypes for CLECSF8

rs4304840 are associated with susceptibility to PTB, irrespective

of the genotype for the SNP rs4486677.

The rs4304840 polymorphism causes a non-synonymous

change (Ser32Gly) in the transmembrane region of the protein

(Graham et al., 2012). This change could influence the associa-

tion of this CLR with the Fcg adaptor and affect the ability of

this receptor to be transported to the cell surface (Marakalala

et al., 2011). To explore this, we generated constructs for both

wild-type and mutated CLECSF8 and transfected them into fi-

broblasts. These experiments revealed that while both wild-

type and mutated proteins were expressed at equivalent levels

in transfected cells, there was a significant reduction in the

surface expression of the mutated protein (Figure S3G). Thus

the rs4304840 polymorphism reduces surface expression of

CLECSF8.

DISCUSSION

CLRs have key functions in host defense, and although they are

best known as PRRs for fungi, there is growing evidence that

CLRs are also involved in host responses to mycobacteria (Mar-

akalala et al., 2011). The most compelling data come from anal-

ysis of mice deficient in a central CLR-signaling adaptor, Card9,

which were extremely susceptible to mycobacterial infection

Table 1. Distribution of Polymorphism Allele and Genotype Frequencies in Cases and Controls

SNP

Allele or

Genotype

Frequency in

Cases (%)

Frequency in

Controls (%) p Value OR (95% CI) OR (95% CI)

rs4883165 T 1,896 (94.8%) 1,814 (95.0%)

G 104 (5.2%) 96 (5.0%)

TT 898 (89.8%) 861 (90.2%) 0.805 TT vs. TG & GG: 0.96

(0.72–1.29)

TT & TG vs. GG: 1.05

(0.15–7.45)

TG 100 (10.0%) 92 (9.6%)

GG 2 (0.2%) 2 (0.2%)

rs4304840 A 1,844 (92.3%) 1,795 (94.0%)

G 154 (7.7%) 115 (6.0%)

AA 849 (84.9%) 843 (88.3%) 0.037 AA vs. GA & GG: 1.33

(1.02–1.73)

AA & GA vs. GG: 1.28

(0.28–5.72)

GA 146 (14.6%) 109 (11.4%)

GG 4 (0.4%) 3 (0.3%)

rs4486677 T 1,927 (96.7%) 1,859 (97.5%)

G 65 (3.3%) 47 (2.5%)

TT 931 (93.5%) 906 (95.1%) 0.136 TT vs. TG: 1.35 (0.92–1.99) TT & TG vs. GG: n/a

TG 65 (6.5%) 47 (4.9%)

GG 0 0
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(Dorhoi et al., 2010). Yet despite the identification of several

CLRs capable of mycobacterial recognition, all have been found

to be dispensable during infection with Mtb in vivo (Marakalala

et al., 2011). In this report, we identify the CLR Clecsf8 as a

PRR with a non-redundant role in anti-mycobacterial immunity.

Loss of Clecsf8 led to exacerbated pulmonary inflammation,

characterized by enhanced neutrophil recruitment and

increased mycobacterial burdens, but had no effect on the

development of adaptive immunity. This phenotype resembles

that of the Card9�/� mice; however, these animals presented

with greater pathology, and all of the animals died shortly after

infection, a severity that was linked to defects in IL-10 production

(Dorhoi et al., 2010). Similar profound phenotypes have also

been observed in mice lacking other essential immune compo-

nents, such as IFNg. In contrast, fewer Clecsf8�/� mice suc-

cumbed to mycobacterial infection, and there was no loss of

IL-10. This suggests that the levels of IL-10 were protecting the

majority of the infected Clecsf8�/� mice from lethal pathology,

despite the enhanced inflammation and bacterial burdens that

were present in their lungs.

This difference in phenotype raises the question about the

relationship between Clecsf8 and Card9. Card9 is downstream

of several PRRs implicated in mycobacterial recognition,

including CLRs, NLRs, and TLRs, and deficiency of this adaptor

is likely to affect all of these pathways. Yet mouse models have

not revealed a clear role for any of the PRRs so far identified (Phi-

lips and Ernst, 2012). Although Clecsf8 has not formally been

shown to require Card9, it triggers intracellular signaling via the

Fcg chain and Syk kinase, and therefore must utilize this

pathway (Graham et al., 2012; Miyake et al., 2013). Clecsf8

also associates and functionally interacts with Dectin-2 (Zhu

et al., 2013) and Mincle (Lobato-Pascual et al., 2013), both of

which have also been implicated in anti-mycobacterial immunity

(Ishikawa et al., 2009; Yonekawa et al., 2014). In fact, Clecsf8

stimulation is required for Mincle expression, at least in response

to TDM (Miyake et al., 2013). However, we detected expression

of both Dectin-2 andMincle during mycobacterial infection in the

Clecsf8�/� mice (data not shown). Interestingly, expression of

Clecsf8 with Fcg alonewas insufficient tomediatemycobacterial

binding in transfected fibroblasts, suggesting that its ability to

associate with these other receptors is an important component

of its function (data not shown). Thus, despite the fact that these

and other receptors are involved in mycobacterial recognition

(mediating the IL-10 response discussed above, for example),

Clecsf8 deficiency recapitulates the major components of the

Card9�/� phenotype.

