CORE

Structure Reports

Online
ISSN 1600-5368

Reinout Meijboom, Alfred Muller and Andreas Roodt*

Department of Chemistry and Biochemistry, Rands Afrikaans University, Auckland Park, Johannesburg, South Africa 2006

Correspondence e-mail: aroo@rau.ac.za

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.044$
$w R$ factor $=0.093$
Data-to-parameter ratio $=19.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Carbonylchlorobis[tris(2,6-dimethylphenyl)phosphito]rhodium(I)

The title compound, $\quad\left[\mathrm{RhCl}\left\{\mathrm{P}\left(\mathrm{OC}_{8} \mathrm{H}_{9}\right)_{3}\right\}_{2}(\mathrm{CO})\right]$, where $\mathrm{P}\left(\mathrm{OC}_{8} \mathrm{H}_{9}\right)_{3}$ is tris(2,6-dimethylphenyl)phosphite, crystallizes with two independent molecules, both disordered over inversion centres. The Rh1-P1 and Rh2-P2 bond distances are 2.3097 (7) and 2.2995 (7) \AA, respectively. The effective cone angle for the phosphite ligands was calculated as 182°.

Comment

Symmetrical square-planar complexes of $\mathrm{Rh}, \mathrm{Ir}, \mathrm{Pd}$ and Pt often crystallize with the metal atom on a crystallographic centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001; Otto et al., 2000; Chen et al., 1991; Kuwabara \& Bau, 1994). The present study is part of an ongoing investigation into determining which factors govern a disordered packing mode and reports the structure of trans-chlorocarbonylbis[tri(2,6-dimethylphenyl)phosphite]rhodium(I), (I), one of the few phosphite-containing Vaskatype structures known to date [Cambridge Structural Database (CSD) Version 5.25 (January 2004 update); Allen, 2002].

(I)

The title compound crystallizes with two independent molecules lying on inversion centres, resulting in a statistical disorder in both of the $\mathrm{Cl}-\mathrm{Rh}-\mathrm{CO}$ moieties. The coordination around the Rh atom shows a slightly distorted squareplanar arrangement (Fig. 1 and Table 1).

The most widely used method for determining ligand steric behaviour at a metal centre is by calculating the cone angle, as described previously (Tolman, 1977; Otto et al., 2000). For this study, actual $M-\mathrm{P}$ bond distances were used, yielding effective cone angles $\left(\Theta_{\mathrm{E}}\right)$. The substituents of the phosphite may have different orientations, resulting in variations in cone angle sizes, as observed by Ferguson et al. (1978), and may not necessarily be a true indication of the steric properties of the phosphite in solution compared with the solid state. The value of 182° obtained for tri(2,6-dimethylphenyl)phosphite is compared with other similar structures in Table 2 and is

Received 11 March 2004 Accepted 18 March 2004 Online 27 March 2004
virtually the same as the 181° cone angle for tri(2-tert-butylphenyl)phosphite (data extracted and calculated from CSD) in trans-carbonylchlorobis[tri(2-tert-butylphenyl)phosphite]rhodium(I) (Fernández et al., 1998), the only other nonbridged phosphite structure reported to date.

Table 2 also compares bond distances of the other similar complexes, and shorter $\mathrm{M}-\mathrm{P}$ bond distances are observed for the phosphites than, for example, for the benzylphosphine analogue, also manifested in the ${ }^{1} J_{(\mathrm{Rh}-\mathrm{P})}$ coupling of 214 Hz for (I) compared with 124 Hz for the phosphine complex. This difference is probably due to the electron-withdrawing nature of phosphites, which enhances π back-bonding between the metal and the P atom and, as a result, weakens the $M-\mathrm{Cl}$ bond.

Interesting to note is the difference in values of $v(\mathrm{CO})$ for the solid and solution states of the title compound. This difference may be the result of packing in the unit cell, which slightly distorts the $\mathrm{Rh}-\mathrm{C} \equiv \mathrm{O}$ angle (Table 1).

