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Abstract—CCTV systems are frequently monitored manu-
ally by a human observer. This human observer is typically
responsible for dealing with tens or hundreds of cameras
at a time. Potential security threats may easily be missed
by the system’s human operators due to fatigue or being
overwhelmed by the amount of change in the images. The
timely detection of security threats is an important attribute
for any security system. A robust algorithm for detecting
potential threats from a surveillance video is presented.

Index Terms—GPGPU, video surveillance, illumination
invariant, noise rejection.

I. Introduction
Security is a primary concern for public transport hubs

such as train stations, bus stations, airport terminals
and city councils. This is due to the important role that
public transport has on relieving congestion in cities. The
effectiveness of public transport security in this regard is
related to how the traveling public perceives the security
when deciding whether to make use of public transport.

Video surveillance is an important tool in increasing
the security in public transport areas. Security is in-
creased in actual terms by using surveillance footage
as evidence after an event has occurred. Furthermore
additional surveillance cameras affects how the traveling
public perceives the increase in security.

A traditional method employed in detecting these se-
curity threats involves an operator manually monitoring
many different camera feeds for any security violations.
After 20-40 minutes of surveillance a human operator
may suffer from a condition called “operator blindness”
[1,2]. This is a phenomenon where the ability of the
operator to detect security threats is severely reduced
by fatigue.

This method requires a large staff of operators to
function efficiently. Compounding the problem is the
fact that due to public demands for increased safety, the
amount of Closed Circuit Television (CCTV) systems has
increased. This substantially increases the volume of data
generated daily making it unfeasible to analyse manually
with human operators.

Previous approaches to automated security surveil-
lance systems include the CROwd Management with

Telematic Imaging and Communication Assistance
(CROMATICA) and the follow up project, PRo-active
Integrated systems for Security MAnagement by Tech-
nological, Institutional and Communication Assistance
(PRISMATICA) [1,3].

The security issues being detected by the computer
aided system are foreign stationary objects. These are
objects that remain stationary for a suspicious amount
of time. An example of foreign stationary objects to be
detected include loiterers, beggars, vagrants and unat-
tended luggage. As with detecting any security concern
the detection speed and accuracy is important.

The general approach to foreign object detection con-
sists of generating a reference image which represents
the background and subtracting it from an incoming
frame to obtain all the foreground objects [4]. This
method suffers from an oversensitivity to changes in illu-
mination which results in false detections [5]. Analysing
the movements of these foreground objects can indi-
cate which objects are stationary [1]. Another method
involves thresholding images to their level line represen-
tations and determining what pixels remain stationary
for a certain history of images [3]. Both these methods
are vulnerable to:

• Contrast changes: which results in false detections,
• Occlusion: due to camera position stationary objects

may be occluded by a crowd or other objects, and
• Motion: small movements by seemingly stationary

people, i.e. small movements of feet, hands and head
occur frequently.

In Section 2 of the paper we describe the theory
used in designing a foreign stationary object detector.
Section 3 contains the stationary foreign object detec-
tor algorithm and its implementation. The experimental
setup and its effectiveness are described in Section 4
and Section 5. In Section 6 we summarize the work and
provide suggestions for future work.
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Fig. 1. (a) Original image. (b) Original image histogram. (c) Contrast
enhanced image (d) Contrast enhanced image histogram.

II. Theory

A. Image Contrast Normalization
Image enhancement techniques aim to improve the

visual appearance of an image. This improves the ability
of the system to analyse the image information [6].

Image contrast normalization is an image enhance-
ment technique that expands the range of intensity
values in an image. This will have the effect of increasing
the visual contrast between two areas of uniform densi-
ties.

The linear contrast stretching algorithm changes the
contrast according to a linear function [4]. This function
is given by Eq. 1 for grayscale images:

I(x, y) = 255 × (I0(x, y) −min)/(max −min) (1)

Where,
• I(x, y) denotes the new intensity value at coordinate

(x, y);
• The constant 255 represents the range of intensity

levels of image I;
• I0(x, y) the original intensity value at coordinate

(x, y);
• With min and max representing the intensity values

at the 1st and 99th percentile in the image intensity
histogram.

In Fig. 1 the effect of an image normalization operation
on an image is shown along with the corresponding
histogram. As can be seen the full range of contrast is
now being used to depict the image.

B. Background Estimation with Kalman Filter
Background estimation is frequently used in many

video and image processing applications. Within the
context of detecting foreign stationary objects, back-
ground estimation will be used in order to implement a

background subtraction scheme to obtain the foreground
objects. Further processing will then be able to obtain the
foreign stationary objects.