In both the Card9�/� (Dorhoi et al., 2010) and Clecsf8�/�mice,

pulmonary pathology was associated with an accumulation of

neutrophils and higher levels of neutrophil-associated cytokines,

such as G-CSF. Indeed, depletion of either neutrophils or G-CSF

reduced inflammation and prolonged survival of the Card9�/�

mice (Dorhoi et al., 2010). However, the involvement of neutro-

phils during TB is still controversial, with evidence for both

protective and non-protective roles during infection. In humans,

infected neutrophils were found to predominate in the lungs of

patients with active PTB, and a neutrophil-driven transcriptional

signature in blood was shown to correlate with disease severity

(Berry et al., 2010). Interestingly, even though lessening the clin-

ical disease, depletion of neutrophils in the Card9�/� mice did

not affect bacterial burdens in the lung, demonstrating that these

granulocytes were the major drivers of pathology and were not

directly contributing to protective host responses (Dorhoi et al.,

2010). Indeed, the ability of neutrophils to actually kill mycobac-

teria is also controversial (Lowe et al., 2012).

In humans, we show that neutrophils have the highest levels of

CLECSF8 expression (Graham et al., 2012). Importantly, we

have identified the association of a polymorphism (rs4304840)

in this receptor with increased susceptibility to PTB in an Indone-

sian cohort. This polymorphism causes a non-synonymous

change (Ser32Gly) in the transmembrane region of the protein,

which substantially reduces its expression at the cell surface.

Genetic variations in several PRRs have been shown to influence

mycobacterial disease susceptibility, severity, and/or outcome,

butmany of these observations have not been confirmed in other

cohorts. Moreover, the effects of these PRR polymorphisms are

also dependent on bacterial genotype (Caws et al., 2008). How-

ever, the involvement of Clecsf8 does not appear to be strain-

specific, at least in our animal models (Figure 2G). Moreover,

based on M. tuberculosis spoligotyping, we did not find any dif-

ference in allele frequency for rs4304840 (the non-synonymous

SNP that showed an association with disease) between the

cases infected by a Beijing strain (n = 182) versus those infected

by other strains (n = 379) (p = 0.371; data not shown). It will be

nevertheless important to validate our observations in additional

patient cohorts and determine the effect, if any, of CLECSF8

polymorphisms in other disease phenotypes, such as meningeal

and pediatric TB.

Interestingly, the few families with mutations in Card9 have not

been associated with an increased susceptibility to TB (Maraka-

lala et al., 2011).While the underlying reasons for this are unclear,

the intact adaptive responses (Dorhoi et al., 2010) may mediate

protection due to successful vaccination of these patients in

endemic areas. Another possible mitigating factor is the inability

of human neutrophils to express IL-10 (Tamassia et al., 2013),

one of the major defects causing the pathology in the Card9�/�

mice (Dorhoi et al., 2010). This suggests that the cellular

functions of Card9 may differ in humans and mice during myco-

bacterial infection.

Neutrophils can internalize mycobacteria (Lowe et al., 2012),

andwe found that Clecsf8 deficiency resulted in defective myco-

bacterial association with these and several other leukocyte

populations in the lung. Defective mycobacterial clearance in

the Clecsf8-deficient mice led to increased levels of extracellular

bacteria, exacerbating neutrophilic pulmonary inflammatory

responses. In a small subset of infected knockout mice, these

deregulated responses ultimately led to death. Restoring myco-

bacterial leukocyte association through antibody opsonization

completely rescued the Clecsf8-deficient phenotype both

in vitro and in vivo.

In addition tomycobacteria, Clecsf8 has been implicated in im-

munity toCandida albicans (Zhu et al., 2013) andKlebsiella pneu-

moniae (Steichen et al., 2013). Yet we found no defect in resis-

tance to infection with either of these pathogens. The role of

Clecsf8 in immunity toC. albicans is arguably themost controver-

sial, as previous experiments (Grahamet al., 2012; Lobato-Pasc-

ual et al., 2013) and the data shown here failed to show any role

for this CLR in the control of this fungal pathogen. The underlying

reasons for these disparate results remain to be determined.
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Overall, our data show that mycobacterial recognition is the

primary function of CLECSF8. Importantly, a polymorphism of

CLECSF8 causing reduced surface expression associates with

increased susceptibility to PTB in humans. In conclusion,

CLECSF8 is a non-redundant component of anti-mycobacterial

immunity.

