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A B S T R A C T

Breast cancers with BRCA1 germline mutation have a characteristic DNA copy number (CN)

pattern. We developed a test that assigns CN profiles to be ‘BRCA1-like’ or ‘non-BRCA1-like’,

which refers to resembling a BRCA1-mutated tumor or resembling a tumor without a BRCA1

mutation, respectively. Approximately one third of the BRCA1-like breast cancers have a

BRCA1 mutation, one third has hypermethylation of the BRCA1 promoter and one third

has an unknown reason for being BRCA1-like. This classification is indicative of patients’

response to high dose alkylating and platinum containing chemotherapy regimens, which

targets the inability of BRCA1 deficient cells to repair DNA double strand breaks. We inves-

tigated whether this classification can be reliably obtained with next generation sequencing

and copy number platforms other than the bacterial artificial chromosome (BAC) array

Comparative Genomic Hybridization (aCGH) on which it was originally developed.

We investigated samples from 230 breast cancer patients for which a CN profile had been

generated on two to five platforms, comprising low coverage CN sequencing, CN extraction

from targeted sequencing panels (CopywriteR), Affymetrix SNP6.0, 135K/720K oligonucleo-

tide aCGH, Affymetrix Oncoscan FFPE (MIP) technology, 3K BAC and 32K BAC aCGH. Pair-

wise comparison of genomic position-mapped profiles from the original aCGH platform

and other platforms revealed concordance. For most cases, biological differences between

samples exceeded the differences between platforms within one sample. We observed the

same classification across different platforms in over 80% of the patients and kappa values

of at least 0.36. Differential classification could be attributed to CN profiles that were not

strongly associated to one class. In conclusion, we have shown that the genomic regions

that define our BRCA1-like classifier are robustly measured by different CN profiling tech-

nologies, providing the possibility to retro- and prospectively investigate BRCA1-like classi-

fication across a wide range of CN platforms.

ª 2015 The Authors. Published by Elsevier B.V. on behalf of Federation of European

Biochemical Societies. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Breast cancer arising in patients with a germline BRCA1muta-

tion are thought to be genomically unstable due to the impair-

ment of error-free homologous recombination DNA repair in

which BRCA1 has a role (Venkitaraman, 2009; Vollebergh

et al., 2012). DNA copy number (CN) profiles provide a snap-

shot of a result of genomic instability in cancer, namely the

CN aberrations. The copy number profiles of patients with a

BRCA1 mutation have specific gains and losses (Alvarez

et al., 2005; Tirkkonen et al., 1997;Wessels et al., 2002).We pre-

viously developed a shrunken centroids classifier which uses

371 genomic regions to assign a CN profile to the BRCA1-like

(sharing characteristics of BRCA1 mutated breast cancer) or

non-BRCA1-like phenotype (Vollebergh et al., 2011). This clas-

sifier not only identifies germline BRCA1-mutated cases

(approximately 1/3 of the BRCA1-like tumors) but also enriches

for tumors with other mechanisms of BRCA1 inactivation, for

example promoter hypermethylation (approximately 1/3 of

the BRCA1-like tumors, mutually exclusive with BRCA1 muta-

tion) (Joosse et al., 2011; Vollebergh et al., 2011; Lips et al., 2011)

which can confer to non-familial cases a tumor phenotype

that is similar to BRCA1 mutation carriers. Alternative modes

of BRCA1 inactivation and similarity of these tumors to BRCA1-

mutated tumors have been observed in other datasets as well

(Turner et al., 2004; Esteller et al., 2000; Alvarez et al., 2005;

Tung et al., 2010; Cancer Genome Atlas Network, 2012) and

has been referred to as ‘BRCAness’ (Turner et al., 2004). The

cases with unknown cause for being classified as BRCA1-like

may thus be subject to BRCA1 dysfunction due to yet uniden-

tified causes, or reflect a broader pathway dysfunction. Subse-

quently, we demonstrated that BRCA1-like patients benefit

significantly more from high dose DNA double strand break-

inducing chemotherapy, containing both platinum and alky-

lating agents, than from a conventional second generation

chemotherapy regimen (Vollebergh et al., 2011). Two follow-

up studies with different chemotherapy regimens demon-

strated that BRCA1-like patients benefit also from tandem

high dose (both including alkylating agents, one including

platinum) compared to conventional, and from tandem high

dose compared to dose dense chemotherapy, underlining

the clinical relevance of the BRCA1-like profile (Schouten

et al., 2015, 2014, 2013b.). Technological advances in experi-

mental platforms have provided many datasets to study

BRCA1-like profiles next to those generated on the original

BAC (BAC3K) platform and 135k oligonucleotide aCGH

(NG135), on which we reported in a previous manuscript

(Schouten et al., 2013a). Given this reported reproducibility be-

tween different CN profiling platforms, we investigated

whether BRCA1-like classification of CN profiles of repeated

samples could be reliably obtained across multiple platforms

(Baumbusch et al., 2008; Curtis et al., 2009; Hester et al.,

2009; Krijgsman et al., 2012; Schouten et al., 2013a; Wicker

et al., 2007). For this study we compared data from samples

for which data from at least two of the following platforms

were available: low coverage genome-wide sequencing,
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targeted sequencing panels (extractedwith the CopywriteR al-

