

Abstract

In this paper we propose a marker-free visual based interface

device to be used with menu driven systems. This system,

called HandsFree, uses the Graphics Processing Unit (GPU)

together with Shader technology to perform the image

processing. HandsFree makes use of a web camera to gain user

input and can be used in an array of surroundings. This paper

focuses on the architectural design and testing of the system.

1. Introduction

Visual Based Interfacing (VBI), also known as Vision Based

Interaction, has gained interest in the past couple of years as it

does not require users to have any hardware (except for a

camera or a sensor) to give input to the computer. The visually

obtained input is in the form of human movement. The two

ways of tracking movement are by using body markers and

tracking without markers [1]. Using markers for tracking

simplifies the job, but is invasive and time-consuming as the

user has to apply the markers each time before using the system.

Marker-free tracking on the other hand gives the user total

freedom of movement. Marker-free tracking is usually model-

based and input can be retrieved from one or sometimes

multiple cameras.

The EyeToy [2] that was specifically developed for the Sony

Playstation 2 is an example of a VBI device that does not make

use of markers. The commercially successful EyeToy is a

colour USB camera which is placed on top of or directly below

the television so that the user can be seen on the television

screen. The EyeToy requires users to use their body as the input

device. The elements of the game are augmented over the

recorded view. In the EyeToy: Lemmings game, as seen in Fig.

1, the user moves his arm to form a bridge for the lemmings to

walk over.

Figure 1: Screenshot of EyeToy: Lemmings being played.

The next section will follow with an overview of how other

researchers have visually obtained input without the use of

markers. It will be followed by an overview of the marker-free

VBI device, HandsFree, which is proposed in this paper. This

section will also look at how HandsFree works. A short

explanation of the setup of the web camera will then follow. In

section 5 the architectural design will be given and all the

elements of the system that has to do with the processing of

images will be explained. Following this the experimental setup

will be discussed and this will be followed by the experimental

results as well as a discussion of the results. The paper will

finish with concluding remarks.

2. Related Work

Research done by different people each found different ways of

visually obtaining user requests. Hansen et al. [3] focused their

research on tracking the human eye. They provided an

improved likelihood model to cope with major local and global

lighting changes and made use of an infrared camera to obtain

their input. Manresa-Yee et al. [4] uses a standard web camera

to obtain their input, which is in the form of eye winking

detection and nose tracking. By tracking the nose they

developed a system that replaces the use of the mouse. What

makes it different from the Camera Mouse is that it uses the

detection of eye winks to replace mouse button clicks.

Another popular feature to track is the human hand, as it is a

natural interface device for human beings. Kölsch et al. [5]

presented a fast hand tracking method that is robust against

indoor and outdoor lighting and dynamic backgrounds and that

can be used by different people. Their flock of features method

uses KLT (Kanade, Lucas and Tomasi) features, which detects a

feature as an area with a steep brightness gradient along at least

two directions. They use this together with foreground-

background separation where the hand is the foreground. The

separation is done by looking at the normalised RGB histogram

of the hand area together with a horseshoe-shaped area around

the hand and by doing skin colour detection of these two areas.

The skin colour of the specific user is learned as the user uses

the system and is not done a priori. The learning algorithm is a

variation of that developed by Strörring et al. [6].

Skin colour detection is very important in the field of VBI.

Research presented by Störring et al. in 2001 offered a robust

skin detection algorithm which provided a huge breakthrough in

human-computer interaction. They discovered that if an r-g plot

is made of all the pixels in the image, where r = R/(R+G+B) and

g = G/(R+G+B), then the skin coloured pixels are grouped

A Marker-free Visual Based Interfacing Device for Menu Driven

Systems

Willem Visser

University of Johannesburg
glasoog@gmail.com

Yuko Roodt

Highquest, Johannesburg
yuko@highquest.co.za

Willem A. Clarke, Member, IEEE

University of Johannesburg
willemc@uj.ac.za

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43601553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

together in a Skin Area in the plot. They also discovered that

the Skin Area is dependent on the Correlated Colour

Temperature (CCT) of the light source or combination of light

sources. The Skin Area is slightly different for different people

and particularly for different races of people, as can be expected.

Fig. 2 illustrates these phenomena.

(a)

(b)

Figure 2: (a) r-g Plot of Caucasian skin under four different

illuminations (the solid line shows the skin colour area,

modelled for each candidate); (b) r-g plot of three different

races’ skin under an illumination with CCT = 3680 K.

