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Rifampin, together with isoniazid, has been the backbone of the current first-line treatment of tuberculosis (TB). The ratio of the
area under the concentration-time curve from 0 to 24 h (AUC0 –24) to the MIC is the best predictive pharmacokinetic-pharmaco-
dynamic parameter for determinations of efficacy. The objective of this study was to develop an optimal sampling procedure
based on population pharmacokinetics to predict AUC0 –24 values. Patients received rifampin orally once daily as part of their
anti-TB treatment. A one-compartmental pharmacokinetic population model with first-order absorption and lag time was de-
veloped using observed rifampin plasma concentrations from 55 patients. The population pharmacokinetic model was devel-
oped using an iterative two-stage Bayesian procedure and was cross-validated. Optimal sampling strategies were calculated using
Monte Carlo simulation (n � 1,000). The geometric mean AUC0 –24 value was 41.5 (range, 13.5 to 117) mg · h/liter. The median
time to maximum concentration of drug in serum (Tmax) was 2.2 h, ranging from 0.4 to 5.7 h. This wide range indicates that ob-
taining a concentration level at 2 h (C2) would not capture the peak concentration in a large proportion of the population. Opti-
mal sampling using concentrations at 1, 3, and 8 h postdosing was considered clinically suitable with an r2 value of 0.96, a root
mean squared error value of 13.2%, and a prediction bias value of �0.4%. This study showed that the rifampin AUC0 –24 in TB
patients can be predicted with acceptable accuracy and precision using the developed population pharmacokinetic model with
optimal sampling at time points 1, 3, and 8 h.

Tuberculosis (TB) is still one of the infectious diseases with the
highest morbidity and mortality in the world. In 2013, an es-

timated 9.0 million people acquired TB and 1.5 million people
died due to TB (1). First-line treatment of TB consists of admin-
istration of isoniazid, rifampin, pyrazinamide, and ethambutol
during the first 2 months, continuing with isoniazid and rifampin
for another 4 months (2, 3).

In general, the treatment success rate continues to be high among
new TB cases globally (1). However, health care providers around the
world are still confronted with treatment failure on a regular basis.
Recently, it was shown that the risk of treatment failure was almost
9-fold higher in patients with low drug exposure than in patients with
higher drug exposure (4). Earlier data already showed that pharma-
cokinetic variability is likely to be the driving force in the occurrence
of development of drug resistance (5).

Studies in both hollow-fiber infection models and murine
models showed that the area under the concentration-time curve
over 24 h in the steady state divided by the MIC (AUC/MIC ratio)
is the best predictive pharmacokinetic/pharmacodynamic param-
eter for determination of the efficacy of rifampin (6, 7). More
importantly, these data were confirmed in TB patients, as poor
long-term outcome was predicted by low AUC values (4). In ad-
dition, low peak plasma concentration (Cmax)/MIC ratios pre-
ceded the acquisition of drug resistance (4).

Drug exposure may be influenced by a number of variables,
such as concomitant food intake, comorbidities, and intraindi-

vidual differences in pharmacokinetics (8–12). Therefore, it seems
rational to monitor drug exposure in patients with suspected ma-
labsorption, gastrointestinal disorders, drug-drug interactions,
diabetes mellitus, or HIV coinfection (13). To optimize treatment
outcome in patients with suspected low drug exposure, therapeu-
tic drug monitoring (TDM) may be useful (13, 14). In the past, the
drug concentration level at 2 h after administration (C2) has been
used to approximate Cmax, and the level at 6 h (C6) has been used
to distinguish between delayed absorption and overall poor intes-
tinal absorption (13). Indeed, it has been recognized that the C2

level does not always capture the Cmax (15–17). Furthermore, it is
unknown whether C2 and C6 levels do reflect AUC values or can be
used to accurately predict the AUC values (18). Obtaining a full
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concentration-time curve to calculate the AUC values is a labori-
ous and expensive procedure and is thus not feasible in clinical
practice. Alternative strategies to easily evaluate drug exposure are
urgently needed. An optimal sampling procedure based on a pop-
ulation pharmacokinetic model may help to overcome these
problems. This method implies that a limited number of appro-
priately timed blood samples are needed to adequately predict the
AUC as a measure for drug exposure (19–21). Therefore, the
objective of this study was to develop and validate an optimal
sampling procedure for determination of rifampin concentra-
tions based on population pharmacokinetics, in order to pre-
dict the area under the concentration-time curve from 0 to 24 h
(AUC0 –24) for this pivotal anti-TB drug.