gorithm, Kuilman et al., 2015), Affymetrix SNP6.0 arrays

(SNP6), Nimblegen 720k (NG720) oligonucleotide aCGH, Affy-

metrix Oncoscan molecular inversion probe (MIP) technology,

3K (BAC3K) and 32K BAC aCGH (BAC32K) We investigated

whether these alternative methods can be used to obtain

copy number profiles suitable for reliable and accurate

BRCA1-like classification, as defined by being similar to the

original BAC aCGH-based classification.

2. Methods

2.1. Samples

We investigated 5 cohorts of patients: 1) 118 FFPE DNA sam-

ples from a Dutch randomized controlled clinical trial dataset

comparing high dose chemotherapy with conventional

chemotherapy (termed ‘N4þ’ (Rodenhuis et al., 2003;

Vollebergh et al., 2011); 2) 27 fresh frozen samples from the

EU FP7 RATHER project (termed ‘RATHER’, http://www.rather-

project.com/); 3) A cohort of 11 samples (5 HER2þ and 6 TN pa-

tients) for which both FFPE and fresh frozen tissue was

available from the Breakthrough Breast Cancer Research

Unit, King’s College London, UK, termed ‘KCL’; 4) A cohort of

76 FFPE DNA samples from BRCA1 and -2 mutated breast can-

cer samples and sporadic controls (Joosse et al., 2012, 2011,

2009) termed ‘BC’; 5) a cohort of triple negative patients

treated with neo-adjuvant chemotherapy termed ‘NAC’ (Lips

et al. submitted)]. Tissue was used according to national

guidelines regarding the use of archival material and with

approval of the respective medical ethical review committees.

2.2. DNA isolation

N4þ samples and BC samples: Formalin fixed Paraffin

Embedded (FFPE) sections were macrodissected to contain at

least 60% tumor cells and isolated with the Qiagen DNA mini

kit as described previously (Vollebergh et al., 2011).

KCL samples: FFPE sections of tumor were microdissected

to achieve a minimum of 70% composition of tumor cells,

and DNA was extracted using the DNeasy Kit (Qiagen Ltd,

Crawley, UK) according to the manufacturer’s recommenda-

tions. DNA from the fresh frozen tumor samples were

extracted with the DNeasy kits (Qiagen, Hilden, Germany) us-

ing the manufacturer’s protocols.

RATHER samples: DNA was isolated from fresh frozen tu-

mor samples containing at least 30% tumor cells and DNA

was isolated using the DNeasy Blood & Tissue kit (Qiagen, Hil-

den, Germany). NAC samples: DNA was isolated from Fresh

Frozen sections containing at least 50% tumor cells with the

Qiagen DNA mini kit.

2.3. Micro-array copy number profiling and data
processing

All copy number profiling and processing was performed as

described in previous publications unless further specified

(Buffart et al., 2008; Curtis et al., 2012; Joosse et al., 2012,

2011, 2009, 2007; Natrajan et al., 2014, 2009; Schouten et al.,

2013a; Vollebergh et al., 2014, 2011; Wang et al., 2005). The un-

segmented data (i.e. raw pre-processed data, according to

established methods per platform) were used as input in the

analysis. Table 1 refers to the respective references for the in-

dividual data and platforms. Summarizing, these steps

included labeling, hybridization, scanning and converting im-

ages to background-corrected log2 ratios or copy number esti-

mates (MIP). DNAwas hybridized to Affymetrix SNP 6.0 arrays

(SNP6) as described before for RATHER samples (Curtis et al.,

2012). Processing of KCL samples with Affymetrix SNP6.0 ar-

rays was outsourced to Atlas Biolabs GmbH (Berlin, Germany)

and standard manufacturer protocols were followed for the

amplification, hybridisation, washing, and scanning of the

samples hybridization. R package “aroma.affymetrix” was

used for the preprocessing of the Affymetrix SNP6.0 data

(Bengtsson et al., 2008).