Experimental

$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$ was prepared according to the method described by McCleverty \& Wilkinson (1990). $\mathrm{P}\left(\mathrm{OC}_{8} \mathrm{H}_{9}\right)_{3}$ was prepared by reaction of the 2,6-dimethylphenol with PCl_{3} in the presence of NEt_{3}. All chemicals and solvents were obtained from Sigma-Aldrich and used as received. A solution of $\mathrm{P}\left(\mathrm{OC}_{8} \mathrm{H}_{9}\right)_{3}(90.7 \mathrm{mg}, 0.230 \mathrm{mmol})$ in acetone (1.5 ml) was added slowly to a yellow solution of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(21.4 \mathrm{mg}, 0.055 \mathrm{mmol})$ in acetone $(3.0 \mathrm{ml})$. Gas evolution was immediately observed and crystals formed while the solution turned colourless. The supernatant liquor was decanted and the solids were washed with pentane ($3 \times 2 \mathrm{ml}$), leaving crystals of the pure title compound, suitable for X-ray analysis. Yield: 94.3 mg ; 86.9%. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, p.p.m.): $6.97(s, 18 \mathrm{H}), 2.29(s$, $36 \mathrm{H}) ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}, 75.45 \mathrm{MHz}\right.$, p.p.m.): 149.72, 130.55, 129.05, 124.85, 18.91; ${ }^{31} \mathrm{P} \operatorname{NMR}\{\mathrm{H}\}\left(\mathrm{CDCl}_{3}, 121.46 \mathrm{MHz}\right.$, p.p.m.): 111.12 [$d,{ }^{1} J_{\mathrm{Rh}-\mathrm{P}}=214 \mathrm{~Hz}$]; IR (DCM) $\nu(\mathrm{CO}): 2004 \mathrm{~cm}^{-1}$; (KBr) $\nu(\mathrm{CO}): 1991 \mathrm{~cm}^{-1}$.

Crystal data

$\left[\mathrm{RhCl}\left(\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{P}_{2}\right)(\mathrm{CO})\right]$
$M_{r}=955.22$
Triclinic, $P \overline{1}$
$a=12.3892$ (5) \AA
$b=13.1262(5) \AA$
$c=14.6675$ (6) \AA
$\alpha=83.685(2)^{\circ}$
$\beta=89.773(2)^{\circ}$
$\gamma=75.016(2)^{\circ}$
$V=2289.45(16) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.386 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 997 \\
& \quad \text { reflections } \\
& \theta=2.3-19.9^{\circ} \\
& \mu=0.55 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.26 \times 0.12 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1K CCD
\quad diffractometer
ω scans
27501 measured reflections
11343 independent reflections
6184 reflections with $I>2 \sigma(I)$

Figure 1
The two independent molecules of (I), with 30% probability displacement ellipsoids; H atoms have been omitted for clarity. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Both disordered components are shown for each molecule.

Refinement

Refinement on F^{2}	H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0332 P)^{2}\right]$
$w R\left(F^{2}\right)=0.093$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=0.91$	$(\Delta / \sigma)_{\max }<0.001$
11343 reflections	$\Delta \rho_{\max }=0.35 \mathrm{e}^{-3}$
583 parameters	$\Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}$