(Part of these data was presented as an oral presentation at the
6th International Workshop on Clinical Pharmacology of Tuber-
culosis Drugs, 9 September 2013, Denver, CO, and at the Dutch
Medicines Days, FIGON, 1 October 2013, Ede, The Netherlands.)

MATERIALS AND METHODS
Study population. The study population was constituted of two groups.
Those in group 1 were patients aged at least 18 years who were eligible for
inclusion if they had been treated with rifampin for drug-susceptible TB at the
University Medical Center Groningen, Tuberculosis Centre Beatrixoord,
Haren, The Netherlands, between 2009 and 2013. Patients whose body weight
was below 50 kg were administered 450 mg of rifampin, and patients over 50
kg received 600 mg of rifampin. In general, to prevent or alleviate adverse
gastrointestinal effects of rifampin administration, patients received a light
breakfast before taking the medication. After at least 2 weeks of treatment, a
pharmacokinetic curve consisting of a predose and three to nine time points
randomly between 0.5 and 8 h postdose was obtained for TDM as part of
routine patient care. The predose level was obtained just before dosing, and
this level was defined as C24, the concentration level at 24 h. Samples were
transported the same day to the laboratory, and plasma samples were sepa-
rated and stored at �20°C until analysis, which was performed within 10
days. Under these circumstances, rifampin concentrations are stable, as evi-
denced by our previous assay (12, 22). Plasma samples were analyzed for
rifampin by liquid chromatography-tandem mass spectrometry (LC-MS/
MS), as previously described (23, 24). Plasma concentration values below the
lower quantification limit were treated as zeros. Demographic and medical
data, including age, sex, weight, height, serum creatinine level, diagnosis, lo-
calization of TB, ethnicity, presence of comorbidity and concomitant medi-
cation, and rifampin dose, were collected from the medical chart. This study
was evaluated by the local ethics committee and found to be in accordance
with the Dutch law due to its retrospective nature (ERB decision 2013-492).

To also include patients who had received rifampin in a fasted state,
data from patients from an earlier study at our centers were included (21).
These patients constituted group 2. Study subjects were TB patients ad-
mitted to the two Dutch TB referral centers, the above-mentioned Tuber-
culosis Centre Beatrixoord, Haren, and the Centre for Chronic Diseases
Dekkerswald, Radboud University Medical Center, Nijmegen, The Neth-
erlands (21). The patients who were included were at least 18 years of age,
and they had to provide written informed consent. The study protocol was
approved by the Ethical Review Board of Radboud University Medical
Center Nijmegen, Nijmegen, The Netherlands (21). Patients whose body
weight was below 50 kg were administered 450 mg of rifampin, and pa-
tients over 50 kg received 600 mg of rifampin. A full pharmacokinetic
curve was recorded during the intensive phase of TB treatment after the
steady state was reached (�2 weeks). Patients refrained from food intake
from 11:00 p.m. on the day preceding the pharmacokinetic assessment to
4 h after intake of the study medication. Serial venous blood samples were
collected just prior to and at 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0, 12.0, and
24.0 h after witnessed intake of the study medication. Plasma samples
were separated immediately, frozen at �80°C, and transported on dry ice
for bioanalysis (21). Plasma samples were analyzed for rifampin levels by

high-performance liquid chromatography (HPLC), as previously de-
scribed (12, 25).

