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Abstract—Long range imaging systems that capture video 

through the atmosphere face a major problem in the form of 

atmospheric turbulence. This turbulence causes a phenomenon 

called heat shimmer which appears as a blurring and a wavering 

geometric distortion of the target scene which limits the effective 

range of the imaging system.  We explore an image processing 

approach to mitigating the blurring effect of this distortion by 

using a blind deconvolution technique to sharpen the video signal 

and a dynamic illuminance-reflectance correction technique to 

improve the signal’s contrast. The algorithm is implemented on a 

Graphics Processing Unit to achieve near real-time performance. 
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I.  INTRODUCTION  

The rapid proliferation of digital image capture devices has 
resulted in the development of technologies that make use of 
the abundance of still image and video signals produced by 
these devices [1, 2]. The signals in question can be captured in 
various situations and will always contain some form of noise 
or distortion. This can be caused by a variety of factors such as 
the nature of the image capture device or lens assembly and 
environmental factors such as lighting, camera jitter or motion 
in the target scene [2]. The captured signals are not only used 
by human operators who can cope with these distortions. As 
image processing technology matures automated systems that 
use these signals to extract useful data are becoming more 
common. For these systems degradation in signal quality is a 
major problem [1, 2, 3]. 

Modern imaging systems are capable of high 
magnifications. This class of imaging system is used for long 
range video surveillance in both the military and civil spaces. 
In the case where the target scene is being captured from a 
range over 1 km the effects of atmospheric turbulence become 
obvious [1, 4]. 

Turbulence in the atmosphere causes pockets of air of 
varying temperatures and thus densities to move in a random 
fashion. This movement is caused by the varying densities of 
the air pockets, wind and terrain [5]. Light from the target 
scene must travel through this turbulent atmosphere to reach 
the imaging system. The varying densities of the air pockets 
cause this light to be refracted by varying degrees and in a time 
varying manner. This results in the target scene appearing 

blurred, washed out and to be wavering or shimmering. This 
implies that objects in the scene will appear to be moving even 
when stationary. This effect is dubbed heat shimmer or heat 
scintillation [1, 3, 4, 5, 6, 7, 8]. 

Heat shimmer severely limits the effective range of long 
range imaging systems and as such mitigating the effects of 
atmospheric turbulence is a major concern when designing 
these systems. 

There are two main schools of approaches to this problem. 
The first is to make use of a mechanical adaptive optics system 
to physically compensate for the effects of the atmospheric 
turbulence on incoming light rays using a system of 
deformable mirrors [9]. The second approach is to make certain 
assumptions about the nature of the distortion and make use of 
an image processing approach to digitally enhance the video 
signal to attempt to reduce the distortion.  A few proposed 
image processing methods are the direct Discrete Fourier 
Transform (DFT) solution [4], image registration and fusion 
[1], Adaptive Control Grid Interpolation [7, 8], Image Time 
Sequence Registration [10], Neural Network approach based 
on the Monte Carlo method [11] and the Homomorphic and 
Power Spectrum approach [12]. 

This paper approaches the problem of heat shimmer in a 
similar manner to [7, 8]. The assumption is made that the 
effects of heat shimmer can be separated into two parts. The 
first is the blurring and loss of contrast caused by the scattering 
of incoming light rays and aerosols in the air. The second part 
is the wavering or geometric distortion that causes the 
stationary elements of a scene to appear to be moving. This 
paper will focus on mitigating the first part of the distortion. A 
blind deconvolution style algorithm is used to sharpen the 
video and a dynamic luminance-reflectance correction 
technique is used to improve the contrast while not amplifying 
any additive noise present. This algorithm is implemented on a 
Graphics Processing Unit (GPU) to achieve a near real-time 
performance. 

The remainder of the paper will be structured in the 
following way. Section II will describe the details of the 
algorithms implementation. Section III will describe the design 
of the performance experiments. Section IV will show and 
discuss the experimental results and Section V will be the 
conclusion. 
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II. ALGORITHM DEVELOPMENT 

We consider the distortion caused by heat shimmer to be made 

up of two classes, the first is the blurring and contrast loss 

caused by light scattering and the second is the geometric 

distortion. This paper focuses on mitigating the blurring effect 

of heat shimmer and thus we make use of a primitive 

stabilization scheme to deal with the geometric distortion. We 

make the assumption that the geometric distortion is quasi-

periodic [7, 8]. This implies that the average of the frames of 

the video sequence with wavering motion should have a mean 

displacement of 0. A simple ratio average scheme is used to 

maintain a running average of the frames in the video 

sequence as shown in equation 1. 