Although the Skin Area is different for different candidates

and under different light sources, an adaptation algorithm can be

used together with the above mentioned theory so that it can be

used in a VBI application, as was done by Gunther Heidemann

et al. [7] in their research for the VAMPIRE project. By

recording only four or five images of the user’s hand, they can

model the skin colour successfully. To show the pixels that fall

within the Skin Area, they change the pixel’s colour to white.

They used a Head Mount Display (HMD) as their output device

and two stills from the HMD of the skin detection are shown in

Fig. 3.

(a) (b)

Figure 3: (a) Untrained skin detector detects wood as skin;

(b) Trained skin detector.

Detecting skin colour is very useful when only the hand or

face needs to be tracked, but it is sometimes needed to track the

whole body, as in the case of human motion tracking.

The easiest way to do marker-free human motion tracking is

to use a stationary camera and to extract the moving human

silhouette from a background image. The background is

removed using background subtraction. Devlaeminck [8] in his

masters dissertation on human motion tracking presented a

system that is based on Zimmermann and Svoboda’s

probabilistic estimation of human motion parameters. The

system made use of 12 cameras in a room. These cameras were

positioned in such a way that the user can be recorded by at least

three of the cameras at any given time. The input from the

cameras was then used to position a model of the user in a 3D

virtual space in such a way that the model mimics the user.

Han et al. [9] used both colour and infrared cameras to better

the technique. By incorporating an infrared camera, which

operates in the long wave band of 8-12 µm, they record a

thermal image with pixel values representing temperatures. The

thermal camera has the advantage that lighting conditions as

well as the colour of the human’s clothes and skin are

disregarded. Also, the temperatures of the human are usually

significantly different from that of the background, making this

a robust type of detection.

3. An Overview of HandsFree

The problem with skin colour detection is that the system has to

be retrained for each new user. The VBI system proposed in

this paper will make use of learning the background as the

system can then be used by any user. This is better than the

method of background subtraction as HandsFree allows for

slight change in the background, even while the user operates

the system. HandsFree will specifically be used with menu

driven programs. The system consists of a web camera, a

projector or computer screen and a computational unit. The web

camera is a less expensive solution than an infrared camera, with

good results still being obtained through the use of localized

averaging. A model of the system is shown in Fig. 4.

Figure 4: Design of HandsFree.

To use the system, the user must walk underneath the camera.

The user is then recorded from above using a video camera that

is mounted against the roof. The live video feed is then

projected together with overlaid menu options against a white

wall or on screen. What the user views on the screen can be

compared to the face of a grandfather clock. Users are the

middle of the clock with their arms being the arms of the clock.

The menu options are displayed around the user like the

numbers of the clock. But instead of there being twelve options,

like that of a clock, there can be any number of options being

displayed, up to a certain limit. Users can then choose a menu

option by pointing one of their arms in the direction of the

desired option. The option will then be chosen and the next

level of options in the hierarchy will be displayed. HandsFree

also has the capability of calling a specified DLL or web service

function when a button is pressed. The names these functions,

their locations and parameters, as well as the menu hierarchy are

all specified in the System Design XML file. Button types are

used to distinguish between different types of buttons that can

be used in HandsFree. An example file is shown in Fig 5.

Figure 5: System Design XML file

HandsFree works as follows: It learns the background and

detects sudden changes in the area where buttons are located.

To do this the background is divided into 64x64 blocks and each

block is averaged. The averaging technique was introduced as

there are small differences from one frame to the next due to

small vibrations and due to the image quality from the web

camera. “Significant change” is when the colour at a pixel is

outside a pre-defined range around the average. The button-area

that shows the most change and is above a certain threshold is

marked as selected. If that button keeps the status “selected” for

more than a pre-defined time, the button is pressed. As users are

also gradually learnt into the background, their previous choices

will be remembered and this will interfere with the future use of

the system. To correct this, the learnt background is reset

whenever a new set of buttons is displayed. The usability and

restrictions of HandsFree depends on its pre-defined colour

range and selection time and the ideal settings for these

parameters will be investigated in sections 6 and 7.

4. Setting Up the Web Camera

In order for the system to work properly with a specific user or

group of users, it is important that the setup of the system is

done correctly. There are a lot of factors that come into play

when setting up the system. In Fig. 6 the setup is shown

together with the factors that need to be set for the system to

work correctly.