Population pharmacokinetic model. The concentration-time curves
were used to develop a one-compartmental population pharmacokinetic
model using an iterative two-stage Bayesian (ITSB) procedure (KinPop
module of MW�Pharm version 3.60; Mediware, Zuidhorn, The Nether-
lands) (5, 10, 11). This design was chosen despite rifampin’s relatively
complex and nonlinear pharmacokinetics, with distribution to a wide
variety of tissues, conversion into its slightly active metabolite desacetyl-
rifampin, and both hepatic and renal clearance (12, 26, 27). However, the
one-compartmental model can be justified as rifampin diffuses easily to
tissue (28–30) and it had been used earlier (10, 11, 31, 32). The final model
was selected based on the Akaike information criterion (AIC), a measure
for goodness of fit (33).

The bioavailability of rifampin could not be determined because it was
administered orally only. Furthermore, its bioavailability is known to be
almost complete and therefore, was assumed to be equivalent to a value of
1 (8) [Micromedex 2.0 (electronic version); Thomson Reuters (Health-
care), Greenwood Village, CO, USA]. On the basis of the pertinent liter-
ature, the rifampin clearance/creatinine clearance ratio (fr) was 0.14 (28,
29). Pharmacokinetic parameters were assumed to be log-normally dis-
tributed. Residual errors were assumed to be normally distributed, with
standard deviation (SD) calculated as follows: SD � 0.1 � 0.10 � C,
where C is the observed plasma concentration of rifampin.

To evaluate the ability of this population pharmacokinetic model to
predict individual AUC values, cross-validation was performed. For this
cross-validation, a number of submodels were developed, with each
model leaving out five patients. The number of submodels was equal to
the number of sets of five patients among the total number of patients. All
subjects were excluded once, and the AUC of each “left-out” subject was
estimated (AUC0 –24, estimated) by fitting the concentration-time curve us-
ing the complementary submodel excluding this subject. This left-out
model estimates how well the final model might perform to predict indi-
vidual AUC0 –24 values for future TB patients (20, 34). For all subjects, this
AUC0 –24, estimated value was compared to the calculated AUC0 –24 value
(AUC

0 –24, calculated
). AUC0 –24, calculated values and the values of the other in-

dividual pharmacokinetic parameters were calculated using MW�Pharm’s
KinFit module. AUC0 –24, calculated values were determined by the log-lin-
ear trapezoidal rule. Cmax was defined as the highest observed plasma
concentration, with the median time to maximum concentration of drug
in serum (Tmax) as the corresponding time.

OSS. A Monte Carlo simulation of 1,000 subjects randomly drawn
from the population model was used to evaluate optimal sampling strat-
egies (OSS) for prediction of AUC0 –24. OSS with different combinations
of one to three sampling time points ranging from 0 to 24 h with a time
resolution of 1 h were evaluated using Bayesian fitting. All possible com-
binations within the groups of one to three time points were evaluated.
OSS was considered acceptable when the root mean square error (RMSE),
a measure of precision, was �15%. The mean prediction error, a measure
of bias, was accepted when it was �5%. The best-performing OSS was
subsequently evaluated by comparing the AUC0 –24 predicted with OSS
(AUC

0 –24, OSS
) to the AUC0 –24, calculated for all patients. Group 1 patients

were sampled predose and randomly between 0.5 and 8 h. If the exact time
point was unavailable, the nearest (preferably, earlier) time point (for
instance, 7 instead of 8 h) was chosen for prediction of AUC0 –24, OSS.

Statistics. The influence of patient characteristics on population phar-
macokinetic parameters was investigated with a Mann-Whitney U test, a
chi-square test, or a Kruskal-Wallis test or by determination of the Spear-
man correlation coefficient. Correlation between different AUC values
was studied using the Spearman correlation coefficient. Agreement be-
tween AUC0 –24, calculated and AUC0 –24, OSS was evaluated using a Bland-
Altman analysis. Two-sided P values of �0.05 were considered statisti-
cally significant. All statistical measurements were either derived directly
from MW�Pharm or computed using IBM SPSS Statistics 20 (IBM Corp.,
Armonk, NY, USA).
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RESULTS
Study population. This study included 55 patients: 22 from group
1, the patient care cohort of 2009 to 2013, and 33 patients from
group 2, the earlier study. Patient characteristics are displayed in
Table 1. Several characteristics, especially weight and those related
to weight, were significantly different between the group of pa-
tients and the population of study participants. The median ad-
ministered dose was 10.2 (range, 4.7 to 21.4) mg of rifampin/kg of
body weight. Most patients (85%) received 600 mg rifampin. Dos-
age regimens of 450 mg and 900 mg were received by five (9%) and