2.4. Low coverage copy number sequencing and data
processing

The amount of double strandedDNA in genomic DNA samples

was quantified using the Qubit� dsDNA HS Assay Kit (Invitro-

gen). Up to 250 ng of double stranded genomic DNA was frag-

mented by Covaris shearing to obtain fragment sizes of

160e180 bp. Samples were purified with the Agencourt

AMPure XP PCR Purification beads according to manufac-

turer’s instructions (Beckman Coulter, cat no A63881). DNA li-

brary preparation for Illumina sequencing was done with the

Table 1eNumber of patients overlapping between different copy number profiling platforms represented as the number of CN profiles remaining
after quality control/total number of profiles.

Ref data Ref platform NG135 NG720 MIP SNP6 BAC32K NGS BAC3K CopywriteR

NG135 Schouten et al., 2013a Schouten et al., 2013a 68/70 0 7/7 31/31 8/8 14/14 24/25 12/13

NG720 Vollebergh et al., 2014 Buffart et al., 2008 18/18 3/3 0 4/4 12/12 18/18 2/2

MIP This manuscript Wang et al., 2005 28/35 9/11 20/26 8/9 11/13 5/6

SNP6 RATHER consortium Curtis et al., 2012 36/38 11/12 0 0 0

BAC32K This manuscript Natrajan et al., 2014,

2009

30/37 12/13 13/15 3/4

NGS This manuscript This manuscript 150/174 149174 17/17

BAC3K Joosse et al., 2012, 2011, 2009,

2007; Vollebergh 2011

Joosse et al., 2007 175/203 25/26

CopywriteR Lips et al. Kuilman et al., 2015 36/37
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TruSeq� DNA LT Sample Preparation kit (Illumina). The

double-stranded DNA input amount was lower than advised

by the Truseq protocol, so we used up to 250 ng of double-

stranded DNA, such that 2.5 times less adapter concentration

was used than prescribed in the TruSeq protocol. During

enrichment PCR, 10 cycles were necessary to obtain enough

yield for sequencing. All DNA librarieswere analyzed on a Bio-

Analyzer system (Agilent Technologies) using the DNA7500

chips for determining the molarity. Up to ten uniquely

indexed samples were pooled equimolarly to give a final con-

centration of 10 nM. Pools were then sequenced using an Illu-

mina HiSeq2000machine to a coverage of 0.5�. This was done

in one lane of a single-end 50 bp run according to manufac-

turer’s instructions.

Readswere aligned to the reference genome (hg19) using the

BWA backtrack algorithm (Li and Durbin, 2009) and counted in

20 kb non-overlapping bins to obtain reliable number of counts

to derive copy number from within these bins. The bin counts

were corrected for GC bias using a loess fit (Benjamini and

Speed, 2012). Themappability value of each bin is precomputed

by summarizing the alignment results of all possible 51-mers

from the reference sequence. A linear model intercepting

0was used tofit the loess-corrected count data to themappabil-

ity values (SupplementaryFigure1 showsanexample loessfit to

correct for mappability and GC biases). The slope of this fit,

multiplied with the mappability value for each bin, provides

the bin’s reference value that is used to calculate the final log2

copy number ratios. ENCODE (ENCODE Project Consortium

et al., 2012) blacklisted regions and bins with a mappability

<0.2 were excluded from the final dataset. Subsequently the

log2 copy number ratiosweremapped to the original BAC clone

locations, which were extended to 1 MB to capture a sufficient

number of reads for every BAC clone.

2.5. Targeted sequencing and data processing

Three ug of DNA from N4þ samples was used to prepare

paired-end fragment libraries using a genomic DNA library

preparation kit (Illumina). The libraries were hybridized to a

SureSelect custom-based bait library (Agilent) enriching for

565 genes involved in DNA repair and cancer (“DNA repair-

ome”). After washing the captured DNA was amplified.

Enriched libraries were barcoded, pooled and sequenced on

an Illumina Hiseq 2000 machine using a 2�75 bp paired-end

protocol. Reads were filtered for quality and aligned to the hu-

man genome (GRCh37/hg19) using Samtools.

Bar-coded sequence libraries for the NAC samples were

generated based on (Vermaat et al., 2012). 300e600 ng of input

DNA was used (Harakalova et al., 2011). These pools were

enriched for 1977 (‘Cancer mini-genome’) cancer-related

genes using SureSelect technology. Enriched libraries were

sequenced on a SOLiD 5500�l instrument according to the

manufacturers’ protocol. Variant calling was done using a

custom pipeline as described in (Lips et al., submitted).

Sequence reads were mapped on the human reference

genome version 19 (GRCh37), using BWA (Li and Durbin,

2009). To obtain copy number profiles from these targeted

reads we used the CopywriteR tool (Kuilman et al. 2015,

https://github.com/PeeperLab/CopywriteR). In brief, this tool

extracts the off-target reads obtained with targeted

sequencing and uses these for copy number detection. The

reads were thenmapped to the BAC clone regions, and subse-

quently corrected for GC content and mappability and filtered

for CNV regions as described above with the exception that

mappability was corrected using a loess.