In order for the system to work correctly it is important that

the user is in the middle of the screen, occupying an area with

diameter Xhuman, and that the space around the user Xframe is

enough so that the option buttons can be displayed. Xhuman and

Xframe are directly proportional to the angles γ and ψ,

respectively, which accumulates to the viewing angle of the

camera, θ. As the height Hsh and width Wsh of the user’s

shoulders are fixed for a specific user, the desired input image

can be obtained by either adjusting the height of the camera Hcam

and keeping the viewing angle of the camera θ fixed, or by

changing the viewing angle θ and keeping the height of the

camera fixed. This means that the system can be set up in a

place with a low or high ceiling, with the ceiling height

depending on the viewing angle θ of the camera and visa versa.

This dependency is shown in the two setup equations shown

below that was derived in a previous paper by the authors [10].

The derivations made use of the golden ratio, φ, as well as the

fact that the angle ψ is a factor δ of the viewing angle θ.

arctan
2(2 1)()

human

cam sh

H

H H

 2
θ =  

(1− 2δ) ϕ + − 
 (1)

2(2 1) tan

human

cam sh

H
H H

 
 
 = +

(1− 2δ)θ  ϕ +   2  

 (2)

where

39 17

46 19
sh humanH H

 ϕ +
=  

ϕ + 
 (3)

5. Implementation

HandsFree was implemented in C++ with the image processing

being done on a NVIDIA GeForce 7300 graphics card. A

dependency diagram of the implemented system is shown in Fig.

7. The subsystems that formed part of the image processing,

starting at the foundation, are as follow:

• Graphics Processing Unit (GPU)

The graphics processor has many processors in parallel (the

amount being different for different types of graphics

processors) which gives it the ability to process images much

faster than a CPU. The image processing for this system is done

on the GPU, although the rest of the processing is done on the

CPU. How it was done will be explained later on.

• Simple DirectMedia Layer (SDL)

SDL is a dynamically linked library that is used but that was not

written by the author. SDL was used for its window handling

and timer capabilities. During development keyboard and

mouse input was used and SDL also provided the handling of

these input devices.

Figure 6: Camera setup

Figure 7: Dependency diagram of the marker-free VBI device

• OpenGL

OpenGL is an interface between the CPU and the GPU. It can

be seen as a set of built in functions to manipulate 3D objects in a

3D environment as well as the objects’ colours and textures. The

output of the system is displayed in a 3D environment on the

screen. The output image is a texture that is placed on a rectangle,

or quad as it is referred to in OpenGL. This quad can be placed

anywhere and at any orientation in the 3D environment, but for this

project it was decided to make the quad the same size as the screen,

with the orientation being the same direction as the screen, in other

words on the z axis.

• Video For Windows (VFW)

This is used to interact with streaming video and is used by the

CWebcam class to interact with the webcam.

• c3DFont

As the output exist in a 3D environment, text can not be displayed

in the same fashion as it would have been when for instance a DOS

box was used. c3DFont is a class that provides the functionality of

displaying text in a 3D environment. It takes ASCII text as an

input, together with the size the text should be, and constructs 3D

shapes of the text which can then be rendered in the 3D

environment on the screen.

• CGPUProcessing_Interface

There are a few standard functions that are often used in image

processing such as changing a colour image to its grey-level

equivalent or to a duotone black and white image. This set, which

is still growing, has been brought together in the

CGPUProcessing_Interface class. The functions of this class that

are used in this project are the bgra2rgba function that swaps the

blue and red channels of the incoming image and the vertical flip

function that flips the image vertically. This is necessary as the

webcam does not send the captured image in a RGB format with

the first elements in the array belonging to the top left corner,

which is generally the custom.

• CRender2Texture

This class allows a texture to be rendered onto a virtual quad,

meaning one that is not necessarily displayed. This quad can be

smaller than the original image. If for instance a 128x128 image is

rendered onto a 32x32 quad, then every block of 4x4 pixels on the

image is averaged to produce a pixel on the quad. This quad can

then again be stretched to produce a 128x128 averaged image.

This technique is used to do averaging as it requires less

processing than a written function that does the same. The reason

averaging is used in this application is to determine the

background’s average for comparison to see if users are holding

their hands over a button. The reason the image of the background

is not used as is, is because on a per pixel basis a pixel at a specific

location can change a lot due to small vibrations on location and

due to non-perfect image capturing technology being used by the

camera.