three (5%) patients, respectively. Gender, dose, age, body surface
area (BSA), ethnicity, and presence of comorbidity or concomi-
tant medication had no significant influence on the individual
pharmacokinetic parameters (all P values � 0.05). Table 2 shows
the calculated pharmacokinetic parameters of the concentration-
time curves that were used for modeling (n � 55).

Population pharmacokinetic model. The final one-compart-
mental model was selected based on the Akaike information cri-
terion (33). Geometric mean pharmacokinetic parameters of the
final population model (n � 55) are shown in Table 3. Pharma-

TABLE 1 Patient demographics

Patient parameter

Result(s)a

PbGroup 1 (n � 22) Group 2 (n � 33) All patients (n � 55)

Male/female, n (%) 14/8 (64/36) 29/4 (88/12) 43/12 (78/22) 0.035

Age, yr, median (IQR) 36 (24–43) 44 (30–57) 39 (29–51) 0.052

Wt, kg 56.5 (16.6) 65.9 (15.6) 62.2 (16.5) 0.011
Lean body mass, kg 52.2 (10.6) 61.8 (8.8) 58.0 (10.6) 0.001
Ht, m 1.70 (0.09) 1.73 (0.08) 1.72 (0.08) 0.115
Body mass index, kg/m2 19.7 (5.8) 22.0 (5.0) 21.1 (5.4) 0.037
Body surface area, m2 1.63 (0.22) 1.80 (0.21) 1.74 (0.23) 0.012

Dose, mg 614 (130) 595 (26.1) 602 (84.1) 0.844
Dose/wt, mg/kg 11.4 (3.2) 9.40 (1.8) 10.2 (2.6) 0.008

Ethnicity, n (%) 0.081c

Black 11 (50) 10 (30) 21 (38)
Caucasian 4 (18) 14 (42) 18 (33)
Asian 1 (5) 5 (15) 6 (11)
Other 6 (27) 4 (12) 10 (18)

Type of tuberculosis, n (%): 0.089c

Pulmonary 12 (55) 27 (82) 39 (71)
Extrapulmonary 6 (27) 4 (12) 10 (18)
Both 4 (18) 2 (6) 6 (11)

Comorbidity, present n (%) 4 (18) 13 (39) 17 (31) 0.095c

Comedication, present n (%) 7 (32) 26 (79) 33 (60) 0.000c

Samples/patient, n (%) 6.5 (1.3) 10.3 (0.9) 8.8 (2.2) 0.000
Sampling schedule Predose and random times between

0.5 and 8 h postdose
Predose and 1.0, 1.5, 2.0, 2.5, 3.0, 4.0,

6.0, 8.0, 12.0, and 24.0 h postdose
a Data are presented as means (SD), unless stated otherwise. IQR, interquartile range.
b Continuous data from comparisons of groups 1 and 2 were tested using the Mann-Whitney U test.
c Chi-square test.

TABLE 2 Noncompartmental pharmacokinetic parameters of rifampina

Pharmacokinetic parameter

Valuesa

PbGroup 1 (n � 22) Group 2 (n � 33) All patients (n � 55)