2.6. Mapping and BRCA1-like classification

The BRCA1-like classifier was originally trained on unseg-

mented BAC3K aCGH copy number profiles (Joosse et al.,

2009; Vollebergh et al., 2011). The BRCA1-like classifier is a

shrunken centroid classifier based on 371 (out of 3277) BAC

clones (Vollebergh et al., 2011). For each platform we mapped

raw copy number data-points to the3277 BAC clones.

BAC3K, BAC32K, NG135, NG720, and SNP6 data were ob-

tained as log2 copy number ratio; NGS, and targeted

sequencing datawere log2 read counts; MIP datawas obtained

as continuous copy number estimate (i.e. no ratio or log2). The

MIP data was log2 transformed and subtracted by 1 to obtain

0-centered log2 values. We subsequently mapped these log2

ratio/value profiles to the original BAC3K aCGH platform on

genome version hg18. Subsequently, we averaged the log2 ra-

tios/values that fall within the chromosomal start and end po-

sition of the BAC clones (Schouten et al., 2013a). We used

custom functions using the functionality from the following

R packages in the mapping process: DNAcopy (Venkatraman

and Olshen, 2007), cghseg (Picard et al., 2011), Genomic Ranges

(Aboyoun et al., 2013), KCsmart (De Ronde et al., 2009) and,

copy number (Nilsen et al., 2012). The median BAC size was

approximately 150 kb and the median number of probes aver-

aged 3 for BAC32K (range 1e12), 6 for NG135 (range 1e30), 36

for NG720 (range 1e107), 92 for SNP6 (range 1e328), 15 for

MIP (range 1e215) and the median number of 20 KB bins aver-

aged for NGS was 8 (range 1e15). Missing BAC clones were

filled by linear interpolation of the surrounding probes to

obtain the ‘mapped profile’. Thismapped profilewas classified

to be BRCA1-like or non-BRCA1-like as described previously

and used for all other further analyses (Schouten et al.,

2013a; Vollebergh et al., 2011).

2.7. Statistical analysis

To evaluate the quality of each sample and to exclude low

quality CN profiles we employed two statistical measures;

‘variance of the noise’ (VN) and ‘signal to noise ratio’ (SNR).

The VN is defined as the variance between the processed

signal (segmented copy number value) and the unprocessed

signal (raw copy number value). The signal to noise is defined

as the variance of the biological signal (log2 ratio of the

segmented value) divided by the noise, as measured by the

VN.

Profiles that had less signal than noise (SNR < 1) and high

noise (VN > 0.025, as obtained from the density plot,

Supplementary Figure 2) were considered low quality and

excluded from the analysis. The similarity of samples

analyzed by two platforms was visually assessed by plotting

the average profile for each platforms. Hierarchical clustering

was performed with a distance measure of 1-Pearson correla-

tion and ward linkage. Subsequently, we checked whether

repeated samples from the same patient clustered together.
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For those samples we had BRCA1 methylation or mutation

data available we calculated the sensitivity and the proportion

of mutated/methylated samples in the BRCA1-like group. We

calculated the inter-rater agreement between repeated sam-

ples using two measures and their respective confidence in-

tervals: 1) the statistical accuracy values defined as the

percentage of samples on the diagonal of the cross table of

BRCA1-like status on one platform vs. the other platform

and 2) Cohen’s kappa value (R package epiR (Stevenson,

2012)). We used Table1Heatmap for plotting (Schouten,

2014). Cohen’s kappa can be interpreted as follows: 0e0.4:

poor agreement between tests; 0.4e0.8: moderate agreement

between tests; and >0.8: near-perfect agreement (Schouten

et al., 2013a). We calculated strength-of-classification and its

standard deviation. Strength-of-classification is the Euclidean

distance to the closest class. The value of this measure in-

creases when a sample is closer and thus more strongly

assigned to the class profile. 0 indicates that a sample is

equally close to both classes. For example, if the Euclidean dis-

tance between a sample and the BRCA1-like average profile is

0.6, and the Euclidean distance between that sample and the

non-BRCA1-like class is 0.9, the closest class is BRCA1-like

and themeasure is 0.9e0.6¼ 0.3. If for another sample the dis-

tance between a sample and the respective classes are 0.75

and 0.8, the measure would be 0.05, indicating less strong

favor for any of the classes. Second, we used the standard de-

viation of the strength-of-classification. The larger the stan-

dard deviation the more likely a difference in classification.

All analyses were performed with R version 3.0.2.

3. Results

To establish the robustness of our BRCA1-like classifier on

multiple CN platforms we used breast cancer samples that

were analyzed by at least two genomic profiling platforms.