There exist 4 general assumptions when creating a
reference image [7].
• Images are taken from a stationary camera with

fixed focal length;
• The environment consists of mostly static objects;
• Slow variations in illumination may occur;
• Occlusion of the background by some foreground

objects.
The Kalman filter consists of a set of equations that

implement a predictor-corrector estimator which mini-
mizes the error covariance [8]. The following equations
represent a background estimator based on a Kalman
filter approach where B(k, p) represents the background
intensity at time k and position p. The white zero-mean
Gaussian noise representing the model error is given by
µ(k, p), I(k, p) is the input image intensity and η(k, p) is
the white zero-mean Gaussian noise representing mea-
surement error.

B(k + 1, p) = B(k, p) + µ(k, p) (2)

I(k, p) = B(k, p) + η(k, p) (3)

As can be seen from Eq. 2 and Eq. 3 a temporal pixel-
wise approach is used [9]. The Kalman filter time update
(Eq. 4 and Eq. 5) and measurement update (Eq. 6, 7 and
8), are shown in vector form below.

x−k = Fxk−1 (4)

P−k = FPk−1F + Q (5)

Lk = P−k HT
(
HP−k HT + R

)−1
(6)

xk = x−k + Lk

(
zk −Hx−k

)
(7)

Pk = (I − LkH) P−k (8)

Where,
• x−k represents the a priori background estimate at

time k;
• F, H is the system and measurement matrices re-

spectively;
• The filter gain is given by Lk;
• P−k represents the a priori error covariance matrix;
• The measured input is given by zk;
• The process noise covariance and measurement

noise covariance is given by Q and R respectively;
• xk and Pk represents the a posteriori background

estimate and error covariance matrices respectively,
and

• I is the identity matrix.
Seeing as this is a recursive structure to the solution

no data storage is required, this means that the system
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produces a new estimate of the background as soon as
another input image is available.

Before a filter update operation occurs, the residual
zk − Hx−k , is checked. If this residual is greater than a
threshold value a sudden change occurred in the scene.
The threshold value for the residual is given by:

ε(k, p) = γ
√

∆(k) (9)

The value γ is determined by the confidence inter-
val given by the χ2 test for statistical significance of
I(k, p) = B̂(k − 1, p). The residual error covariance matrix
is represented by ∆(k). When the residual is greater than
the above threshold the filter becomes inconsistent with
its assumed statistics and the measurement is rejected.
Equation 7 is used to estimate the background with the
following gain.

Lk = P00

(
P2

00 + V
)−1

(10)

Where Lk is the filter gain, P00 is the first element in
the error covariance matrix and V is the square of the
residual. The measurement and process noise covariance
are assumed to be constant.

C. Accumulator

A method for filtering objects in a scene based on the
amount of time they existed in the scene is needed to
detect foreign stationary objects.

Accumulating a history of images according to the
following formula will satisfy the above condition,

A(k) = w × A(k − 1) + (1 − w) × I(k) (11)

Where,
• A(k) is the accumulated image;
• w represents a constant weight, and
• I(k) is the new image to be accumulated.
The value k represents the kth image accumulated.

Equation 11 can be seen as a time domain low pass
filter, where the constant w controls the rate at which
new information is added to the accumulator.

From this observation it is possible to tune the ac-
cumulator according to Eq. 11 to eliminate objects not
stationary for at least a particular amount of time. Sub-
tracting the accumulator from the estimated background
will result in detected foreign stationary objects.

D. Local Image Binarization

Illumination and reflectance plays a key role in the
success of image segmentation using thresholding tech-
niques. Variable thresholding based on local image prop-
erties are able to suppress factors such as noise and non-
uniform illumination [4]. Using the standard deviation,
σxy, and mean, ρxy, of a local neighbourhood of pixels,
Axy, gives information on local contrast and average

TABLE I
Performance comparison between CPU and GPU [14,15].

2.93GHz Intel
Core i3

ATI Radeon
HD5750

Computation 12.79 GFLOPS 1.008 TFLOPS
Memory

Bandwidth
21 GB/s 73.6 GB/s

Price(2010) $113 $79

intensity of that neigbourhood. A threshold value can
then be calculated using the following equation:

F(x, y) =

{
1 : g(x, y) > aσxy + bρxy

0 : otherwise
(12)

Where, F(x, y) is the resulting binary image with a and
b representing constants determined with a priori appli-
cation information. The image undergoing thresholding
is represented by g(x, y).

E. GPGPU

GPGPU is an acronym for General Purpose Com-
putation on Graphics Processing Units and relates to
using the parallel processing ability of the GPU for non-
graphics related problems. The raw processing power
and low cost of modern GPUs coupled with its rapidly
expanding programmability have made it an attractive
platform for image processing applications [10]. The
GPU also experiences a rate of computational power
growth greater than that of Moore’s Law for CPU’s
[11]. Table I compares the relative performance and cost
between the CPU and GPU.