AUC0–24 (mg · h/liter) 35.2 (23.9–109) 46.3 (13.5–117) 41.5 (13.5–117) 0.007
Cmax (mg/liter) 6.8 (3.5–15.6) 9.3 (2.4–24.1) 8.2 (2.4–24.1) 0.002
Tmax (h) 2.6 (0.5–4.5) 2.0 (0.4–5.7) 2.2 (0.4–5.7) 0.069
CL/F (liter/h) 17.5 (10.0–31.5) 13.0 (4.9–51.3) 14.7 (4.9–51.3) 0.013
V/F (liter) 51.9 (25.5–103) 41.5 (12.8–182) 45.4 (12.8–182) 0.054
t1/2 (h) 1.9 (0.7–2.4) 2.2 (1.6–6.6) 2.1 (0.7–6.6) 0.559
a Data are presented as geometric mean (range), except for the Tmax data, which are displayed as median (range). AUC0 –24, area under the concentration-time curve from 0 to 24 h
in milligrams � hour per liter; Cmax, maximum concentration in mg per liter; Tmax, time to maximum concentration in hours; CL/F, apparent clearance in liters per hour; V/F,
apparent volume of distribution in liters; t1/2, elimination half-life in hours. F, bioavailability.
b Data from comparisons of groups 1 and 2 were tested using the Mann-Whitney U test.

Pharmacokinetics and OSS of Rifampin in TB Patients
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cokinetic parameters of the two patient groups are shown in Table
4. The mean values from the 11 submodels developed for cross-
validation were close to those from the final model.

Compared to the AUC0–24, calculated values, the AUC0–24, estimated

values were underestimated by a median difference of 5.9%
(range, �39.8% to 13.5%). A highly positive correlation between
the two AUC calculations was shown by the Spearman correlation
coefficient, r � 0.96 (P � 0.01). In Fig. 1, the correlation between
AUC0 –24, calculated and AUC0 –24, estimated values is shown. For one
subject, fitting the concentration-time curve using its comple-
mentary submodel as a Bayesian prior resulted in a large differ-
ence between AUC0 –24, estimated and AUC0 –24, calculated (65.7 and
109 mg · h/liter, respectively; underestimation, 39.8%). With this
estimation considered an outlier (�3 · SD difference), the median
underestimation decreases to 4.9% (range, �21.8% to 13.5%),
indicating limited influence of the outlier.

Optimal sampling strategy. Of all the OSS possibilities, the
five best-performing OSS values for one, two, and three time
points are shown in Table 5. RMSE values of all OSS with either
one or two time points were �15%. The values for RMSE and bias
of the five best-performing OSS with three samples were �15%
and �5%, respectively. Based on clinical suitability, an OSS with
time points of sampling at 1, 3, and 8 h (OSS 1–3– 8) was consid-
ered the best option.

AUC0 –24, OSS 1–3– 8 correlated to AUC0 –24, calculated with a Spear-
man correlation coefficient of 0.95 (P � 0.01) and was underesti-
mated by a median difference of 1.0% (range, �24.9% to 10.0%).
Agreement between AUC0 –24, calculated and the estimated
AUC0 –24, OSS 1–3– 8 is shown in the Bland-Altman plot (Fig. 2). In
the Bland-Altman plot, data from four patients can be observed

that are below the lower line of agreement. High AUC0 –24, calculated

values (90 to 110 mg · h/liter) were seen with all four patients, and
the values were underestimated by 17.9% to 24.9%. The estimated
AUC0 –24, OSS 1–3– 8 values ranged from 72 to 90 mg · h/liter and
were thus all still reasonably high.

DISCUSSION

Here we developed a population pharmacokinetic model and an
OSS using time points 1, 3, and 8 h. Using these combined ap-
proaches, we were able to predict rifampin AUC0 –24 values with
sufficient accuracy and precision.

TABLE 3 Final population pharmacokinetic model parametersa

Pharmacokinetic parameter Values for all patients (n � 55)

CLm/F (liters/h/1.85 m2) 15.5 (8.0)
fr 0.14 (fixed)
V/F (liters/kg LBM) 0.713 (0.282)
ka (1/h) 1.14 (1.03)
Tlag (h) 0.887 (0.571)
F 1 (fixed)
a Data are presented as population mean (SD). Bioavailability (F) was fixed at a value of
1, and the rifampin clearance/creatinine clearance ratio (fr) was fixed at a value of 0.14.
CLm/F, apparent metabolic clearance in liters per hour normalized to a body surface
area of 1.85 m2; V/F, apparent volume of distribution in liters per kilogram of lean body
mass (LBM); ka, absorption rate constant in 1/h; Tlag, lag time in the absorption phase
in hours.