The classifier, which was originally developed on a BAC

aCGH platform, was tested on 263 tumor samples. The sam-

ples were analyzed using seven different technologies, with

the overlap per technology ranging between zero (some plat-

forms had no overlap) and 173 (NGS versus BAC3K) tumors.

This resulted in 616 CN profiles, with 198 tumors overlapping

between two, 43 between three, 19 between four, and two be-

tween five technologies. Forty profiles had an SNR smaller

than 1 and a VN larger than 0.025 andwere therefore removed,

with another 31 profiles that lost a counterpart on another

platform, resulting in 545 CN profiles spread over 230 patients.

Table 1 describes the total number of profiles overlapping be-

tween two platforms and the number of profiles after quality

control.

3.1. Mapped profiles resemble original profiles and
biological signal overrules platform-specific characteristics

For every platform, we mapped the CN data to the BAC3K

aCGH locations by averaging the log2 ratios of positions over-

lapping each BAC clone, and investigated both the genome-

wide and classifier region specific similarity between two plat-

forms. We calculated the average genome-wide profile of

samples that overlap per technology. Visual inspection

revealed high concordance between, segmented CN profiles

(Figure 1), unsegmented CN profiles and CN profiles limited

to the 371 classifier regions (Supplementary Figures 3 and 4)

The distributions of the measurements were similar

(Supplementary Figure 5). MIP, NGS and CopywriteR data

demonstrated a larger dynamic range while Affymetrix SNP6

data displayed a compressed dynamic range. Within-sample

variation (clustering by patient) is smaller than between-

sample variation (clustering by technology) as is observed

from hierarchical clustering analysis (Supplementary

Figure 6,7). In conclusion, we observed high similarity be-

tween CN profiles after filtering low-quality genomic profiles

and reducing dimension by averaging measurements that

fall within a BAC clone. This is independent of the technology

used.

3.2. BRCA1-like classification of mapped CN profiles is
highly concordant with gold standard BAC3K classification

Having established the similarity between repeated samples

from different datasets we investigated whether the minor

differences in CN profiles would influence sample classifica-

tion. We therefore performed a comparison between the tu-

mor classification based on the original BAC3K profiles and

profiles of the same tumors profiled on all other platforms.

The class labels obtained from the BAC3K classifier served as

gold standard. We then calculated the classification accuracy

(how well does a classifier on another platform reproduce the

BAC3K labels) and Cohen’s kappa (what is the concordance

between the BAC3K labels and the labels from another plat-

form (Table 2).

The Cohen’s kappa values between classification with

mapped and original profiles ranged from 0.36 (BAC3K vs.

CopywriteR) to 1 (BAC3K vs. BAC32K/NG720). With the excep-

tion of the MIP and CopywriteR results all Cohen’s Kappa

values are close to or above 0.8 indicating almost perfect

concordance. However, some datasets are small resulting in

wide confidence intervals (BAC3K vs. BAC32K), and some

datasets do not have any samples classified differently, sug-

gesting a potential bias of having only good quality and/or

very concordant profiles in this particular analysis (BAC3K/

NG720). A less stringent measure than Cohen’s Kappa is the

accuracy. For all technologies the percentage of samples that

classify identically as the original profile was over 80%.

3.3. BRCA1-like classification is highly concordant with
consensus classification across datasets

Although BAC3K is considered as the gold standard we should

note that 1) the platform is not in operation anymore and 2)

the gold standard classificationmay have been based on lower

quality CN profiles (see below, section 3.7). Since we demon-

strated high agreement for BRCA1-like classification of sam-

ples using the original BAC3K aCGH classification as a

reference we investigated the overall agreement for each pa-

tient with all available data (Figure 2). In this analysis, we

compared the class assigned with data from a particular plat-

form to the class assigned based on the profiles from all other

platforms.
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Figure 1 e Average copy number profiles compared between two technologies. Comparison of average of all samples based on their segmented copy

number profiles showing the genomic position on the x-axis and the average log2 ratio on the y-axis. Original profiles are plotted in black and

mapped profiles in red. A) BAC vs. MIP segmented; B: BAC vs. NG135 segmented; C: BAC vs NG720 segmented; D: BAC vs. NGS segmented;

E: BAC3K vs BAC32K segmented; F: NG135 vs. SNP6 segmented; G: CopywriteR vs BAC segmented; H: CopywriteR vs NG135 segmented.
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206 out of 230 (90%, 95% CI of proportion: 85%e93%) sam-

ples had the same classification on all platforms, as far as

they were profiled. As before, we calculated Cohen’s kappa

and accuracy values comparing one platform to all the others.

