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ABSTRACT
Associations between microorganisms occur extensively throughout Earth’s oceans.
Understanding how microbial communities are assembled and how the presence or
absence of species is related to that of others are central goals of microbial ecology.
Here, we investigate co-occurrence associations between marine prokaryotes by
combining 180 new and publicly available metagenomic datasets from different
oceans in a large-scale meta-analysis. A co-occurrence network was created by
calculating correlation scores between the abundances of microorganisms in
metagenomes. A total of 1,906 correlations amongst 297 organisms were detected,
segregating them into 11 major groups that occupy distinct ecological niches.
Additionally, by analyzing the oceanographic parameters measured for a selected
number of sampling sites, we characterized the influence of environmental variables
over each of these 11 groups. Clustering organisms into groups of taxa that have
similar ecology, allowed the detection of several significant correlations that could
not be observed for the taxa individually.

Subjects Computational Biology, Ecology, Genomics, Marine Biology, Microbiology
Keywords Metagenomics, Community ecology, Species interactions, Microbial ecology, Global
ocean

INTRODUCTION
Assembly of microbial communities is believed to be simultaneously regulated by stochas-

tic and deterministic processes (Langenheder & Szekely, 2011; Jeraldo et al., 2012; Stegen

et al., 2012). Neutral theory postulates that the composition of biological communities is

determined by stochastic processes only. In an extreme version of this theory, all species

are considered ecologically equivalent, and their abundances between environments are in-

fluenced exclusively by random events of birth, death and dispersion (Jeraldo et al., 2012).

In contrast, niche theory is based on the assumption that the species composition of an

ecosystem is entirely determined by environmental conditions, a process known as habitat

filtering (Dumbrell et al., 2010; Pontarp et al., 2012). This process results in communities
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of co-existing organisms with largely overlapping ecological niches, meaning that they

respond similarly to environmental conditions of their habitats and possibly compete for

resources (Ulrich et al., 2009; Maire et al., 2012). In contrast, niche partitioning, allows

co-occurring microorganisms to avoid competition by using different strategies to exploit

the diversity of resources available at their environment (Macalady et al., 2008).

Co-occurrence patterns between organisms can reveal ecological associations that take

place between the members of a community. For example, if two organisms are frequently

present together, and absent together, across multiple environments or samples, this can

be interpreted as evidence that they occupy similar ecological niches (Horner-Devine et

al., 2007; Faust & Raes, 2012). Observing ecological associations among microbes in situ

represents a much less trivial task than doing so for animals and plants. Therefore, analysis

of co-occurrence networks represents an alternative to infer possible associations between

microorganisms (Barberan et al., 2012; Eiler, Heinrich & Bertilsson, 2012; Faust & Raes,

2012), and between microorganisms and environmental parameters (Ruan et al., 2006;

Gilbert et al., 2012).

Here, we performed a meta-analysis of marine metagenomes from pelagic regions of the

oceans around the globe, which includes previously published and new metagenomes from

the South Atlantic Ocean, a poorly characterized marine realm. We identified patterns

of co-variation between members of the marine microbiome. Our analysis identified

hundreds of significant correlations that were used to build a co-occurrence network

that sheds light into ecological processes taking place in the global ocean. Clustering

the taxa of the network revealed groups of co-occurring prokaryotes that share a similar

ecological niche. Next, we describe relationships between these groups and environmental

parameters. Our results contribute to a better understanding of the processes that govern

community assembly and inter-species co-occurrence patterns in the pelagic oceans, and

provide important general insights for the understanding of microbial ecology.

METHODS
Samples
A collection of 180 metagenomes were retrieved from MG-RAST (Meyer et al., 2008)

(Table S1). Samples covered four major global oceans (Atlantic, Pacific, Indian, and

Antarctic) and a broad depth range (0–4,800 m). Sampling sites of each metagenome

are illustrated in Fig. 1. Among these samples, 71 metagenomes were obtained from

the South Atlantic Ocean. These metagenomes were sampled, processed and analyzed

as previously described (Bruce et al., 2012; Alves Jr et al., 2014). The remaining 109

metagenomes were obtained from distinct sites throughout the planet and were publicly

available at the MG-RAST server. We chose our dataset aiming to cover a broad range

of environmental conditions, allowing for enough variation in microbial abundance to

occur between samples so that significant correlations can be detected. Our methodology

has been shown to be appropriate to detect associations between microorganisms that

can provide insightful information on their ecology (Fuhrman & Steele, 2008;