 

𝑔 𝑥, 𝑦, 𝑡 =  𝛼𝑓 𝑥, 𝑦 +   1 − 𝛼 𝑔 𝑥, 𝑦, 𝑡 − 1 , (1)  

   where  x, y are the pixel coordinates in an image frame,  t is 

the current frame in the sequence, g(x,y,t) is the updated ratio 

frame average, g(x,y,t-1) is the previous frame average, f(x,y) 

is  the current incoming frame, and α is a scalar value between 

0 and 1 which dictates the propotion of the new frame which 

is added to the average. 

 

We tackle the blurring effect of heat shimmer in two stages. 

The first part of the algorithm uses a blind deconvolution 

approach to sharpen the image and the second stage uses a 

dynamic illuminance-reflectance correction scheme to 

improve the contrast of the video frame. 

A. Blind Deconvolution 

The term blind deconvolution was first used and described in 

[13]. The following model is used to describe the image 

capture system: 

 

𝑔 𝑡 =  𝑓 𝑡 ∗  𝑡 +  𝑛 𝑡 , (2)  

Where g(t) is the received frame which contains noise and 

distortion, f(t) is the undistorted scene, h(t) is the distortion 

function which is convolved with the target scene and n(t) is 

the additive noise present in the scene.  

 

In our case the distortion function describes the nature of the 

blur caused by capturing video through atmospheric 

turbulence. The additive noise present in the scene is mostly 

due to the nature of the digital image capture device. The term 

blind deconvolution refers to the fact that we have no a priori 

information about the nature of the blurring function and have 

to identify the blur function while only having access to the 

distorted frame. To achieve this we make use of Hufnagel’s 

model of the blur caused by atmospheric turbulence described 

in [14]: 

 

𝐻 𝑢, 𝑣 =  𝑒−𝜆(𝑢2+𝑣2)5/6
, (3)  

where λ is parameter that controls the intensity of blur and u 

and v are the 2 dimensions of the spatial frequencies. 

 

We make use of a Wiener filter to compensate for the blurring 

effect of the heat shimmer. The Wiener filter is used as it takes 

into account the power of the additive noise present in the 

signal to reduce the amplification of that noise in the 

deconvolved image. Equation (4) describes the Wiener filter 

[2, 15]. 

 

𝐻𝑤 =  
𝐻∗

 𝐻 2 +
𝑆𝑁

𝑆𝐹
 

, (4)  

where SN is the power spectrum of the additive noise, SF is the 

power spectrum of undistorted the image, H is the model of 

the distortion and Hw is the Wiener Filter based on the 

specified model. 

 

To apply the Wiener filter the frame is first transformed into 

the frequency domain using the Fast Fourier Transform (FFT). 

The filter is applied in the frequency domain as a convolution 

operation becomes a simple multiplication [15]. The noise-to-

blurred signal ratio is estimated as the difference between the 

global variance of the whole frame and the average local 

variance which is assumed to represent the power of the 

additive noise. This is due to the fact that the noise and the 

blurred image are uncorrelated. The Noise-to-Signal Ratio 

(NSR) is thus estimated using the following equation [7, 8]: 

 

𝑁𝑆𝑅 =
𝐿𝑜𝑐𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝐺𝑙𝑜𝑏𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 −  𝐿𝑜𝑐𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
   , 

(5)  

 

To identify the amount of blur present in the image a search 

space of possible values of 𝜆 in equation 3 is specified. The 

input frame is deconvolved using a Wiener filter constructed 

from the blur model using a given 𝜆 value in the search space. 

The result must then be evaluated to decide if the best 𝜆 value 

has been found. This is done using a sharpness metric to 

compare the relative sharpness of deconvolved frames until 

the value of 𝜆  is found that results in the sharpest possible 

output. In [7, 8] kurtosis is used as the sharpness metric but we 

found that in images that have large areas of uniform colour 

this metric is not accurate.  

 

Initially we used a Laplacian operator based metric where the 

Laplacian operator was applied to the image to accentuate the 

high frequency information, such as edges, and remove the 

uniform colour areas. A mean value of this result gave a 

robust comparative sharpness metric. A problem with this 

approach is that the metric is applied in the spatial domain. 

This implies that after each deconvolution the inverse FFT 

(IFFT) must be applied to convert the result from the 

frequency domain to the spatial domain. To avoid this 

computationally expensive approach we use a frequency 

domain based sharpness metric where the power in the higher 

frequency bands is used as a measure of the sharpness of the 

image. Using normalized frequency domain coordinates where 

0 is at the DC value and 1 is the highest frequency. We find 

the power in the frequency band that lies between 0.3 and 0.9. 



We use the upper bound of 0.9 to avoid measuring the power 

of any high frequency noise in the image. This metric allows 

us to perform the FFT once at the beginning of the algorithm 

and IFFT only once the optimal value of 𝜆 is found. 

