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Abstract: Many control researches for complicated and uncertain system are model-dependent and 

therefore require some prior knowledge for the complex systems. To avoid this problem, a number of 

model-free controllers are proposed. However, it is difficult to determine the control performance as 

the controller is not designed according certain system model especially when there are uncertainties 

and/or nonlinear dynamics in the system. To get over this problem, the model free controller (MFC) 

based on generalized internal model control (GIMC) structure is proposed in this paper. The MFC is 

used to attenuate the disturbance or uncertainty, and the system performance is determined by the no-

minal model and the nominal model controller. The parameters of nominal-model controller can be 

easily changed for meeting the change of the desired requirements. Moreover, the robust controller in 

the original GIMC is disassembled and rearranged to make the proposed methods easier to use, and the 

proposed method makes the controller be more flexible and greatly improves the system performance. 

Finally, the experiment results show that the MFC can be used to control the nonlinear systems and get 

the expected performance. The statistical analysis of performance for servo and regulatory behaviors 

also shows that the proposed method can achieve a better control performance than just using model 

free controller. 

 

Keywords: Generalized internal model control, model free controller, nominal model, stability, 

uncertain system. 

 

1. INTRODUCTION 

 

Although new and more powerful control algorithms 

have been developed, proportional-integral-derivative 

(PID) control is still the most used control strategy in 

industrial applications. Many studies suggest that of all 

the controllers in industrial process control, PID (or PI) 

controllers are used in 95-97% of the cases [1]. An 

attractive feature of PID controllers is their relatively 

simple and intuitive design. Moreover, PID controller 

structure does not depend on the process model. The 

model-free character makes PID controller can be used 

in most of the industrial process. Similar with PID 

control, Model Free Controller (MFC) does not depend 

on the process model which is different from the model 

dependent control algorithms [2-8]. In [2-4,8], the 

classical mathematic models are used to obtain the 

control inputs. In [5,7], the intelligent methods were used 

to model the system. No matter the classical mathematic 

model or the intelligent model are used to get the control 

inputs, the process input/output data or the prerequisite 

information, which makes the design procedure more 

complicated, is necessary. Moreover, some model 

dependent control algorithms cannot be generalized if the 

process structure is changed, for example, some 

Lyapunov-based adaptive controllers. However, the 

model-free character can reduce computational costs and 

eliminates the expense of system identification. Although 

PID belongs to model-free controllers, PID coefficients 

should be adjusted if the process has changed. The 

control performance can't be accepted ifthe parameters of 

the process are time variant; there is strong nonlinear 

dynamics; or there are some uncertainties in the process. 

Recently, much effort has been done in MFC [9-13] as 

the model free controller has the following properties:(1) 

no precise quantitative knowledge of the process is 

requisite; (2) no process identification mechanism or 

identifier is used in the system; (3) no controller design 

for a specific process is needed; (4) no complicated 

manual tuning of controller parameters is required; and 

(5) stability analysis criteria are available to guarantee 

the closed-loop system stability. In [9] fuzzy PID 

controller was used to control a 6-DOF Stewart-Gough 

based parallel manipulator. In [12] a fast model-free 

intelligent controller based on fused emotions was used 

to control an unidentified practical overhead crane and 

this controller has the capability to deal with multi-

objective control problems. Aksakalli and Ursu showed 

the advantage of the model-free controller is that it can 
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attempt to control systems whose internal processes 

cannot be observed because of real world constraints in 

[10]. In [10,11] the model-free controllers were proposed 

based on the adaptive strategies as the parameters of 

controllers are changed according to the change of the 

process. Qi et al. [13] proposed a model free controller, 

whose parameters are invariable, and this MFC 

successfully controlled chaotic systems and other 

nonlinear systems. This MFC is based on higher-order 

differential feedback controller which only utilizes the 

information of the measured output and the given 

objective as well as the differential signals. 

Although the stability of the system is guaranteed, it is 

difficult to determine the control performance using 

MFC as the system performance is determined by 

process and controller together, and MFC does not 

depend on process model. To conquer this problem, 

MFC based on Generalized Internal Model Control 

(GIMC), which provides a good candidate for achieving 

both performance and robustness [14], is proposed in this 

paper. MFC is used to weaken the plant uncertainty and 

stabilizes the system. A simple controller for the nominal 

model is used to realize the expected requirements. In 

order to directly apply MFC in the structure of GIMC, 

the robust controller of the original GIMC is 

disassembled and rearranged. 

The rest of this paper is structured as follows. Section 

2 describes the preliminary knowledge about model free 

control. The details of model-free control based on 

GIMC structure are presented in Section 3. Section 4 

gives a description of the experiment studies. Finally, 

Section 5 gives some concluding remarks. 