Beman, Steele & Fuhrman, 2011; Steele et al., 2011; Barberan et al., 2012; Eiler, Heinrich &
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Figure 1 Sample locations. Map of metagenome sampling sites: Blue circles represent metagenomes
sampled at the South Atlantic Ocean. Yellow circles represent publicly available metagenomes from other
regions of the planet.

Bertilsson, 2012; Faust & Raes, 2012). The differences in the environmental characteristics

of the samples (e.g., location, season, depth) are required so that enough variation exists

between samples so that relevant co-occurrence patterns can be detected. If we were to

work with samples that were too homogeneous, very little variation would be observed

concerning taxon abundances and environmental parameters, impairing the detection

of relevant correlations. This broad range of environments provides the variation among

samples that is necessary for non-spurious correlations to be detected, among taxa and also

between taxa and environmental parameters (Barberan et al., 2012).

Prior to analysis, sequences from the MG-RAST metagenomes were de-replicated and

filtered according to Phred score (≥20) and length (≥75 bp). No assembly was performed

as to preserve the quantitative information within the metagenomes and to avoid the

formation of chimeric sequences. All metagenomes were subjected to the same analysis

pipeline. Taxonomic annotation was performed through the MG-RAST server best hit

classification. Raw reads were translated in all 6 frames and aligned against Genbank as the

reference database through BLAT (Meyer et al., 2008). This database was chosen due to the

richness of complete genomes of marine microbes within it, such as those sequenced by the

The Gordon and Betty Moore Foundation Marine Microbial Genome Sequencing Project.

The cut-off parameters for annotation of a sequencing read were: e-value ≤ 10−5 and

sequence identity ≥60%. Raw taxonomic counts were converted to relative abundances by

dividing the count of each taxon by the total of annotated reads in each metagenome. A

complete list of all 180 metagenomes including their MG-RAST identifiers, total number

of reads, average read length, total bases, geographical coordinates, depth and original

publication are available as Table S1.

Physical and chemical parameters
The South Atlantic sampling sites were characterized regarding their water quality

conditions, at the time of sampling, by the following methods: Chlorophyll-a analysis
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was performed following positive pressure filtration of 2 L of seawater. Filters (glass

fiber Whatman GF/F) were kept overnight under a solution of 90% acetone at 4 ◦C

for extraction, and analyzed by spectrophotometry or fluorimetry. One liter of water

from each sampling site was frozen and stored for further analysis of inorganic nutrients

through the following methods: (1) ammonia by indophenol, (2) nitrite by diazotization,

(3) nitrate by reduction in Cd–Cu column followed by diazotization, (4) total nitrogen by

digestion with potassium persulfate following nitrate determination, (5) orthophosphate

by reaction with ascorbic acid, (6) total phosphorous by acid digestion to phosphate,

and (7) silicate by reaction with molybdate. All analyses were carried out as previously

described (Grasshoff, Kremling & Ehrhardt, 2009; Alves Jr et al., 2014).

Correlations network
Taxonomic annotations at the genus level were used as we considered any classification

at deeper levels (i.e., species or strain) to be unreliable when dealing with the short reads

from second generation sequencing technologies, which represent a significant fraction of

our samples. Spearman rank correlation scores (R) were calculated between the relative

abundances of all possible pairwise combinations of taxa. All taxa detected in less than

40% (n = 72) of the 180 samples, were excluded from this analysis to prevent sparsely

distributed taxa with abundant zero values to yield spuriously high correlation scores.

Multiple test correction was performed according to the False Discovery rate (FDR)

procedure (Benjamini & Hochberg, 1995). Correlations for which the p-value and q-value

were ≤0.001 and Spearman-R score ≤−0.6 or ≥+0.6 were considered significant and

plotted as a network through Cytoscape (Saito et al., 2012).