EXPERIMENTAL PROCEDURES

Animals

C57BL/6, Clecsf8�/� (Graham et al., 2012), and OT.II mice (10–12 weeks old)

were obtained from specific pathogen-free facilities at the University of

Aberdeen (UoA) and University of Cape Town (UCT). Animal experiments

were performed using age- and sex-matched mice and conformed to the

animal care and welfare protocols approved by the UoA (project license 60/

4007) and UCT (011/027 and 012/031).

Strains, Growth Conditions, and Infections

M. tuberculosis strain H37Rv or Beijing andM. bovis BCG strain Pasteur were

grown on Middlebrook 7H10 agar plates containing 10% ADC (BD Biosci-

ences) or Middlebrook 7H9 broth containing 10% ADC and 0.05% Tween 80

(Sigma). GFP-expressing M. bovis BCG was cultured in the presence of

10 mg/ml kanamycin (Sigma). A total of 100 colony-forming units (CFU) of

M. tuberculosisH37Rv was administered using an inhalation exposure system

(TerreHaute). For i.t. inoculations, 53105CFUM. tuberculosisorM.bovisBCG

were administered to the caudal oropharynx of anesthetized mice. In some ex-

periments,M. bovisBCGwas opsonizedwith anti-BCGantiserum (AlphaDiag-

nostics) before i.t. challenge. Organs were homogenized in PBS containing

0.05% Triton X-100 and complete mini-EDTA-free protease inhibitors (Roche).

Bacterial burdens were determined by plating onto Middlebrook 7H10 agar.

Flow Cytometric Analysis of Lung Cells

Cells were obtained from the lung by bronchio-alveolar lavage (BAL) with PBS

containing 5 mM EDTA (Gibco) or by enzymatic digest with DNase (Sigma-

Aldrich) and liberase (Roche). Digested tissue was passed through 70-mm

and 40-mm nylon filters, and erythrocytes were lysed in Pharm Lyse solution

(BD Biosciences). The following antibodies were used: CD45.2, Ly6G,

CD11c, CD11b, Siglec F, CD3, CD4, CD8, CD19, Va2, CD45.1, CD62L,

CD44, CD69, CD25, IFNg, and F4/80 (BD Biosciences or AbD Serotec).

FACS was performed using an LSRII, Fortessa, or FACSAria (BD Biosciences)

and analyzed using FlowJo 7.6.4. Alveolar macrophages were defined as

CD11c+ SiglecF+, neutrophils as CD11b+ Ly6Ghigh, and macrophages as

CD11bhigh F4/80+.

Cytokine Assays

Tissue homogenates (above) were centrifuged to remove debris and superna-

tant stored at �80�C. Cytokine levels were measured using the Bio-Plex Pro

Mouse 23-Plex kit (Bio-Rad) or by ELISA (BD Biosciences OptEIA and R&D

Systems). Cytokine levels of tissue homogenates were normalized to sample

protein concentrations.

Reporter Cell Analysis

Reporter cell analysis with NFAT-GFP expressing T hybridoma cells, co-trans-

fected with mCLECSF8 and Fcg, was performed as described previously

(Miyake et al., 2013).

BCG Binding Experiments

For in vivo binding experiments, 1.53 106 CFUGFP-expressingM. bovis BCG

was administered i.t., and BAL cells were isolated after 4 hr and analyzed by

FACS. For in vitro binding experiments, BCG-GFP was added to thioglycol-

late-elicited macrophages (10:1) or neutrophils (1:1). In some experiments,

TDM was added at 1 mg/ml. Cells were harvested and stained for CD45 and

GFP positivity (indicating bacterial association) ascertained by FACS.

Genotype Analysis and Ethics Statement

We made use of a cohort of PTB patients in Indonesia (see Supplemental

Experimental Procedures). Peripheral blood samples and genotyping was per-

formed as described previously (Songane et al., 2012). All individuals recruited

had signed a written informed consent. The study protocol was approved by

the review boards of the University of Indonesia, the Eijkman Institute for

Molecular Biology, and the Medical Ethical Committee Arnhem-Nijmegen.

Statistical Analysis

Data were analyzed using GraphPad Prism 5.04. Unpaired t test or non-para-

metric Mann-Whitney was applied for comparison of groups, as appropriate,

and theWilcoxon sign rank test for paired follow-up data. For genotyping anal-

ysis the Hardy-Weinberg equilibriumwas checked for each SNP using the pro-

gramHWEVersion 1.10 (Rockefeller University). Significance was indicated by

p < 0.05.
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