To harness the capabilities of the GPU, an under-
standing of its architecture is needed. The GPU is a
highly parallel dedicated processing device which has
a computational structure called the graphics pipeline.
This pipeline has been recently transformed into a more
flexible programmable pipeline structure which allows
user defined stream programs instead of fixed-function
operations [10].

An algorithm design consideration that needs to be
taken into account is the fact that stream processors
have gather functionality but limited scatter function-
ality [11]. Gather is defined as a read-operation from
different memory addresses while scatter would be the
writing-operation to different addresses. A method of
implementing the scatter functionality is to rewrite the
problem in terms of a gather operation and using the ver-
tex processor to scatter. Read and write access to textures
is only available to kernels, but outside of these kernels,
data can be transferred to and from GPU and CPU. This
allows for applications which are not strictly parallel to
utilize the GPU for its parallel segments, transferring its
output to the CPU, and continuing processing on the
host computer.
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III. Foreign Stationary Object Detection Algorithm
As mentioned previously the processing rate of se-

curity threats by a system is an important factor in a
security system’s practicality. For this reason the stream
processors on a GPU are used in the implementation of
the interactive foreign stationary object detector. The for-
eign stationary object detector will only be implemented
in non-waiting areas with a stationary camera of fixed
focal length. The algorithm was designed to mitigate
the effect of varying illumination while being robust to
the effect of noise. The system must be able to detect
objects that remain stationary for at least 2 minutes. All
processing was done using the GPU stream processors
with the exception of part of the contrast normalization
function. The contrast normalization function requires
determining the image intensity histogram, which re-
quires cooperation with the CPU. A CPU independent
algorithm for obtaining the histogram does exist but was
not considered to maintain simplicity [12]. The high level
functional block diagram of the algorithm is given in Fig.
2.

The recursive nature of the algorithm means that
data storage is limited to only the preceding state of
the system. When a new image becomes available it is
enhanced using a linear contrast normalization operation
and used to update the background estimator and accu-
mulator. The absolute difference between the estimated
background and the accumulator is transformed into a
binary image according to Eq. 12. This binary image
contains, if any, the objects that remained stationary for
at least 2 minutes.

The morphological erosion operation is used to elim-
inate any small disconnected detected areas which may
have resulted from noise. This binary image is then
segmented by recursively calculating the maximum and
minimum coordinates of each connected component. A
bounding-box is then constructed from these coordi-
nates.

When a foreign stationary object is detected and it
remains stationary for an extended period of time, the
background estimator will assimilate the foreign object
in the next few update images. At this point the object
will no longer be detected.

A. Implementation
The implementation of the stationary foreign object

detector was done using the hyper-vision framework to
interface with the GPU [13]. Due to the architecture of
the stream processors, several passes may be required
for each of the algorithm’s components. A pass can be
defined as the operation of a shader on one or more
textures resulting in a single texture output. After each
pass, data is written into a texture which may be used
by the next pass.

The Kalman filter was used to estimate the back-
ground every 20 frames using a temporal pixel-wise ap-

Fig. 2. Overview of the functional components of the foreign station-
ary object detector.

proach. The system matrix, F, and measurement matrix,
H, of the Kalman filter was set to [1

0
,
,
1
1] and [1, 0] respec-

tively during the implementation. The process noise co-
variance, Q, and measurement noise covariance, R, was
set to a constant value of 0.01 and 200.0 respectively. The
high value for the measurement noise covariance forces
the Kalman filter to trust the estimated measurements,
x−k , more than the actual measurement, zk. This results in
the filtering out of temporary illumination changes and
movement.

Updating the state of the accumulator occurs every 5
frames. The accumulator weight is based on the length of
time an object needs to be stationary before it is detected.
As previously mentioned, the contrast normalization
function was processed both on the CPU and GPU.
The histogram can be constructed by using a shader to
threshold the input image and outputting the amount
of pixels remaining after each pass. For n histogram
buckets, n passes with the histogram shader are needed.
A shader is used to implement the contrast enhancement
formula per pixel.

Morphological operations are used to reduce the effect
of detected noise in the binary image. Erosion is applied
to the binary image containing the detected foreign
stationary objects to eliminate any small disconnected
areas. This is then followed by a morphological closing
operation to create larger detected areas and to fill any
gaps left by the thresholding function. The structuring
elements in both morphological operations are 3 × 3
blocks.

A conceptual form of the foreign stationary object
detector is given in Fig. 3. The accumulator contains the
background as well as the abnormal stationary objects
and any false-positives. The shaded area shows the
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Fig. 3. Conceptual object distribution for the accumulator.

