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A new particle swarm optimization (PSO) algorithm having a chaotic Hopfield Neural Network (HNN)
structure is proposed. Particles exhibit chaotic behaviour before converging to a stable fixed point which
is determined by the best points found by the individual particles and the swarm. During the evolutionary
process, the chaotic search expands the search space of individual particles. Using a chaotic system to
determine particle weights helps the PSO to escape from the local extreme and find the global optimum.
The algorithm is applied to some benchmark problems and a pressure vessel problem with nonlinear
constraints. The results show that the proposed algorithm consistently outperforms rival algorithms by
enhancing search efficiency and improving search quality.
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1. Introduction

Particle Swarm Optimization (PSO) was proposed by Kennedy et al. (1995). PSO is based on a
metaphor of social interaction such as birds flocking or fish schooling to search a space by adjusting
the trajectories of individual vectors, called ‘particles’, conceptualized as moving points in a mul-
tidimensional space. The random weights of the control parameters are used to cause the particles
to stochastically move towards a successful region in a higher dimensional space. Particles itera-
tively adjust their speed and direction based on their personal best positions and the best position
in the swarm. PSO has been successfully applied to optimize a wide range of problems (Hu et al.
2004, Huang et al. 2005, Clerc 2006, Nedjah 2007, Song et al. 2007). However, PSO algorithms
are easily trapped in local sub-optimal points when applied to problems with many local extremes
(Eberhart et al. 1998, Shi et al. 1998). Usually, the particle velocities need to be limited to control
their trajectories. Clerc et al. (2002) have significantly improved the convergence tendencies of par-
ticle swarm systems by introducing a constriction coefficient and by resorting to random weights
to control the search space of the particle trajectories. A large number of PSO improvements
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20 Y. Sun et al.

are based on combining PSO with other techniques such as chaos or genetic algorithms. Liu
et al. (2005) and Fan et al. (2008) applied chaos to PSO to avoid PSO getting trapped in
local minima.

PSO cannot guarantee the convergence of particle trajectories caused by random weights. It is
well known that although chaos is generated by a deterministic nonlinear system it appears pseudo
random. Using a chaotic system to replace the effect of random weights of the original PSO might
be convenient for analysis while maintaining stochastic search properties. In this article, chaos is
combined with PSO for optimization.

Based on the above analysis, a Chaotic Particle Swarm Optimization (shortened to CPSO),
which introduces chaos into PSO, is proposed. It combines the ergodic ability of chaos and the
fast convergence ability of PSO to increase the variety of particles in the swarm and to improve
its global optimization ability through the evolution of the population. When it is applied to some
benchmarks and the pressure vessel optimization problem, the particle final states converge to the
optimal region and global convergence is guaranteed.

2. Preliminaries

Many optimization problems can be represented as the following optimization problem:

f (Xi) = min(g(Xi)), Xi = [x1
i , x

2
i , . . . , x

n
i ],

subject to pj (Xi) ≤ 0, j = 1, 2, . . . , k.
(1)

Here g(·) is the objective function without constraints; Xi(t) denotes the position vector of particle
i consisting of n variables. Every candidate solution of f (Xi) is called a ‘particle’. pj (Xi) is the
j th constraint. The formulation of the constraints in Equation (1) is not restrictive, since an
inequality constraint of the form pj (Xi) > 0 can also be represented as −pj (Xi) ≤ 0, and an
equality constraint, pj (Xi) = 0, can be represented by two inequality constraints pj (Xi) ≤ 0 and
−pj (Xi) ≤ 0.

The canonical particle swarm algorithm works by iteratively searching in a region and is
concerned with the best previous success of each particle, the best previous success of the particle
swarm, the current position and the velocity of each particle (Kennedy et al. 1995). The particle
searches the domain of the problem, according to

Vi(t + 1) = ωVi(t) + c1R1(Pi(t) − Xi(t)) + c2R2(Pg(t) − Xi(t)), (2)

Xi(t + 1) = Xi(t) + Vi(t + 1), (3)

where Vi = [v1
i , v

2
i , . . . , v

n
i ] is the velocity of particle i; Xi = [x1

i , x
2
i , . . . , x

n
i ] represents the

position of particle i; Pi(t) represents the best previous position of particle i (indicating the
best discoveries or previous experience of particle i); Pg(t) represents the best previous position
among all particles indicating the best discovery or previous experience of the social swarm; ω

is the inertia weight that controls the impact of the previous velocity of the particle on its current
velocity and is sometimes adaptive (Liu et al. 2005); R1 and R2 are two random weights whose
components r

j

1 and r
j

2 (j = 1, 2, . . . , n) are chosen uniformly within the interval [0, 1] which
increase the searching ability, but cannot guarantee the convergence of the particles; and c1 and
c2 are positive constant parameters.

As every particle can be seen as a model of a single fish or a single bird, the position chosen
by the particle can be regarded as a state of a neural network with a random synaptic connection.
According to Equations (2) and (3), the position components of particle i can be regarded as the
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Engineering Optimization 21

Figure 1. Particle structure.

outputs of a neural network as shown in Figure 1. In Figure 1, Rand1(·) and Rand2(·) are two
independently and uniformly distributed random variables with range [0, 1], which refer to r

j

1

and r
j

2 , respectively. p
j

i and p
j
g are components of Pi and Pg , respectively. f (ω, ·) is a function

of Equation (2). The particles migrate toward a new position according to Equations (2) and (3).
This process is recurrent until a defined stopping criterion is met.