TABLE 4 Pharmacokinetic parameters of group 1 and group 2a

Pharmacokinetic
parameter

Values

PbGroup 1 (n � 22) Group 2 (n � 33)

CLm/F (liters/h/1.85 m2) 17.9 (9.1–32.9) 13.8 (5.4–54.3) 0.035
V/F (liters/kg LBM) 0.844 (0.545–1.514) 0.637 (0.325–1.162) 0.002
ka (1/h) 0.90 (0.22–3.24) 1.33 (0.26–5.37) 0.078
Tlag (h) 1.11 (0.46–2.92) 0.77 (0.30–2.12) 0.017
a Data are presented as geometric mean (range). CLm/F, apparent metabolic clearance
in liters per hour normalized to a body surface area of 1.85 m2; V/F, apparent volume of
distribution in liters per kg of lean body mass; ka, absorption constant in 1/h; Tlag, lag
time in the absorption phase in hours.
b Data from comparisons of groups 1 and 2 were tested using the Mann-Whitney U
test.

FIG 1 Correlation of AUC0 –24, calculated (mg · h/liter) and AUC0 –24 estimated

(mg · h/liter) in the cross-validation. AUC0 –24, estimated was determined by
fitting the individual concentration-time curve using the complementary sub-
model excluding this subject.

TABLE 5 Best-performing optimal sampling strategies for one, two, and
three time points

First
sampling
time
point (h)

Second
sampling
time
point (h)

Third
sampling
time
point (h)

Correlation
coefficient
(r)

Mean
predictive
error (%
bias) % RMSEa

7 0.83 3.8 27.4
6 0.83 0.5 27.6
8 0.83 5.7 27.9
5 0.81 �4.2 29.0
9 0.81 6.9 29.1
3 10 0.93 �3.2 18.3
2 8 0.92 0.3 18.7
3 9 0.93 �4.4 18.8
2 7 0.92 �2.8 18.8
3 8 0.93 �5.2 19.0
1 3 8 0.96 �0.4 13.2
2 4 10 0.96 �2.7 14.0
2 4 9 0.96 �3.6 14.0
1 3 9 0.96 �0.6 14.2
2 5 14 0.96 �2.3 14.3
a RMSE, root mean square error.
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Comparing the two groups of patients, it can be observed that
the AUC0 –24 and Cmax values were higher in group 2. The differ-
ences in these parameters may have been caused by the differences
in food intake or fasting around the time that the medication was
ingested in the two groups. However, the magnitude of this factor
is unclear. A meta-analysis of the impact of concomitant food
intake has shown that there is no difference in rifampin AUC
values after food or fasting (35). A recent study showed a 26%
decrease in AUC0 –10 values under fed conditions compared with
fasted conditions (36). As a consequence of the lower AUC values
in group 1 patients, clearance was higher in this group than in
group 2.

A limitation of this study is that only patients admitted to a TB
referral center, not regular outpatients, were included, which may
have introduced selection bias. However, in our experience, these
patients in particular are typically selected for TDM, as TDM in
patients with drug-susceptible TB is mainly performed if prob-
lems emerge with therapy.

TDM of rifampin is mostly driven by the need to prevent sub-
therapeutic levels rather than by concerns regarding toxicity, as
the drug is well tolerated at higher concentrations (12, 37). Due to
the correlation between the bactericidal effect of rifampin and the
AUC (4, 6, 7), the validation of the population model focused on
its ability to predict AUC0 –24 values. The model was able to predict
the AUC0 –24 values with acceptable accuracy and precision. More-
over, discarding of the outlier identified during cross-validation
did not result in a large difference, suggesting sufficient robustness
of the model.

The precision of the AUC prediction with the best OSS, defined
as an RMSE of 13.2%, might still be regarded to be relatively high.
However, dose adjustments are generally performed using match-
ing tablets or capsules (i.e., 150 mg or 300 mg), resulting in ad-
justments of 33% or more. These dose adjustments result in an
even higher increase of AUC values (12). We therefore do not
consider the possible deviation of the AUC0 –24, estimated from the
calculated AUC due to imprecision to be clinically relevant. A

reason for the high RMSE could be the diverse population used for
the development of the population model. Regarded from a con-
trasting point of view, this implies that implementation of the
model and the OSS in TDM might be applicable for various types
of patients around the world.