 

2. PRELIMINARY 

 

2.1. Model free control sysem structure 

As discussed in Section 1, the model free controller 

does not explicitly or implicitly depend on the process 

model. However, the general structure of model free 

control system is similar with the classic control system, 

which includes desired inputs, controlled object, sensors, 

controller and so on. The system structure of a single-

input-single-output (SISO) MFC control system can be 

shown as Fig. 1, where r(t) is the desired trajectory, u(t) 

is controller output or control signal, y(t) is process 

output, and e(t) = r(t) – y(t) is the error between the 

desired trajectory and the process output. Although the 

structure is similar with the traditional single-loop 

control system, the SISO model free controller neither 

needs a rigorous mathematical model nor an artificial 

intelligent model. PID controller can be a good example 

as a model free controller. In the absence of knowledge 

of the underlying process, a PID controller is the best 

controller [15]. The PID controller involves three terms: 

the proportional, the integral and derivative terms. The 

proportional, integral, and derivative terms are summed 

to calculate the output of the PID controller. Defining 

u(t) as the controller output, the final form of the PID 

algorithm is 

-
+

 

Fig. 1. Model free control structure. 
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where Kp is proportional gain, Ki is the integral gain, Kd 

is the derivative gain and e(t) is the error as shown in Fig. 

1. By tuning the three gains in the PID controller 

algorithm, the controller can provide control action 

designed for specific process requirements. Similar with 

PID controller, the model free controller can give the 

control signal only depending on the process output and 

input. There are three major advantages using the model-

free controller: (1) MFC tend to better handle changes in 

the underlying system as they are not tied to a prior 

model, (2) MFC require no open-loop training data, and 

(3) MFC tend to be more robust in the case of widely 

varying control inputs [10]. 

 

2.2. Model free control based on high order differential 

feedback control [13,18] 

In this paper the model-free control scheme, which was 

proposed by Qi et al. [13], is chosen as a representation 

of MFC. Differential equation of some SISO affine 

systems is depicted as 

( ): ( , ) ( ) ,n

s

y g X t d t u= + +∏  (2) 

where notation ∏s denotes SISO system, u R∈ is the 

control input, y R∈ is the system output, ,
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y

−  denotes output differential vector, and is also 

system state vector, y(i) denotes the ith differential of y, 

( )g • is an unknown and satisfies Lipchitz increasing 

condition, and d(t) is bounded uncertainty. System (2) 

can be converted into the following state space model 
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The system is also called as Brunovsky canonical form 

which was widely studied [16,17]. This kind of affine 

system has a wide background in practice. If r(n), y(n) and 

y(n+1) are continuous, there is the following MFC theorem. 

Theorem 1[13]: (MFC theorem). For the time-variant 

nonlinear affine system (1) with unknown model, the 

MPC is described by 

ˆ,u Ke u= +  (4) 

where 
1 1

[ , , , ,1]
n n

K k k k
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= �  makes the polynomial 

1

1

n n

n
s k s k

−

+ + +�  be a Hurwitz polynomial, the error 
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differential vector 
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and û  denotes the filtering signal of the control u, 

satisfying 

û
� = ˆ ,u uλ λ− +  

where λ is a positive constant. 

Then the MPC has the following properties: 

1)  The MFC makes the closed-loop system 

asymptotically stable and satisfies the following 

convergent property 

lim lim .
t

y r
λ→∞ →∞

=  (6) 

2)  All system variables are bounded.  

3)  The controller is strongly robust for the function 

( )g i  and bounded uncertainty d(t). 

The similar result has also been extended to MIMO 

system [13]. 

In order to realize the control law (4), the differentials 

up to nth order for e  should be extracted. The 

following high order differentiator [13,18] can be used. 

The HOD is described by n0 order dynamic system (7) 

with 1n +  order algebraic (8). 
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Here, n0 is the order of the system, satisfying 
0

1,n n≥ +  

01
, ,

n
z z�  are the states, ai are the parameters, and 
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tion expression. 
01

, ,
n

z z�  can be deduced based on the 

measured signal y via (7), furthermore, calculate the 

estimated differentials ˆ,y
( )ˆ,
n

y�  via (8). 