Node clustering
CFinder (Palla, Barabasi & Vicsek, 2007) was applied to identify clusters of highly

connected taxa within the network through the Clique Percolation Method. “Cliques”

are defined as groups of nodes (in these case the microbial taxa), which tend to have

more connections with each other than with other members of a network. A k-step of 3

was chosen for this analysis so that cliques formed by three organisms or more could be

identified. Our goal was to identify groups formed by taxa connected by significant positive

correlations, therefore negative correlations were not considered by the Clique Percolation

Method. Cliques were numbered according to the abundance of nodes assigned to each of

them. Henceforth, these cliques will be referred to as “groups”.

Network consistency
The consistency of the correlations in the network was assessed through a sub-sampling

strategy. One hundred new networks were calculated, each from a random sub-sample of

162 out of the 180 metagenomes. Next, the original and new networks were compared and

we measured how often each one of the correlations from the original network were also

detected in the new networks. The consistency of the groups identified through CPM was

assessed by applying the algorithm over the 100 new networks and measuring how often
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pairs of taxa that were assigned to the same group in the original network also clustered

together by CPM in the new networks.

To account for occurrences of spurious correlations between genera due to the

compositional (i.e., percentages) nature of our data, correlation scores of the original

network were compared against those obtained through SparCC (Friedman & Alm, 2012).

This tool was developed to calculate correlations between microbial abundances while

eliminating errors that may emerge due to the use of compositional data. SparCC was run

using default parameters.

Correlations between groups and environmental parameters
We addressed the influence of habitat variables over the groups identified by CFinder.

For that end, Spearman rank correlation scores were calculated between the relative

abundances of the groups and environmental parameters measured for the South Atlantic

Ocean samples (n = 71, Table S2). Group abundances were calculated as the sum of the

relative abundances of all of its members. The environmental parameters used for this

analysis were: total nitrogen, nitrite, nitrate, ammonia, total phosphorus, orthophosphate,

chlorophyll a, silicate, temperature, depth, latitude and longitude. To identify associations

between groups, Spearman correlation scores were calculated for all the possible pairwise

combinations of groups. This step of the analysis encompassed all metagenomes (n = 180).

In both cases, only correlations which yielded a p-value ≤ 0.01 and q-value < 0.05 were

considered significant.

RESULTS
The taxonomic composition of 180 marine metagenomes was used to build a network of

correlations between genera of microorganisms. Next, the members of this network were

clustered in groups based on the significant correlations between them. Correlation scores

were measured between pairwise combinations of these groups and between the groups

and environmental parameters of the South Atlantic sampling sites.

Network parameters
The resulting network was composed of 297 taxa (nodes) and 1,906 correlations (edges)

(Fig. 2), of which 1,863 were positive correlations (mean R = 0.68 ± 0.06) and 43 were

negative correlations (mean R = −0.62 ± 0.02). The network had a clustering coefficient

(tendency of nodes to cluster together) of 0.54 and density (the number of edges in the

network divided by the possible maximum) of 0.04. The average node degree (number

of connections of a node) was 5.3 ± 8.04. Using the Clique Percolation Method, we

identified eleven groups of co-occurring microbial taxa, containing between three and

eighty members. Of the 297 microbial taxa, 229 were assigned to a single group, while

65 were assigned to none. Three genera where assigned to more than a single group:

Marinomonas (present in two groups), Polynucleobacter (two groups) and Haliangium

(three groups). The composition of these groups is described in Table S3.

Out of the 1,906 correlations in the original network 1,843 (98%) were consistent in at

least half of the sub-sampled networks. Groups assignments also yielded high consistency,
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Figure 2 Correlations network: the 1,906 edges linking 297 nodes represent significant correlations between the relative abundances of the
connected taxa. Positive correlations are showcased in green while negative ones are in blue. The width of the lines is proportional to the
module of Spearman’s R of each correlation. Node size represents the average abundance of the taxa across the 180 metagenomes. Nodes are
color-coded according to the group to which they were assigned through the Clique Percolation Method. Nodes not assigned to any group
are colored in white and nodes assigned to more than a single group (Polynucleobacter, Marinomonas and Haliangium) are colored in gray.
For clarity, members of Groups 1 and 2 that are connected by negative correlations are displayed separately from the remaining taxa of their
respective groups. Pelagibacter, Prochlorococcus and Synechococcus showed the highest average abundance. Positive correlations dominate the
network. The majority of negative correlations were observed between members of groups 1 and 2, between classical examples of oligotrophs
and copiotrophs (e.g., Pelagibacter/Yersinia). Groups 8 and 9 are isolated, while the remaining groups have at least one edge linking them to other
nodes in the network. Strong positive correlations were observed between the members of groups 8 and 9 (e.g., Synechococcus/Prochlorococcus and
Cenaracheum/Nitrosopumilus).