• CShader

A shader program is one that is performed either per geometrical

shape, per vertex or per pixel and is done on the GPU. These

shader programmes can be written in Assembly language but are

more generally done in the C++ language. This system made use

of pixel shaders to do the image processing and was written in the

C++ language. These shaders are stored in a text file and the

CShader class is used to load these programmes into the GPU and

to execute them on each pixel in the image. There were two

shaders that were written for this system. The one shader mixes

the current averaged image that was rendered by CRender2Texture

with the average history texture. By making the mix percentage

very low, the average history texture is able to change over a long

time without the user’s moving hand affecting the background a

lot. This continual learning is important as the background can

change during the day due to light changes on the location. The

other shader determines how many pixels are different from the

background and makes use of the average texture, the current

image and a black-and-white map of the buttons’ locations. This

shader is used to determine which button the user is currently

selecting, if any.

• CWebcam

CWebcam, together with VFW, gives the system access to the

images that is sent from the webcam. In earlier versions of the

system when the processing was being done on the CPU, this class

grabbed an image and placed it in an array. With the processing

now being done on the GPU, an image is grabbed and placed

directly in the GPU’s memory, thus increasing the overall

processing speed of the system.

• HandsFree

HandsFree is the overhead class that ties all the above mentioned

subsystems together. This class is also responsible for determining

which button is pressed, i.e. which button is covered most by the

user’s hands. It also reads the XML file and calls the appropriate

DLL or web service when it is required.

6. Experimental Setup

The usability and restrictions of HandsFree depends on its pre-

defined colour range and selection time, as mentioned in section 3.

The aim of the three experiments was to find the ideal settings for

these two parameters. The first two experiments set out to find the

ideal colour range.

HandsFree is intended to work in an array of environments, but

like any system it has its limitations. The first experiment looked

at different background colours to see if the difference between the

skin of a Caucasian hand and the background could be detected,

i.e. if the user was able to select and press a button for a certain

background. In this experiment the light was kept constant. A set

of 35 colours from the Plascon colour range was chosen as it can

easily be attained by the end user. The colour set that was chosen

for testing was series 06 and is between yellow and orange. The

colours in the series vary from an orange to a dark brown. Series

06 was chosen as it includes most skin shades. The series is

divided into five shades with seven colours in each shade. These

35 colours are given in Fig. 8.

Figure 8: Plascon Series 06 colours

Three different Colour Ranges (CR) were tested, namely 0.02,

0.05 and 0.07. Background colour is given as three values, each

between 0 and 1, representing the amount of red, green and blue in

the colour. If the background colour is for example R=0.7, G=0.5

and B=0.6 and a colour range of 0.02 was chosen, then colours that

has red values between 0.68-0.72, green values between 0.48-0.52

as well as blue values between 0.58-0.62 would be seen as

background colours. Thus the larger the colour range, the more

colours are included in the background-colour-range and the more

difficult it is to detect skin colour. The test was performed three

times, once for each of the colour range values, on each of the 35

colours.

Experiment 2 is the inverse of the first experiment. Here the

background colour was kept constant with the light source being

varied. The three colour ranges were tested for each of eight

different Light Source Levels (LSL) ranging non-linearly from 2.5

Lux to 10240 Lux, with the result (indicating if the user could

select and press a button or not) recorded each time.

The time a button is selected before it is pressed, i.e. the

selection time, determines the responsiveness of the system and

should be set by users according to what they feel is appropriate to

them. This may vary from someone who moves slower to others

who prefer the system to have a quick response. But there is

another factor that comes into play when setting the selection time

of HandsFree. This is the factor of windows in the room together

with the sunlight on a partly cloudy day.

HandsFree does continual learning of the background. This

enables the system to track changes in the background. The

learning rate is 10 seconds which means that a change will take 10

seconds to be fully incorporated into the learned background. This

slow learning enables users to select a button while subtle light

changes in the room will not do the same. But on a partly cloudy

day clouds can move in front of or away from the sun causing

sudden light changes.

In Experiment 3 the light intensity is changed from LSL 3 (200

Lux) to LSL 4 (320 Lux) in different time periods starting at 10

seconds down to 0.1 seconds. This is done for different selection

times starting at 0.2 seconds with increments of 0.2 seconds up to

1.2 seconds. In each case it was recorded if the system

automatically selected and pressed a button due to the light change.

All three experiments were done on two different high quality

web cameras in order to compare the results. The one is the A4

Tech PK-336MB web camera and the other the Canyon CNR-

WCAM413. The results of each experiment are presented as well

as discussed in the following section.

7. Experimental Results and Discussion

7.1. Experiment 1

In all the tables to follow “Y” indicates that the button was selected

and pressed by the user’s hand, “N” indicates that the user was not

able to press the button and “S” indicates that the button was

automatically selected and pressed without user input. This

phenomenon of automatic pressing has to do with the camera’s

automatic light adjustment when viewing dark colours. The

phenomenon is caused by enough of these adjusted pixels falling

outside the colour range to indicate a button as selected. A

continuation of this phenomenon will cause the button to be

automatically pressed.