 

3. MODEL FREE CONTROL BASED ON GIMC 

STRUCTURE 

 

As mentioned in the introduction, it is difficult to 

determine the control performance if only the MFC is 

used. The reason for this problem is the intrinsic 

characteristic of MFC. However, the MFC is still a 

robust controller when there are plant uncertainties. It is 

possible to get better control performance if the robust 

controller and the performance controller are designed 

respectively, and they work together using certain 

structure. The GIMC structure provides a good candidate 

for achieving this objective [19-22]. If the transfer 

function of the MFC block is K0, K0 is a stabilizing 

controller for the nominal plant G
n
, and assume that G

n
 

and K0 have the following stable coprime factorizations:  

U
y

-

V-1 G

Q N

M

r

-

u

f

 

Fig. 2. GIMC structure. 
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Fig. 3. GIMC structure when G
n
 is stable. 
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the inner loop in Fig. 1 can be rearranged as Fig. 2 and 

the internal stability of the system is not changed [19,21]. 

As the robust controller (here, it is MFC) is used to 

weaken the plant uncertainty and stabilize the system, K0 

does not need to be complicated. For simplicity, V can be 

chosen as 1 and U= K0. If both G
n
 and G

n
/(G

n
+1) are 

stable, N and M can be set to G
n
 and 1, respectively. The 

GIMC structure will take the form as shown in Fig. 3. 

Outstanding feature of this controller implementation is 

that the inner loop feedback signal f is always zero if the 

plant model is perfect, i.e., if G = G
n
, which can be seen 

directly from Fig. 2 or Fig. 3. The inner loop is only 

active when there is a model uncertainty or other sources 

of uncertainties [19]. 

If the transfer function of model-free controller 

denotes explicitly as K, the relationship of K and Q is [19] 

1( ) ( ).K V QN U QM
−

= − +  (10) 

If 1V =  and 1,M =  (10) becomes 

1( ) ( ).K V QN U Q
−

= − +  (11) 

Then one can obtain 

1 1

0
( )( 1) ( )( 1) .

n
Q K U NK K K G K

− −

= − + = − +  (12) 

There is a problem that how to realize MFC in GIMC 

structure as MFC should transform into Q according to 

(12), but model-free controller is not directly expressed 

in the form of transfer function according to (4), (5), (7) 

and (8). According to (12), Q can be determined by K0, 

G
n
 and K. However, Q might be too complicated to be 

realized by calculating (12). The complication will 

reduce if Q can be directly constructed by the modules of 

K0, G
n
 and K. Using control block diagram is good 

method to clarify the relationships of Q, K0, G
n
 and K. 

The block diagram of (12) can be depicted as Fig. 4. 

Then, the block diagram of the MFC based on GIMC 
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structure can be reconfigured as Fig. 5. In this block 
diagram, the structure of MFC does not need to be 
changed and the controller K0 can be designed as a 
simple controller according to the nominal model Gn. 
Comparing Fig. 5 with Fig. 3, the robust controller G in 
Fig. 3 is disassembled and rearranged to several blocks, 
which makes the proposed methods easy to use. There is 
a logical question about the scope of application of Fig. 5. 
According to the analysis of GIMC in [19], the internal 
model stability can be guaranteed if the block MFC is 
linear time-invariant controller. It will need more 
analysis if the block MFC is nonlinear and/or time-
invariant controller. In this paper, MFC is a linear time-
invariant controller and the internal model stability can 
be guaranteed. 

 
4. EXPERIMENT RESULT 

 
Consider the following typical two-rank uncertain 

plant with high parameter uncertainty [22]. 

2( ) kG s
As Bs C

=
+ +

 (13) 

with independent uncertainties: 

[1,4]; [1,4]; [ 2, 2]; [1,6.25].k A B C∈ ∈ ∈ − ∈  

This system is not stable in some values of the 
parameters, for example, B < 0. 

Before the design of model-free controller based on 
GIMC structure, the nominal model must be chosen 
firstly. It can be identified using the output and input data. 
Sometimes, the nominal model usually is chosen as the 
normal state model according to the linear “first-
principles” models which are obtained from an under-
standing of the physical and chemical transformations 
occurring inside a process. Here the the nominal model is 
chosen as 

2
2.5(s)= .

2.5s +s+3.7nG  (14) 
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Fig. 6. The servo responses when the desired time 

constant is 0.2 seconds and GIMC based model-
free controller is used. 

 
Both Gn(s) and G(s) are stable. Using the control system 
toolbox of matlab 7.0, the controller for nominal model 
can be designed easily. Here we use the automated 
tuning function. The design method is chosen as Internal 
Model Control Tuning. We can choose two specifica-
tions: dominant closed-loop time constant and desired 
controller order. If the dominant closed-loop time 
constant is chosen as 0.2 second, the desired controller 
order is chosen as 2, the automated tuned controller can 
be found as (15) for the nominal model (14). 

2

0 2
(0.82 ) 0.72 13.7 .