99% of the pairwise group assignments of the original network were consistent across at

least 50% of the sub-sampled networks. Comparison between networks calculated through

Spearman correlations and SparCC, revealed that 98,7% of all correlations detected in

the first were also present in the latter (module o R > 0.3), indicating that correlations of

the original network are not spurious due to the compositional nature of the data. The

difference in correlation scores between the networks are likely the effect of non-linear

associations between variables, that cannot be captured by SparCC.

Composition of groups identified through the Clique Percolation
Method
Group 1 harbored 80 genera distributed among seven bacterial phyla (Firmicutes, Chlo-

roflexi, Fusobacteria, Planctomycetes, Proteobacteria, Bacteroidetes, and Actinobacteria),

this group had more members than any other and also harbored the highest number

of phyla. Many of the members of Group 1 are typical genera of heterotrophic aquatic

bacteria (e.g., Vibrio and Shewanella). Group 2, formed by 78 members, was dominated by
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genera of Alphaproteobacteria (e.g., Puniceispirillum and Rhodobacter) and Bacteroidetes

(e.g., Chryseobacterium and Cytophaga), this group also harbored the ubiquitous

Pelagibacter genus. Most of the members of Group 3 were Actinobacteria or Chloroflexi,

but other phyla (e.g., Acidobacteria, Firmicutes, Proteobacteria and Chlorobi) were also

represented in this group. Group 4 was formed by 13 genera of Gammaproteobacteria, from

the orders Pseudomonadales, Alteromonadales, Chromatiales and Oceanospirillales. The

majority of genera assigned to Group 5 were either Verrucomicrobia or Planctomycetes,

with only three exceptions: Haliangium, Stigmatella and Lentisphaera. Group 6 was

formed by genera of Euryarchaeota, which included several methanogenic organisms

(e.g., Methanothermobacter). Group 7 was formed by genera of photosynthetic organisms

of the phylum Cyanobacteria (e.g., Anabaena, Cyanothece and Lyngbya). Group 8 was

composed entirely of Archaea, including the genera Cenarchaeum and Nitrosopumilus as

well as unclassified organisms from the phyla Thaumarchaeota and Crenarchaeota. Group

9 was also composed entirely of Cyanobacteria. The photosynthesizers Prochlorococcus and

Synechococcus, both among the most abundant organisms in the analyzed metagenomes,

were assigned to this group, along with Cyanobium. Group 10 was formed by three genera

of Myxobacteria: Myxococcus, Plesiocystis and Haliangium, the latter was also a member of

groups 4 and 5. Only three taxa are part of Group 11, all Proteobacteria: Polynucleobacter,

Methylococcus and Sideroxydans.

Correlations between groups and environmental parameters
Correlations calculated between environmental parameters, of the South Atlantic Ocean

and the relative abundance of the groups of microorganisms produced unique patterns

for each group (Fig. 3A). With the exception of ammonia, all variables produced at least

one significant correlation with at least one group. Total phosphorus produced significant

correlations with eight groups, more than any of the other variable. The pattern of correla-

tions detected between silicate and seven of the groups was similar to that observed for total

phosphorus, but silicate showed no significant correlation with Group 4. The third variable

with most significant correlations was depth (5 groups). The variables that produced least

significant correlations were Chlorophyll a (1), latitude (1) and Ammonia (0).