In this analysis a sample was called BRCA1-like if it was

BRCA1-like in any of the other platforms (Table 3,

supplementary Table 1). Supplementary Figure 8 shows cross

tables and kappa values for comparisons between all plat-

forms. Accuracies of over 80%were obtained and kappa values

of over 0.70. Only classification based on CopywriteR-

extracted data had a lower kappa value (0.37), however, the

accuracy remained high.

3.4. BRCA1-like status identifies BRCA1-mutated or e

methylated cases

We investigated the performance in finding BRCA1-mutated

and -methylated cases for the sequencing based datasets. In

this series, the BAC classifier identified 89% (33/37), NGS 93%

(28/30) and CopywriteR 100% (24/24) of the BRCA1-mutated

or emethylated cases. BRCA1-like tumors were thus enriched

for known causes of BRCA1 inactivation with respectively 33/

48 (69%, BAC), 28/47 (60%, NGS) and 24/35 (69%, CopywriteR).

The other cross tables are shown in Supplementary Table 2.

3.5. Sources of differential classification

Overall, classification between the tested platforms was

similar. Subsequently, we performed a descriptive analysis

to identify the causes underlying differential classification of

samples (Supplementary Figure 9). We therefore re-analyzed

including samples that were excluded due to quality control

issues.

22 out of 31 patients that classified differently had CN pro-

files on two technologies, while eight had CN profiles on three

and one on four technologies; 24 of these passed quality con-

trol with at least two profiles and were in the previous anal-

ysis. The shrunken centroid classifier will compare whether

a sample is closer to the average profile of the BRCA1-like class

or closer to the non-BRCA1-like class. We found that samples

that have an inconsistent classification within one patient

have a lower strength-of-classification and a larger standard

deviation of strength-of-classification, compared to those pa-

tients that have the same classification (Figure 3). The filtering

of sampleswith low quality partially removed this effect, indi-

cating that samples with low signal and high noise are less

strongly associated with a class. We observed that samples

that failed tomeet quality criteria weremore likely those sam-

ples with different classification (p ¼ 0.04, Fisher’s exact test).

Figure 1 e (Continued)
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Poor quality CN data could not explain all misclassifica-

tions, indicated by the fact thatmisclassification still occurred

after quality control. Visual inspection of the profiles

(Supplementary Figure 9) with different classifications

demonstrated differences in quality between the profiles.

Combining these findings we found a combination of three

reasons for misclassification: 1) quality differences between

CN profiles of the same patient, 2) lack of strong association

in one of the CN profiles with one of the classes, 3) the pres-

ence of aberrations in genomic regions that are used for clas-

sification. The third pointmeans thatmisclassification cannot

occur if aberrations that are affected by differences in signal to

noise ratio are absent from classifier regions. However, only a

minority of samples is affected by a combination of these

causes. Misclassification can be observed in Figure 2: weakly

assigned cases have intermediate mean BRCA1-like probabili-

ties and a small maximum difference between the BRCA1-like

probabilities. Cases that are clearly discordant have a high

maximum difference between the BRCA1-like probabilities.

This could be due to either an incorrect original classification

because of a lower BAC3K profile quality, or an incorrect clas-

sification based on the mapped profile. An incorrect mapped

classification could occur because the original classifier was

trained to recognize uncertainty in the classification (which

results in probabilities around 0.5 for both classes) in the

BAC3K profiles. Using mapped data with differences in, for

example, noise or dynamic range could then increase the as-

sociation with the wrong/correct class.

4. Discussion

In this study we investigated the robustness of our previously

established BRCA1-like classification of CN profiles from

breast cancer samples that were profiled on two to five

different experimental platforms. We found that genomic

position-based mapping between platforms results in

comparable CN profiles and subsequently similar BRCA1-like

classification with high accuracy and agreement between

platforms.

The overall comparability of CN profiling platforms for

large aberrations (chromosome earm level) (Baumbusch

et al., 2008; Curtis et al., 2009; Krijgsman et al., 2012;

Schouten et al., 2013a;Wicker et al., 2007) could be a beneficial

characteristic for applying our BRCA1-like CN profile classifier

(Joosse et al., 2009; Vollebergh et al., 2011). This classifier is

based on genomic changes that arise in patients with BRCA1

mutation carriers or that have BRCA1 promoter methylation

(Joosse et al., 2011, 2009; Lips et al., 2011; Vollebergh et al.,

2011). We have demonstrated in three independent cohorts

that this test could be used to predict benefit from high dose

alkylating chemotherapy, which induces DNA double-strand

breaks that cannot be repaired in BRCA1-deficient cancer cells

(Schouten et al., 2015, 2014, 2013b; Vollebergh et al., 2011).

Technological advances and the availability of many datasets

have prompted an expansion of the methods deployed to

obtain BRCA1-like classification of breast cancer samples.