0.1
s sK

s s
+ +=

+
 (15) 

If K0 controller (15) and MFC based GIMC is used 
where MFC parameters are chosen as λ =5, K =[15,8, 
1] and the plant parameters are chosen as the normal 
plant, except parameter B, here [ 2,1,2],B = −  the plant 
output y, the expected trajectory r and the control signals 
are shown in Fig. 6 which is the response of the servo 
simulation using the proposed method. Here, the dotted 
curve is the expected trajectory, which is a unit pulse 
signal with a period of 25 seconds, a pulse width of 50% 
of period and without phase delay; and another three 
solid curves outputs corresponding to the different values 
of B = –2, 1, 2 in Fig. 6(a), respectively. 

If we want to change the desired performance, only 
the controller K0 need to be redesigned. For example the 
dominant closed-loop time constant is chosen as 1.5 
second, the desired controller order is also chosen as 2, 
the automated tuned controller can be achieved as 

2

0 2
(0.82 ) 0.72 10.49333 .

0.75
s sK

s s
+ +=

+
 (16) 

If controller K0 chosen as (16) and the model-free 
controller, whose parameters are not changed, based 
GIMC is used, the plant output y and the expected 
trajectory r are shown in Fig. 7(a), and the control 
signals are shown in Fig. 7(b). Here the expected 

Fig. 4. Block diagram of Q. 
 

Fig. 5. Block diagram of MFC based on GIMC. 
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trajectory is a unit pulse signal with a period of 30 

seconds, a pulse width of 50% of period and without 

phase delay. For Fig. 7, it can be seen that transient 

response is slower than the previous one as the desired 

time constant is 1.5 second rather than 0.2 second. 

If only MFC, whose parameters are chosen as 5,λ =  

[15,8,1],K =  is used and the plant parameters are 

chosen as the normal plant, except parameter B, here 

[ 2,1,2],B = −  the time responses y, the expected 

trajectory r and the control signals are shown in Fig. 8. 

The dotted curve and three solid curves are the expected 

trajectory and plant output in Fig. 8(a), respectively.  

The control performance is determined by controller 

K0 when G = G
n
, that is, B =1. As can be seen from Fig. 

6(a) and Fig. 7(a), the control performance is almost the 

same although the value of B is changed. As can be seen 

from Fig. 6(b) and Fig. 8(b), the control signal fluctuates 

too violent to be used in controlling the plant if only 

model-free controller is used. Table 1 presents the 

statistical analysis of performance for servo behaviors 

using the proposed method and MFC algorithm. It should 

be noted that the solver option of configuration 

parameters of Matlab/simulink should be chosen as 

fixed-step otherwise the statistical analysis results are not 

right using the simulation data. 

As can be seen from Table 1, it also shows that the 

control signal fluctuates too violent to be used in 

controlling the plant if only model-free controller is used. 

However, the proposed method can reduce the 

fluctuating of the control signal. This is because the 

MFC is used to control the uncertainty and the controller 

K0 for nominal model is used to satisfy the desired 

requirements. Comparing Figs. 6 and 7 with Fig. 8, the 

similar result can also be obtained. 

For the analysis of regulatory behaviors, the expected 

trajectory is a unit pulse signal with a period of 25 

seconds, a pulse width of 50% of period and without 

phase delay; and an additive disturbance is added in the 

process output. The disturbance is a pulse signal with a 

period of 25 seconds, an amplitude of 0.1, a pulse width 

of 50% of period and a phase delay of 6.25 seconds. 

Using the proposed method, the regulatory response is 

shown in Fig. 9. 

If only MFC is used, the regulatory response is shown 

in Fig. 10. It is difficult to find which regulatory 

response is better just according to the response Figs. 9 

and 10. Hence, it is necessary to do a statistical analysis 

of performance for the regulatory behaviors using these 

two different control methods. Table 2 presents the 

statistical analysis of performance for servo behaviors 
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Fig. 7. The servo responses when the desired time

constant is 1.5 seconds and GIMC based model-

free controller is used. 
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Table 1. Comparison between the proposed method and 

MFC for servo behavior. 
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using the proposed method and MFC algorithm. As can 

be seen from Table 2, the proposed method can achieve a 

better regulatory response performance than only using 

MFC algorithm. 

 

5. CONCLUSION 

 

In this paper, model-free controller based on GIMC is 

proposed for uncertain plant. The robust controller in the 

original GIMC was disassembled and rearranged to make 

the proposed methods easy to use. Moreover, this 

method makes the controller be more flexible and the 

method greatly improved the system performance. If 

some specifications are changed, it does not need to 

redesign the MFC controller since some of the 

parameters of the nominal controller can be changed to 

meet this kind of requirement. The example showed that 

the technique has better control performance and it is 

easily to be used. 
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