Table 1: CR = 0.02; A4 Tech Table 2: CR = 0.02; Canyon

Table 3: CR = 0.05; A4 Tech Table 4: CR = 0.05; Canyon

Table 5: CR = 0.07; A4 Tech Table 6: CR = 0.07; Canyon

As the colours in Fig. 7 goes from one extreme to the next it was

expected that similarities between the Caucasian hand and the

background would be found somewhere in the middle. This was

the case with a colour range of 0.05 and 0.07. In the latter there

are too many colours that do not cause the Caucasian hand to

trigger a button. In the case with a colour range of 0.02 there are

no colours where the hand does not trigger a button. At first

glance this setting seems ideal, but there are colours that cause

buttons to be automatically pressed. When one of these colours are

in the background and do cause a button to be pressed without the

user’s consent, it becomes very difficult to operate the system.

With a colour range of 0.02 being too responsive and one of 0.07

being somewhat unresponsive, it seems that working with a colour

range of 0.05 give the best, although not perfect, response.

7.2. Experiment 2

Table 7: Colour range investigation in different light intensities

using an A4 Tech web camera

Table 8: Colour range investigation in different light intensities

using a Canyon web camera

From the above results there are a few observations that can be

made. First it is seen that different web cameras have different

algorithms for performing automatic light adjustment. Due to

these varying adjustment methods, different cameras are able to

work in different light ranges making some cameras more robust in

this area. Finally, as in the previous experiment, a colour range of

0.05 performs well when using a better quality camera.

7.3. Experiment 3

Table 9: Light change triggering with an A4 Tech web Camera

Table 10: Light change triggering with a Canyon web Camera

Tables 9 and 10 shows that sudden change in light, like when a

cloud moves in front of the sun, has no effect on HandsFree if a

selection time of 0.6 seconds or more is chosen.

8. Conclusion

In this paper a marker-free VBI device for the use with menu-

driven systems was proposed. By implementing the image

processing parts on the graphics card using Shader technology, it is

possible for the system to run in real-time.

The system was tested against background colours that are close

to that of Caucasian skin. The results showed that using a colour

range of 0.05, the system works with the most colours tested

without the system automatically pressing buttons. This setting of

0.05 also showed good results in different lighting intensities.

HandsFree was also shown to be robust against sudden light

changes if a selection time of 0.6 or more is used. This is

important as the system must be able to work in surroundings

where daylight is present on days when the weather is partly

cloudy.

References

[1] Remondino, F., “Tracking human movements in image

space”, Internal technical report at IGP - ETH Zurich, 2001

[2] SCEE Limited, “What Is EyeToy?”,

http://www.eyetoy.com/index.asp?pageID=18, Referenced

on 1 October 2007

[3] Hansen, D. W. and Hammoud, R. I., “An improved

likelihood model for eye tracking”, Computer Vision and

Image Understanding, 2007

[4] Manresa-Yee, C., Varona, X. and Perales López, F. J.,

“Towards Hands-Free Interfaces Based on Real-Time Robust

Facial Gesture Recognition”, AMDO, 2006, pp.504-513

[5] Kölsch, M. and Turk, M., “Fast 2D Hand Tracking with

Flocks of Features and Multi-Cue Integration”, IEEE

Workshop on Real-Time Vision for Human-Computer

Interaction (at CVPR), 2004

[6] Störring, M., Andersen, H. J. and Granum, E., “Physics-

based Modelling of Human Skin Colour under Mixed

Illuminants”, Robotics and Autonomous Systems, 35(3-4),

2001, pp. 131-142

[7] Heidemann, G. Bax, I. and Bekel, H., “Multimodal

Interaction in an Augmented Reality Scenario”, ICMI’04,

2004, pp. 1-8

[8] Devlaeminck, R., “Human Motion Tracking with Multiple

Cameras Using a Probabilistic Framework for Posture

Estimation”, Masters Degree in Electrical and Computer

Engineering, Purdue University, Indiana, 2006

[9] Han, J. and Bhanu, B., “Fusion of Colour and Infrared Video

for Moving Human Detection”, Pattern Recognition, 2006

[10] Visser, W., Roodt, Y. and Clarke, W. A., “Design

Considerations for a Marker-free Visual-Based Interfacing

Device for Telco Operation”, SATNAC, 2007