The abundance of Group 1, which harbored many heterotrophic and pathogenic organ-

isms, showed positive correlations with depth and several nutrients (i.e., orthophosphate,

total phosphorus, silicate, nitrate and total nitrogen), also, a negative correlation was

detected between salinity and the abundance of this group. The abundance of Group

2 (mainly Alphaproteobacteria and Bacteroidetes) was negatively correlated with three

nutrients (nitrate, total phosphorus and silicate). Additionally, a positive correlation

with nitrite was observed for this group. Significant positive correlations were obtained

between the abundance of Group 3, composed of many extremophilic organisms, and total

nitrogen, total phosphorus, orthophosphate and silicate. This same group had negative

correlations with salinity, temperature, latitude and longitude. Positive correlations were

detected between Group 4 (all Gammaproteobacteria) and both nitrate and total phos-

phorus. The abundance of group 5 showed positive correlations with orthophosphate and
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Figure 3 Correlations between groups and environmental parameters. Heatmap of correlation scores:
(A) Correlations calculated between group abundances and environmental parameters. (B) Correlations
calculated between group abundances. Positive correlations are showcased in green while negative ones
are in blue. Non-significant correlations (p > 0.01 or q > 0.05) are shown as white squares.

depth, and a negative one with temperature. Group 6, composed mainly of methanogenic

Archaea, had a positive correlation with depth, no other significant correlations were

detected between the abundance of these organisms and the other environmental variables.

Group 7, composed of Cyanobacteria, showed negative correlations with total nitrogen,

orthophosphate, total phosphorus and silicate. Positive correlations between salinity and

longitude were also observed for Group 7. Positive correlations were detected between

Group 8 and nitrate, total phosphorus, silicate and depth, and a negative correlation with

temperature. Group 9, also formed by Cyanobacteria, showed negative correlations with

total nitrogen, orthophosphate, total phosphorus, silicate and depth, positive correlations

with salinity, temperature and longitude were also observed. Group 10 showed positive

correlations with total phosphorus and silicate. A positive correlation between Chlorophyll

and Group 11 was observed, no other significant correlations were observed for this group

or this environmental parameter.

Several relationships emerged from correlating the relative abundances of the eleven

groups between each other (Fig. 3B). Both positive and negative, significant correlations

were detected and each group presented a unique pattern of correlations with the others.

DISCUSSION
Assessing technical heterogeneity biases
We opted for using samples derived from a broad spatial range (Fig. 1) so that we could

identify microbial occurrence patterns that are applicable to the entirety of the oceans. Ide-

ally, all of our samples would have been processed with the exact same protocols (e.g., for

water filtering, DNA extraction and sequencing). Yet, restricting our dataset to one that fits

these criteria would result in a very small number of samples, drastically impairing both

the power of our approach and the relevance of our results, which emerge from the use

of a large number of samples from a broad range of environments. The use of different

sequencing technologies can indeed yield slightly different results for taxonomic compo-

sition. Nevertheless, these differences were shown to be of very little impact for the overall

patterns of community composition (Danhorn, Young & Delong, 2012; Luo et al., 2012;

Coutinho et al. (2015), PeerJ, DOI 10.7717/peerj.1008 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.1008


Solonenko et al., 2013). This is in agreement with previous studies which have shown that

despite the potential biases that may be introduced by these methodologies, metagenomes

carry a strong taxonomic and functional signal which is not surpassed by sample prepara-

tion biases (Dinsdale et al., 2008; Willner, Thurber & Rohwer, 2009; Faust et al., 2012).

We addressed the potential biases in metagenomes that could emerge from different

sample preparation strategies in different ways. First, we assessed to what extent samples

are grouped according to the laboratory by which they were processed. To do this,

Euclidean distances were calculated between metagenomes based on their genera com-

position. These distances were used as input for Principal Coordinates Analysis (PCoA). In

a scenario where the taxonomic composition of a metagenome is strongly determined by

sample processing, metagenomes are expected to cluster tightly by laboratory. This pattern

is not present among our samples (Fig. S1).