Given that we did not aim to change the classifier itself, it is

of importance to mimic the original BAC3K aCGH profiles as

closely as possible. This limits the manipulations that can be

done to improve the similarity between profiles. For example,

we demonstrated previously (Schouten et al., 2013a) and in

this manuscript that segmenting CN data results in repeated

profiles that are more similar than unsegmented profiles.

However, the segmentation negatively influences classifica-

tion as the original classifier was trained on unsegmented

data (Joosse et al., 2009; Schouten et al., 2013a; Vollebergh

et al., 2011). As Curtis et al. described there is no ideal platform

comparison because it is practically impossible to remove all

differences between technologies when obtaining the actual

copy number data (Curtis et al., 2009). In our case we also

had experiments performed in the labs that were specialized

in a certain technology. Therefore, it is not possible to derive

the exact influence of the experimental platform and

Table 2 e Cross tables of the classification of repeated samples with the proportion of samples classified the same (diagonal) and 95% confidence
interval, Cohen’s kappa and 95% confidence interval.

BAC3K non-
BRCA1-like

BAC3K BRCA1-
like

accuracy 95%CI Kappa 95%CI

BAC32K non-BRCA1-like 7 0

BAC32K BRCA1-like 0 6 1.00 0.72e1 1.00 0.45e1.0

NG135K non-BRCA1-like 20 0

NG135K BRCA1-like 1 2 0.96 0.76e1 0.78 0.37e1.0

NG720K non-BRCA1-like 11 0

NG720K BRCA1-like 0 7 1.00 0.78e1 1.00 0.53e1.0

MIP non-BRCA1-like 1 0

MIP BRCA1-like 2 8 0.81 0.47e0.97 0.42 0e0.90

NGS non-BRCA1-like 78 1

NGS BRCA1-like 13 56 0.91 0.84e0.95 0.81 0.65e0.97

CopywriteR non-BRCA1-like 1 0

CopywriteR BRCA1-like 3 21 0.88 0.68e0.97 0.36 0.06e0.66

NG135K non-BRCA1-like NG135K BRCA1-like

SNP6 non-BRCA1-like 7 2

SNP6 BRCA1-like 0 18 0.93 0.74e0.99 0.82 0.45e1.0

CopywriteR non-BRCA1-like 0 0

CopywriteR BRCA1-like 2 10 0.83 0.51e0.97 N/A N/A
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experimental variations on classification. Furthermore, the

applied measures of performance could be influenced by bio-

logical characteristics of the cohort. The biological character-

istics of the cohort may confound estimating the

performance. These characteristics alter the proportion of

(non-)BRCA1-like tumors. For example, since BRCA1-like sta-

tus associates with triple negative status, a cohort which con-

tains mostly triple negative tumors (CopywriteR and MIP

analysis) has few non-BRCA1-like cases. Few cases that

misclassify result in a low kappa value while maintaining

high accuracy (most concordantly classified to reference). An

equal amount of misclassifications in a cohort with more

non-BRCA1-likes does not result in such a drop in kappa value.

Using these two measures we hope to thus control for opti-

mistic accuracy estimateswith the kappa value, and to control

for pessimistic estimates with accuracy, acknowledging that

both can’t control for confounding or a bias in selection of

some of the cohorts. Keeping these limitations in obtaining

copy number from different technologies and of the perfor-

mance measures in mind, we observed a high concordance

of classification when comparing to the original BAC aCGH-

based classification. 7 out of 7 datasets reached the same

Figure 2 e Classification of all patients in the cohort. Classification of 210 patients with copy number data from 6 different copy number profiling

platforms. Classification is colored as blue (non-BRCA1-like) and orange (BRCA1-like). The Differential classification row indicates whether

differential classification occurred within a patient: green (no), red (yes). The mean BRCA1-like score is a gradient from blue (0) to yellow (1)

indicating the probability of being BRCA1-like (score [ 1). The max diff BRCA1-like score indicates the largest difference in probability between

the classifications in one patient which ranges from 0 (no difference) to 1 (probability change of 1). These two scores can be used to identify clearly

discordant samples (max diff / 1) or unconvincingly assigned profiles (mean score around 0.5, max diff small). ER, PR and HER2 status, BRCA1

mutation status and BRCA1 promoter hypermethylation status (negative or positive). Missing values are white.
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classification in over 80% of the samples with MIP and Copy-

writeR possessing a low Cohen’s kappa value for concordance.

We attribute the lower kappa value for MIP and CopywriteR

based data to the number and distribution of patients in the

analysis as well as to differences in the quality of the profile

or the mapping process. Mapping the MIP data to BAC clones

requires transformation of CN to log2 ratio and a relatively

high number ofmappedMIP profiles did notmeet the required

quality criteria.