Given that data related to outcome have become available only
recently, we aimed at an AUC/MIC ratio of 270 (7). As we studied
patients with drug-susceptible TB, actual MICs of the isolates for
rifampin were not determined. If the mean MIC for rifampin were
defined as 0.2 mg/liter (37), this would imply an adequate or target
AUC0 –24 value of 54 mg · h/liter or higher. This AUC was obtained
in only 13 (24%) of the 55 patients studied. In the event that the
observed MIC was lower, this might still result in a favorable
AUC/MIC ratio (38). Furthermore, on the basis of the lower
AUC0 –24 value of 13 mg · h/liter for rifampin in the presence of a
pyrazinamide AUC value over 363 mg · h/liter recently proposed
by Pasipanodya et al. (4), all our patients obtained sufficient ex-
posure. At this time, a lack of data on drug exposure and MIC
values makes it difficult to interpret the drug exposure of a single
drug in a four-drug regimen with a possible range of MIC values.
Well-designed prospective studies are needed to elucidate the
pharmacokinetic/pharmacodynamic targets of the first-line
regimen.

The median Tmax value was 2.2 h, ranging from 0.4 to 5.7 h
(Fig. 3). The wide range indicates that obtaining only a C2 level
would fail to capture the peak concentration in a large proportion
of the population. One might argue that this was a consequence of
the fact that our group 1 patients receiving standard care were not
fasting, due to the institution’s regulations. However, this varia-
tion in the Tmax value was due only partly to delayed absorption, as
the range of Tmax values for the fasted group 2 patients (i.e., 0.4 to
5.7 h) was larger than the range of Tmax values for the patients in
group 1 who were allowed to eat (0.5 to 4.5 h).

Comparing our OSS with the data recently published by Ma-

FIG 2 Bland-Altman plot of mean AUC0 –24 (mg · h/liter) versus the difference
between AUC0 –24, calculated and AUC0 –24, OSS 1–3– 8 (mg · h/liter). The solid line
represents the mean difference. The corresponding limits of agreement (mean
difference � 2 SD difference) are depicted as dashed lines.

FIG 3 Histogram of time of maximum concentration in hours.
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gis-Escurra et al. (21), there are three differences. First, their OSS
was deliberately limited to time points of up to 6 h postdose, and
ours was not. Obviously, their proposed OSS of 1, 4, and 6 h for
rifampin administration times is more feasible in daily practice
than ours. In our OSS, these time points were not selected as the
best-performing OSS; thus, they result in a less accurate and pre-
cise prediction of the AUC values (21). The second difference is
that the model presented here was developed using a larger and
more heterogeneous population. The population consisted of
both fasted and fed patients, making our model more widely ap-
plicable for daily practice. Third, Magis-Escurra et al. used multi-
ple linear regression analysis to derive their OSS, whereas we used
a Bayesian approach in the current analysis. Both strategies have
advantages and disadvantages. The distinct advantage of our
Bayesian approach is that it is more flexible, allowing for devia-
tions from the exact sampling times at 1, 3, and 8 h (39). But this
requires use of our model and software, whereas multiple linear
regression analysis yields a straightforward equation to fill in.

Recently, Medellín-Garibay et al. published an OSS for analysis
of rifampin levels at 2, 4, and 12 h postdose (16). This is less
practical than the one presented here. The choice of those time
points may have been a consequence of their low elimination rate
constant and long half-life of 5.1 h, which are quite different from
those in the literature (6, 13).

Conclusions. A one-compartmental population pharmacoki-
netic rifampin model was developed in order to estimate the ef-
fective pharmacokinetic/pharmacodynamic parameters of rifam-
pin AUC values in tuberculosis patients. With an optimal
sampling strategy with sampling points at 1, 3, and 8 h, the model
is able to predict AUC0 –24 values with acceptable accuracy and
precision.
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