Second, we evaluated which of the 297 taxa of the network are over or under-

represented in the samples from one laboratory, when compared to the samples from the

remaining laboratories, by using the Mann–Whitney test, with multiple testing correction

through the FDR. We assume that potentially biased taxa are those that are significantly

over or under-represented on samples of a single laboratory. However, if a taxon is over

or under-represented across multiple laboratories, it is more likely that this is a true

biological signal of the samples analyzed by those projects, rather than a bias emerging

from different sample processing methodologies. According to these criteria, only 14

taxa could be potentially biased (q value < 0.05, see Table S4 for the full list of taxa,

the laboratories in which they are enriched and the groups to which they were assigned

within the network according to CFinder). It is not possible to determine if this pattern

emerges from a true biological signal within the samples, or if they are the result of sample

preparation methodologies. Nevertheless, if the case is the latter this is likely to be over very

little influence in the overall results, considering that only a very small fraction of all the

taxa in the network fall within this category (<5%).

Third, to further explore issues that might arise from sample preparation, we

recalculated a correlations network using only the 71 samples from the South Atlantic

ocean sampled by Thompson et al. (see Table S1). These represent the largest consistent

group regarding sample preparation strategies. We then compared the correlation scores

from the global network (180 metagenomes) to those obtained using only the south

Atlantic samples (71 metagenomes, see Table S5). The average absolute Spearman-R

values of these two networks are respectively 0.67 ± 0.06 and 0.37 ± 0.21 and a significant

correlation exists between these values (Pearson R 0.37, p-value < 2.2−16), providing yet

another evidence that the 1,906 correlations from the global network are consistent within

a homogeneous dataset regarding sample preparation methods and do not result from

sample preparation bias.

Groups are formed by organisms with shared ecological niches
Several genera assigned to Group 1 are copiotrophic bacteria (i.e., thrive in nutrient rich

conditions) such as Vibrio, Pseudomonas, Escherischia and Clostridium. As a consequence
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of their nutritional demands, these genera are frequently abundant in eutrophic waters

(Gilbert et al., 2010; Gregoracci et al., 2012), in which nutrient concentrations are high. In

contrast, many of the genera affiliated to Group 2 are oligotrophic bacteria, characteristic

of aquatic environments where nutrients are scarce. The extremely abundant genus

Pelagibacter, which possesses several adaptations to thrive in nutritionally poor waters

(Carini et al., 2013; Tripp, 2013) was assigned to this group, along with other genera

adapted to live at nutrient deprived environments, such as the chemolitoautotrophic

Oligotropha (Paul et al., 2008) and the heterotrophic Maricaulis (Abraham et al., 1999).

Therefore, trophic strategies appear to be the unifying trait of the members of these

two groups.

Many of the members of Group 3 are capable of surviving in extreme habitats, such

as Thermomicrobium, capable of growing in elevated temperatures, and Acidothermus,

capable of tolerating both low pH and high temperatures (Mohagheghi et al., 1986; Wu

et al., 2009). These organisms were detected in metagenomes from samples retrieved at

non-extreme environments, and encompassed several phyla. Despite their phylogenetic

distance and differences regarding their adaptations to thrive in extreme environments,

these genera of extremotolerants may share similar habitat preferences at mesophilic

waters. Shared niche can also explain the correlations occurring within Group 6, which

is dominated by genera of methanogenic Archaea. Co-variation in the abundance of

these organisms is expected since methanogenesis usually takes place in very specific

environments: rich in organic matter and poorly oxygenated (Peng et al., 2008; Angel,

Matthies & Conrad, 2011). Even though we applied a highly conservative e-value cutoff

(≤1 × 10−5) it is also possible that some of the sequences received incorrect taxonomic

assignments, which could explain the presence of extremophilic organisms at mesophilic

environments.

The highly abundant genera Prochlorococcus and Synechococcus were assigned to Group

9, along with Cyanobium. Meanwhile the much less abundant genera of Cyanobacteria

(e.g., Anabaena and Cyanothece) were all assigned to Group 7. No significant correlations

were detected between any of the members of these two groups. Differences in how

these two groups make use of the resources available at the marine ecosystem could be

responsible for the increased ubiquity and abundance of Prochlorococcus and Synechococcus

among Earth’s oceans, traits which are not shared with the Cyanobacteria of Group 7.