TABLE II
Detections of Foreign Stationary Object Detector (FSOD)

Detector
Type

No. of foreign
stationary
situations

Number of
detections

Non de-
tections

Erroneous
detec-
tions

FSOD 28 25 (89.29%) 3
(10.71%)

1

Aubert
et al.

436 427(98%) 9(2%) 0

absolute difference between the estimated background
and the accumulator. A threshold is applied to remove
any false detections, such as objects which have not been
stationary for at least two minutes.

IV. Experimental Setup

A surveillance video of a non-waiting area, such as a
passageway was created to test the ability of the system
to detect foreign stationary objects. The noise rejection
of the system was tested by corrupting the surveillance
footage with white Gaussian noise. The added noise
was zero mean Gaussian with a standard deviation
ranging from 10% to 70% of the maximum intensity
value. Gaussian noise was chosen since it affects the
images intensity value. The foreign stationary object
detector uses the difference in greyscale intensity of the
accumulator and estimated background to detect any
objects. Adding noise that constantly changes the input
images intensity values will test the systems ability to
detect stationary objects.

To test the illumination invariance of the algorithm, a
surveillance video of a scene with controlled variable
lighting conditions was created. The total amount of
erroneous and non-detections of the system was mea-
sured under different levels of illumination. The level of
illumination was measured from the same position using
a digital lux meter.

The processing performance of the system was mea-
sured using software timers and measuring the aver-
age processing frame rate for different resolution input
videos. The test bed specifications are as follows:

Fig. 4. Detected foreign stationary object.

(a) (b)

Fig. 5. (a) Unformatted binary image. (b)Morphologically enhanced
binary image.

• Processor: AMD Athlon X2 250 at 3.0 GHz;
• Memory: 4.0 GB DDR3;
• Operating System: Windows 7 Ultimate 64bit;
• Graphics: NVidia GTX295 with 1792 MB video

memory.

V. Results

Assessment of the system is done by manually record-
ing the approximate position in the image and the
time that the object remains stationary for all foreign
stationary objects in the test video set. Results of the
system were then compared with the recorded manual
observations to obtain the detection rate of the system.

Fig. 6. Noise rejection results with increasing corruption by Gaussian
noise of test video.
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This is given by the total amount of foreign stationary
objects detected by the system versus the total amount
of manually recorded foreign stationary objects. The
differences observed give the amount of non-detections
(manual detections not detected by system) and the
number of erroneous detections (system detected areas
without real-life justification). The results from Table II
were obtained from 6783 frames of surveillance video,
10 minutes.

The results in Table II show that a competitive de-
tection rate, 89.29%, can be achieved compared to [1,3].
A detected foreign stationary object is shown in Fig.
4. The erroneous detections were caused when sharp
illumination changes occurred in small areas. Global
illumination changes didnt affect detection rate after the
background estimator stabilized. During the noise tests
the amount of erroneous detections did not increase until
the test video was corrputed by Gaussian noise with
standard deviation of 50% and greater as shown in Fig.
6. This is due to the morphological erosion function
which eliminates any objects smaller than the structuring
element. The effect of this in reducing the amount of
erroneous detections can be seen when comparing the
unformatted binary image and the morphological en-
hanced binary image shown in Fig. 5. This binary image
was obtained with a 10% standard deviation in white
Gaussian noise.

The illumination invariant test result given in Fig. 7(a),
shows that the amount of errors detected by the system
stabilizes after a 20 lx increase in illumination at the
stationary point of measurement. The variance in the
total amount of erroneous and non-detections amounted
to 1.2 during the illumination invariance test. The single
outlier of 6 reflects the highest error rate during the
lowest illumination level of 5 lx. The small variance in
total errors suggests that the system is robust in terms of
varying illumination conditions. The amount of station-
ary objects detected remained constant throughout the
test.

The processing performance at different input image
resolutions is depicted in Fig. 7(b). A frame processing
rate of 10Hz was achieved using a resolution of 320×240
which is higher than comparable systems [1].

VI. Conclusion

The foreign stationary object detection system de-
scribed herein is able to aid operators in the detection
of potential security threats based on the time that
the objects remain stationary. A competitive detection
rate was achieved when compared to similar systems
described in [1] and [3]. The robustness of the system in
the face of added white Gaussian noise was shown. The
illumination invariant properties of the system was also
demonstrated.

Employing a GPU in implementing the foreign sta-
tionary object detector, free’s up the CPU for other logic

(a) (b)

Fig. 7. (a) Number of erroneous and non-detections compared to
different illumination conditions. (b) Average processing frame rate at
different resolutions.

operations. The GPU architecture is also more easily
scalable than the CPU only implementations.

An improved method of detecting objects based on the
time an object remains stationary may require using an
autoregressive model. Other future work may include
the dynamic estimation of the measurement and process
noise error covariances of the background estimator.
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