We tried to enlarge our datasets by pooling the data to

obtain ‘consensus classification’ (in contrast to the gold stan-

dard) in a larger dataset. We found high accuracies (>0.8) in

these pooled analyses, while kappa value was over 0.7 for

most comparisons. Only CopywriteR-based classification

was low at 0.37. We attribute this to the distribution of pa-

tients (see above) and two cases that were not strongly

assigned with probability scores around the cutoff.

In the direct comparisonwe used the BRCA1-like classifica-

tion obtained by BAC aCGH as gold standard. Unfortunately,

BRCA1 mutation or methylation status was not available for

all samples. For those datasets with available BRCA1 status

the classifier reproducibly found the BRCA1-mutated and

methylated cases. This indicates that patients with a known

BRCA1-inactivation are being identified. However, the classi-

fier identifies BRCA1-like cases without BRCA1-mutation

or emethylation that benefit from a chemotherapy regimen

Table 3 e Cross tables, accuracy and concordance of classification for all pairs of samples for each profiling platform. BRCA1-like status was
defined for each case if any of the repeated samples was BRCA1-like classified as BRCA1-like.

Non-BRCA1-like BRCA1-like accuracy 95% CI Kappa 95% CI

BAC3K non-BRCA1-like 93 14

BRCA1-like 1 58 0.91 0.85e0.95 0.81 0.67e0.96

NGS non-BRCA1-like 78 1

BRCA1-like 11 58 0.93 0.87e0.96 0.85 0.69e1.0

NG720 non-BRCA1-like 11 0

BRCA1-like 0 7 1 0.78e1 1 0.53e1

NG135 non-BRCA1-like 30 0

BRCA1-like 2 25 0.94 0.85e0.98 0.88 0.64e1

SNP6 non-BRCA1-like 9 3

BRCA1-like 1 23 0.89 0.73e0.96 0.74 0.41e1

BAC32K non-BRCA1-like 12 3

BRCA1-like 1 14 0.87 0.68e0.95 0.73 0.38e1

MIP non-BRCA1-like 6 2

BRCA1-like 1 19 0.89 0.71e0.97 0.73 0.35e1.00

CopywriteR Non-BRCA1-like 1 0

BRCA1-like 3 32 0.92 0.76e0.98 0.37 0.12e0.63

Figure 3 e Strength of classification Density plots of the strength and variation of classification within one patient for concordantly and

discordantly classified patients. A) density plot indicating the strength of assignment to the BRCA1-like or non-BRCA1-like of all 243 patients.

The strength of assignment is calculated as the mean absolute difference between one patient’s profiles and the BRCA1-like and non-BRCA1-like

class average profile. Zero indicates that the profile is equally close to the BRCA1-like as the non-BRCA1-like average. The higher the value the

stronger its association with a particular class. B) Density plot of the standard deviation of the strength of assignment, indicating the association of

the profiles from a patient with a particular class. In black are the patients for which all copy number profiles classified the same class, in red the

patients that have different class assignment across technologies.
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targeting the BRCA1 defect (Vollebergh et al., 2011; Schouten

et al., 2015, 2014), which makes BRCA1-like classification the

relevant read-out for predictive biomarker analyses.

We found that differential classification occurred in

approximately 10% of the cases. The misclassification is

caused by samples that lack strong characteristics of one class

and/or varying quality profiles within a patient’s samples. In

cases with different classification it is uncertain which classi-

fication is correct, since the classifier may account for uncer-

tainty arising from lower resolution BAC aCGH data.

Conversely, it could be that lower quality BAC aCGH data

obscured the true class and the use of higher resolution plat-

form removed this uncertainty. In general, we observed high

concordance and therefore applicability, at least for research

purposes. The hypothetical ideal approach is always to opti-

mize a classifier on the new platform with the same samples.

However our results indicate that thismay not be necessary. If

optimizing is not feasible, similar classification can be ob-

tained by mapping profiles. Furthermore, one should balance

whether the benefit of optimizing the classifier on a platform

outweighs (i.e. results in a much better classification) chang-

ing the test. It is advisable to obtain CN profiles for at least

some tumor DNAs for which an original CN profile is available

for comparison. Furthermore, a large reference set of profiles

obtained with different platforms can be useful for finding

outliers or potential errors in previous experiments (for

example, our investigation of differential classification).

In conclusion, we demonstrated that BRCA1-like classifica-

tion of mapped CN profiles is robust across multiple datasets

and experimental platforms. This allows for the further inves-

tigation of the clinical benefit of treatments targeting the

BRCA1 defect in existing datasets with CN profiles. Further-

more, the high concordance in CN profiles across different

technologies encourages use on a range of current and estab-

lished platforms.
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