The success of Prochlorococcus sp., especially in oligotrophic waters, has been attributed

to reduced genome and cell sizes, as well as high rates of nutrient uptake (Zubkov et al.,

2003; Partensky & Garczarek, 2010). Distinctive traits of bacteria from Group 7 include

the formation of filamentous colonies in the water column (Rice, Mazur & Haselkorn,

1982; Sanudo-Wilhelmy et al., 2001), blooms (Albert et al., 2005), and also the diazotrophic

metabolism present in several of its members (Reddy et al., 1993; Omoregie et al., 2004;

Bergman et al., 2013).

Based on these observations, we may conclude that the groups identified in the network

are formed by organisms which occupy similar ecological niches (Chaffron et al., 2010;

Freilich et al., 2010; Faust et al., 2012). Positive correlations could also be the result of
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collaborative associations (i.e., mutualism). Our data does not allow us to differentiate

positive correlations emerging from sharing of an ecological niche from mutualistic

associations (Chaffron et al., 2010; Faust et al., 2012). Although these associations

may occur, previous studies have also concluded that positive correlations detected at

microbial correlation networks are representative of niche overlap rather than cooperative

associations and consider this to be a more parsimonious explanation for the occurrence of

these correlations (Foster & Bell, 2012; Levy & Borenstein, 2013).

Previous analysis of microbial networks have reported that phylogenetically related

organisms co-occur with each other more than expected by chance, as consequence of

sharing a niche (Chaffron et al., 2010; Barberan et al., 2012). Some of the groups identified

consisted of phylogenetically related taxa (e.g., groups 4, 6, and 10). However we also ob-

served groups composed of distantly related organisms (e.g., groups 1, 2 and 3). Moreover,

closely related organisms sometimes occurred in different groups (e.g., Cyanobacteria

divided between groups 7 and 9). These patterns suggest that group composition was

determined by niche distribution, rather than by phylogenetic relatedness.

It is important to take some matters into consideration when interpreting the results of

the network. Organisms that were assigned to the same group do not necessarily occupy

identical ecological niches. Instead, organisms of the same group have a higher degree

of niche similarity between themselves when compared to other taxa of the network.

Synechoccoccus and Prochlorococcus can be taken as an example of this pattern. These

genera were grouped together by the Clique Percolation Method, the two taxa have well

defined differences in their niche preferences, with regard to their geographic and temporal

distributions, light harvesting apparatus and nutrient acquisition machinery (Partensky,

Blanchot & Vaulot, 1999; Scanlan et al., 2009). Despite those differences, the two groups

of picocyanobacteria have many similarities in central aspects of their physiology, such as

the photosynthetic metabolism, reduced cell and genome sizes, and carbon concentration

mechanisms. These similarities may be the more important aspects that regulate their

response to environmental conditions, thus giving rise to the strong positive correlations

observed between their abundances. In addition, the taxonomy of Synechoccoccus and

Prochlorococcus has not been fully elucidated, thus erroneous taxonomic assignments may

have contributed for the correlations between the groups.

Also, it is likely that some of the organisms detected in the metagenomes are dormant

or inactive. At this state, this organisms are not responding to the fluctuations of the

environmental parameters taking place at their habitat. Therefore, no covariation

should be expected to occur between these organisms and the active ones. Therefore,

no false-positives are expected to arise due to the occurrence of inactive organisms.

Niche segregation in marine microbial communities
Each of the groups identified by the Clique Percolation Method represent genera that

share a similar ecological niche. This means that our analysis detected 11 groups of

prokaryotes with distinct ecologies. This is a conservative number since the heterogeneity

and extension of the oceans contribute to a much wider diversity of niches to be occupied.
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Additionally, the number of groups detected will depend on methodological parameters

including the k-step chosen for the Clique Percolation Method (k = 3), the cutoff

established for the Spearman correlations scores (≥0.6 or ≤−0.6) and the minimum

ubiquity of the taxa among the 180 samples (40%). Nevertheless, the detected correlations

and group compositions were consistent in the sub-sampled networks. Finally, since the

very rare organisms (i.e., detected in less than 40% of all metagenomes) were excluded

from the network it is possible that the groups formed by them were disregarded as well.