 

It was observed that as we traversed the search space for 𝜆 the 

sharpness metric exhibited a single peak and as such once a 

maxima is found we assume that the best possible value for 𝜆 

has been located and we have identified the blur present in the 

current frame. At this stage the IFFT is applied to give the 

sharpened frame. Figure 1 shows the structure of our blind 

convolution algorithm. 
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Figure 1: Frame averaging and blind deconvolution algorithm 

B. Dynamic Illuminance – Reflectance Correction 

Due to the scattering of light and blurring caused by capturing 

video through the turbulent atmosphere the captured video 

frames tend to have a low contrast and appear washed out. The 

standard method for improving contrast is to perform a 

histogram equalization [2, 16]. This is not ideal in our case as 

it severely amplifies high frequency additive noise which is 

present in the original frames and is slightly amplified by the 

blind deconvolution stage of the algorithm. 

 

We make use of the dynamic illuminance-reflectance 

adjustment approach presented in [17]. This technique 

performs dynamic range compression on the low frequency 

component of an image while preserving the high frequency 

content so as not to amplify any additive noise present in the 

image. 

 

The assumption is made that a image I(x,y) can be represented 

as the following product [17]: 

 

𝐼 𝑥, 𝑦 =  𝐿 𝑥,𝑦 𝑅 𝑥, 𝑦  , (6)  

 

where L(x,y) is the luminance component of the image and 

R(x,y) is the reflectance component of the image. 

 

The luminance component of the image is assumed to contain 

the low frequency information and the reflectance component 

is assumed to contain mostly the high frequency information 

of the image. The luminance estimate of the image is found by 

applying a 5x5 discrete Gaussian filter to the input image. The 

reflectance estimate is then calculated by dividing the input 

image by the luminance estimate. Once we have the 

luminance estimate the dynamic range compression is 

performed using the following sigmoid function [17]: 

 

𝑠 𝑣 =  
1

1 + 𝑒𝑣
 , 

(7)  

This function is applied to the image in the following steps: 

 

𝐿𝑛
′ = 𝐿𝑛 𝑠 𝑉𝑚𝑎𝑥  − 𝑠 𝑉𝑚𝑖𝑛   +  𝑠 𝑉𝑚𝑖𝑛   , (8)  

where Ln is the normalized luminance component and Vmin and 

Vmax are chosen based on the mean value of the image as 

described in [17]. 

 

𝐿𝑛
′′ = ln  

1

𝐿𝑛
′ − 1  , 

(9)  

 

𝐿𝑛 ,𝑒𝑛 =
𝐿𝑛

′′ − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

 , 
(10)  

where 𝐿𝑛 ,𝑒𝑛 is the enhanced normalized luminance. 

 

The next step of the scheme is to perform a mid-tone 

frequency enhancement which is done using equations 11 and 

12: 



𝐸 𝑥, 𝑦 = 𝑅(𝑥, 𝑦)𝑝 =  
𝐼𝐿(𝑥 ,𝑦)

𝐼(𝑥, 𝑦)
 
𝑝

, 
(11)  

where 𝐼𝐿(𝑥 ,𝑦)  is the original image filtered with a 10x10 

Gaussian filter and p is chosen based on the image’s standard 

deviation as specified in [17]. 

 

𝐿𝑛 ,𝑒𝑛
′ = 𝐿𝑛 ,𝑒𝑛

𝐸(𝑥 ,𝑦), (12)  

where 𝐿𝑛 ,𝑒𝑛
′  is the final fully adjusted luminance estimate. 

The final step is to reconstruct the image by reintroducing the 

reflectance component to the adjusted luminance component 

using equation 6. 

 

This portion of the algorithm is illustrated in the figure 2. 
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Figure 2: Dynamic Illuminance-Reflectance adjustment algorithm 

III. EXPERIMENTAL DESIGN 

Once the algorithm was implemented a number of 

experiments were performed to confirm the algorithm does in 

fact enhance sharpness and contrast. Firstly, human evaluation 

was used to compare processed and unprocessed frames from 

two video sequences that were captured through real 

atmospheric turbulence for sharpness and contrast 

improvement. For objective experiments the colour histograms 

of the processed and unprocessed frames were compared to 

confirm that colours are evenly distributed throughout the 

entire range indicating better contrast in the processed frames.  

 

To objectively measure the improvement in sharpness two 

sharpness metrics were used. The first was a laplacian 

operator based sharpness metric. This metric applies the 

laplacian operator to the image which has a high response for 

high frequency image elements such as edges and a low 

response for low frequency features such as areas of uniform 

colour [2, 16]. The mean of the intensities in the resulting 

image gives a good comparative metric for sharpness. The 

second sharpness metric used is Shannon Entropy, which 

measures the average information contained in an image and is 

described in [16]. 