Table 1

Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Rh1-C1	1.771 (9)	P1-O12	1.597 (2)
Rh1-P1	2.3097 (7)	P1-O11	1.6056 (19)
Rh1-Cl1	2.380 (3)	O23-P2	1.5943 (19)
Rh2-C2	1.773 (8)	$\mathrm{O} 22-\mathrm{P} 2$	1.596 (2)
Rh2-P2	2.2995 (7)	O21-P2	1.607 (2)
Rh2-Cl2	2.379 (3)	C1-O1	1.128 (12)
P1-O13	1.5923 (19)	C2-O2	1.139 (11)
$\mathrm{P}{ }^{1}{ }^{\text {i }}$-Rh1-P1	180	$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Rh} 2-\mathrm{Cl} 2$	178.3 (5)
C1 ${ }^{\text {i }}$-Rh1- ${ }^{\text {cl }} 1$	179.2 (6)	O1-C1-Rh1	174.2 (19)
$\mathrm{P} 2-\mathrm{Rh} 2-\mathrm{P} 2^{\text {ii }}$	180	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Rh} 2$	176.1 (19)
Cl1-Rh1-P1-O11	-114.49 (15)	$\mathrm{Cl} 2-\mathrm{Rh} 2-\mathrm{P} 2-\mathrm{O} 21$	66.04 (13)
$\mathrm{Cl} 1-\mathrm{Rh} 1-\mathrm{P} 1-\mathrm{O} 12$	120.93 (15)	$\mathrm{Cl} 2-\mathrm{Rh} 2-\mathrm{P} 2-\mathrm{O} 22$	-59.21 (14)
Cl1-Rh1-P1-O13	5.00 (15)	$\mathrm{Cl} 2-\mathrm{Rh} 2-\mathrm{P} 2-\mathrm{O} 23$	-175.41 (13)

Table 2
Comparison of geometry for trans- $\left[M \mathrm{Cl}(\mathrm{CO})\left(\mathrm{P} X_{3}\right)_{2}\right]$ complexes..
$2,6 \mathrm{DMP}=2,6$-dimethylphenyl, $2 \mathrm{tBP}=2$-tert-butylphenyl and $\mathrm{Bz}=$ benzyl.

X	$M-\mathrm{P}(\AA)$	$M-\mathrm{Cl}(\AA)$	$\mathrm{P}-M-\mathrm{P}\left({ }^{\circ}\right)$	$\mathrm{Cl}-M-\mathrm{C}\left({ }^{\circ}\right)$	$\Theta_{\mathrm{E}}\left({ }^{\circ}\right)$
$\mathrm{O}(2,6 \mathrm{DMP}) \dagger$	$2.3097(7)$	$2.380(3)$	180	$179.2(6)$	182
$\mathrm{O}(2 \mathrm{tBP}) \ddagger$	$2.2995(7)$	$2.379(3)$	180	$178.3(5)$	182
$\mathrm{Bz} \S$	2.286	2.370	180	175.85	181
	$2.3164(15)$	$2.3654(15)$	$177.67(6)$	$178.55(17)$	170
	$2.3156(16)$				172
\dagger This work. \ddagger Fernández et al. (1998). § Muller et al. (2002).					

The aromatic and methyl H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.97-0.98 \AA)$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{C})$, respectively.
Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and

XPREP (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Brendt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the Research Funds of RAU, Sasol and THRIP are gratefully acknowledged. The University of the Witwatersrand (Professor D. Levendis and Dr D. Billing) is thanked for the use of its diffractometer. Part of this material is based on work supported by the South African National Research Foundation under grant No. GUN 2053664. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brandenburg, K. \& Brendt, M. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.
Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisonsin, USA.
Bruker (1999). SAINT-Plus. Version 6.02 (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Y., Wang, J. \& Wang, Y. (1991). Acta Cryst. C47, 2441-2442.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ferguson, G., Roberts, P. J., Alyea, E. C. \& Khan, M. (1978). Inorg. Chem. 17, 2965-2967.
Fernández, E., Ruiz, A., Claver, C., Castillon, S., Polo, A., Piniella, J. F. \& Alvarez-Larena, A. (1998). Organometallics, 17, 2857-2864.
Kuwabara, E. \& Bau, R. (1994). Acta Cryst. C50, 1409-1411.
McCleverty, J. A. \& Wilkinson, G. (1990). Inorg. Synth. 28, 84-86.
Muller, A. J., Roodt, A., Otto, S., Oskarsson, Å. \& Yong, S. (2002). Acta Cryst. E58, m715-m717.
Otto, S. (2001). Acta Cryst. C57, 793-795.
Otto, S., Roodt, A. \& Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