Studies based on genomic analysis have shown that small variations in protein encoding

genes may lead organisms that belong to the same genus, or even the same species to

occupy different niches (Rocap et al., 2003; Kashtan et al., 2014). Species, and strains can

have unique traits (e.g., strategies for assimilation of organic compounds and spatial

distribution) that set them apart from the other members of their genus (Johnson et al.,

2006; Del Carmen Muñoz-Maŕın et al., 2013; Thompson et al., 2013). These differences

could further segregate them into sub-divisions of the 11 groups identified through our

network. Unfortunately, due to their length, metagenomic reads generated by second

generation sequencing technologies cannot produce reliable annotations at taxonomic

levels deeper than genus.

Influence of environmental parameters
Many associations were detected between the groups and environmental parameters. Yet,

none of them yielded perfect correlation scores with the abundance the microbial groups.

This is expected considering that the abundance of these groups, in the environment, is

regulated by many variables simultaneously. Therefore, it is unlikely that a single measured

physical or chemical parameter can adequately explain the abundance of a group across all

the samples. Nevertheless, the pattern of significant correlations detected between group

abundances and environmental parameters provides insights into how the members of

these groups are influenced by environmental variables of their habitat and what niche is

occupied by them.

Positive correlations were detected between several nutrients (i.e., nitrate, total

nitrogen, orthophosphate, total phosphorus and silicate) and the abundance of Group

1 (Copiotrophs). Meanwhile, negative correlations where detected between Group 2

(Oligotrophs) and nitrate, silicate and total phosphorus (Fig. 3A). This pattern shows that

members of Group 1 are more abundant in waters that are rich in these nutrients, while

Group 2 is more abundant in regions of the ocean deprived of them. This is corroborated

by our observation that an increase in the abundance of one group is accompanied by a

reduction in the abundance of the other, leading to significant anti-correlations between

the abundances of these organisms, which were observed when comparing the abundances

of the genera individually (Fig. 2) and of the whole groups (Fig. 3B).

Groups 7 and 9, composed of Cyanobacteria, both showed negative correlations

with total nitrogen, orthophosphate, total phosphorus, and silicate. These results are in

accordance with genomic analyses of Synechococcus sp. and Prochlorococcus sp., members of
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Group 9, which possess several features that contribute to the success of these organisms in

oligotrophic conditions (Lauro et al., 2009).

Clustering unveils the ecology of marine microorganisms
The associations between group abundances and the physicochemical environmental

parameters (Fig. 3A) provide insights regarding the ecological roles and niche preferences

of the identified groups. Interestingly, such correlations were not significant when these

same habitat variables were compared with the abundance of the individual genera that

are part of these groups. We suggest that clustering organisms based on co-occurrence

is a useful and necessary tool to reveal elusive associations between microorganisms and

habitat variables.

Considering the evidence that the organisms from the same group occupy similar

niches, it is possible that they are ecologically redundant (i.e., they contribute with the

same, or at least similar, roles for ecosystem stability). We propose that each of the groups

identified in the network contributes to ecosystem stability by performing a distinct

ecological role at the marine environment. Members of a microbial community eventually

decline as a result of processes such as phage predation, grazing or a drastic change

in environmental conditions. Withering organisms can be replaced by their ecological

equivalent, which possesses the necessary features to fill the niche left unoccupied (Gifford

et al., 2012). This cycling of species would preserve the ecological roles that are necessary

to sustain an ecosystem, as described by the insurance hypothesis (Yachi & Loreau, 1999;

Allison & Martiny, 2008). In that case, the influence of environmental parameters would act

upon all the members of a niche and not over the individual taxa (as these are redundant

and interchangeable), which could explain why these correlations could only be detected at

the group level.

CONCLUSIONS
The correlations network proved to be a valuable tool to disclose shared ecological niches

in the global ocean microbiome. Habitat filtering and niche segregation may be considered

important factors controlling the taxonomic composition of microbial communities from

different locations of the global ocean. The data presented here provides insights into

the ecological processes that structure marine microbial communities and show that

clustering organisms into ecologically cohesive groups may reveal elusive associations

between microbes and habitat variables. The advancement of technologies that allow

microbial communities to be studied, in situ and at higher spatial resolution (i.e., at the

micro, rather than the macro-scale) will help broaden the scope of the analysis presented

here, allowing for deeper understanding of the ecology of marine microbial communities.
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