 

The algorithm was implemented on the GPU using the 

OpenGL API and GLSL shader language to achieve near real-

time performance. To compare the GPU implementation to a 

CPU implementation the algorithm was reimplemented on the 

CPU using the OpenCV and FFTW libraries. Both GPU and 

CPU implementation were done using the C++ language using 

the G++ compiler for consistency. The computational speed of 

the algorithms were measured by processing a series of videos 

of increasing resolutions and measuring the average 

processing time for 200 frames of the same video sequence. 

The specifications of the computer used to perform these 

experiments are given in table 1. 

 

CPU AMD Athlon 7750 Black Edition 

Motherboard Asus M3N-H 

RAM 4 GB DDR2 400 MHz 

GPU Nvidia GeForce GTX 260 

Table 1: Test PC Specifications 

IV. EXPERIMENTAL RESULTS 

Figures 3 and 4 show an unprocessed and processed frame 

from two different video sequences captured through turbulent 

atmosphere. Visual inspection shows that in each case the high 

frequency information in the image is enhanced significantly 

and that the contrast enhancement reveals many details that 

were not originally visible. 

 

Figure 5 shows the results of the Laplacian sharpness metric 

for the unprocessed frames and processed frames. It can be 

seen that the amount of high frequency content in each image 

has indeed been amplified quite significantly in both cases. 

Frame B shows a larger improvement due to the larger amount 

of high frequency components it contains compared to Frame 

A which has large areas of uniform colour. Figure 7 shows the 

measured Shannon entropy for each frame. Both frames show 

an improvement in entropy which means the algorithm 

restored information that was lost due to the effects of heat 

shimmer. Frame B shows only a slight increase in entropy 

because the original frame had a fair amount of high 

frequency information in it to start with so the blind 

deconvolution stage of the algorithm did not sharpen the frame 

very dramatically. 

 

Figure 8 shows the histograms of the unprocessed and 

processed versions of Frame B. It can be seen that the 



unprocessed frame’s colours were contained in only a small 

range of colour values and that the dynamic illuminance-

reflectance adjustment stretched the histogram to occupy 

almost the entire colour range thus increasing the frames 

contrast significantly. 

 

Figure 6 shows the computational performance results of the 

full algorithm implemented on the GPU and CPU for a set of 

different video resolutions. It is apparent from the figure that 

the GPU implementation runs far faster than the CPU 

implementation. At the smallest resolution the algorithms run 

at very similar speeds but as the size of the data increases the 

CPU experiences an exponential decay in processing times 

consistent with a serial architecture. 

 

 
Figure 3: Unprocessed and Processed video frame A 

The GPU implementation retains a fairly flat performance 

profile as the resolution increases and at the largest size runs at 

two orders of magnitude faster than the CPU implementation. 

 

 
Figure 4: Unprocessed and Processed frame B 

 

Figure 5: Laplacian sharpness metric results for Frame A 
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Figure 6: CPU vs GPU computational performance results 



 

Figure 7: Shannon Entropy results for Frame B 

 
Figure 8: a) Unprocessed Frame A histogram b) Processed frame 

A histogram 

V. CONCLUSION 

 

When long range imaging systems capture video sequences 

through turbulent atmosphere a phenomenon called heat 

shimmer is observed. Heat shimmer causes the captured video 

to appear blurred and washed out. Heat shimmer also causes 

geometric distortions that make stationary elements of a scene 

appear to move in a quasi-periodic fashion. 

 

This paper focuses on mitigating the blurring effect and 

contrast reduction caused by heat shimmer. A primitive 

stabilisation approach is used to combat the geometric 

distortions in the video sequences. A blind deconvolution 

approach is used to identify the intensity of the blurring effect 

in a given frame and compensate for the distortion without any 

a priori information. A dynamic illuminance-reflectance 

approach is used to improve the contrast of a frame without 

amplifying the additive noise present in the frame. 

 

A number of sharpness metrics are used to confirm the 

effectiveness of the blind deconvolution algorithm at 

sharpening the image. Histogram analysis is used to confirm 

the improvement of contrast by the algorithm. The algorithm 

is implemented on the GPU and the CPU to compare the 

computational performance increase experienced on the GPU 

as the resolution of the input video increases. 

 

The algorithm presented in this paper enhances video distorted 

by heat shimmer resulting in a sharper video with improved 

contrast and very little increase in additive noise which most 

sharpening and equalisation approaches experience. The GPU 

implementation of the algorithm runs at near real-time speeds 

on a mid-range GPU from the previous generation and it is 

expected that the algorithm will run at real-time speeds when 

run on a top-end card from the current generation. 
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