Remark 1 Figure 1 has three characteristics: (1) the structure has feedback which is characteristic
of the Hopfield neural network (Hopfield et al. 1985); (2) the structure has an externally applied
input which is reminiscent of a back-propagation neural network (Rumelhart et al. 1986); (3) it
exhibits stochastic-like chaos (Aihara et al. 1990).

3. Dynamics of the simple PSO

Clerc et al. (2002) reformulate Equation (2) as

v
j

i (t + 1) = ωv
j

i (t) + φ(p′
i − x

j

i ), (4)

where

p′
i = c1r

j

1 p
j

i + c2r
j

2 p
j
g

c1r
j

1 + c2r
j

2

, φ = c1r
j

1 + c2r
j

2 , (j = 1, 2, . . . , n).

Setting p′
i as a constant value p, the system reduces to

v(t + 1) = ωv(t) + φ(p − x(t)),

x(t + 1) = x(t) + v(t + 1),

}
(5)

where φ is a constant.
If define y(t) = p − x(t), Equation (5) becomes

v(t + 1) = ωv(t) + φy(t),

y(t + 1) = −ωv(t) + (1 − φ)y(t),

}
(6)

with ω = 1. Equation (6) has been analysed for various values of φ and it has been proven that a
non-random particle trajectory is cyclical or quasi-cyclical when φ ∈ (0, 4) (Clerc et al. 2002).
The bifurcation of Equation (6) with ω = 1 is shown in Figure 2. The corresponding Lyapunov
exponents λ1 and λ2 both are 0 and the initial values of v(t) and y(t) have a great effect on the
range of y. For every value of φ, the values of y are only recorded after 100 iterations (i.e. after
transient behaviour has been discarded as shown in Figure 2). It can be seen from Figure 2 that
the bifurcation becomes pseudo-chaotic as φ approaches 4. When a random weight is added to
Equation (6), its dynamics will become more complex and it is difficult to analyse.
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22 Y. Sun et al.

Figure 2. Bifurcation of single particle.

4. A model of the chaotic particles

As the PSO was discovered through the simulation of a simplified social model (Kennedy et al.
1995), the particle model should also be based on a social model. The sociologist Wilson (1975)
made the following remark: ‘In theory at least, an individual member of a school of fish can
profit from the discoveries and the previous experience of all other members of the school during
the search for food. This advantage can become decisive, outweighing the disadvantages of the
competition for the food items, whenever the resource is unpredictably distributed in the patches’.
This means that the social sharing of information amongst the conspeciators offers an evolutionary
advantage. This hypothesis was fundamental to the development of the PSO. Although human
social behaviour is abstract, beliefs and attitudes are also adjusted to conform with those of social
peers (Kennedy et al. 1995). The beneficial previous experience of the social swarm is important
for optimization. There are many patterns to reflect the influences amongst particles in the swarm,
and the effect is different from each other Mendes et al. 2004). For simplicity, only the best
experience among particles is used in this article. Not only does the social influence have an effect
on PSO, but also the particle’s own experience contributes information to PSO as the ‘habit’ of
the particle. It would therefore be beneficial for the model of a particle to include the following
two parts: the best position found by all particles and the best position of the individual particle.

Artificial neural networks are composed of simple artificial neurons mimicking biological
neurons. The HNN has a property that as each neuron in an HNN updates, an energy function
is monotonically reduced until the network stabilizes. One can therefore map an optimization
problem to an HNN such that the cost function of the problem corresponds to the energy function
of the HNN and the result of the HNN thus suggests a low cost solution to the optimization
problem. The HNN might therefore be a good choice to model the particle behaviour.

Since Hopfield et al. (1985) applied their neural network to the travelling salesman problem,
neural networks have provided a powerful approach to a wide variety of optimization problems.
However, the Hopfield neural network (HNN) is often trapped in local minima. A number of
modifications were proposed to make HNN escape from local minima. Some modifications are
based on chaotic neural networks (Aihara et al. 1990) and simulated annealing (Kirkpatrick et al.
1983) to solve the global optimization problem (Chen et al. 1995). The convergence of such neural
networks was discussed by Wang et al. (1997, 1998) and Chen et al. (1999).

A Hopfield network is a recurrent neural network having a synaptic connection pattern and
there is an underlying Lyapunov energy function for the dynamics (Hopfield 2009). When started
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Engineering Optimization 23

in any initial state, the state of the system evolves to a final state that is a (local) minimum of a
Lyapunov energy function. The Lyapunov energy function decreases in a monotone fashion, and
is bounded from below. Because of the existence of an elementary Lyapunov energy function for
the dynamics, the only possible asymptotic result is a state on an attractor.

There are two popular forms of the model: binary neurons with discrete time that is updated
one at a time, and graded neurons with continuous time. In this article, the second kind of model
is used. The dynamics of an n-neuron continuous Hopfield neural network is described by

dui

dt
= −ui

τ
+

∑
j

Tijfi[ui(t)] + Ii . (7)

The internal state of neuron i for ui ∈ (−∞, ∞), determines the output of neuron i:

xi(t) = fi[ui(t)]. (8)

Here:

i = 1, 2, . . . , n;
τ is a positive constant;
Ii is the external input (e.g. sensory input or bias current) to neuron i and is sometimes called

the ‘firing threshold’ when replaced with −Ii ;
ui is the mean internal potential of the neuron which determines the output of neuron i;
Tij is the strength of synaptic input from neuron i to neuron j ;
f is a monotone function that converts internal potential into firing rate input of the neuron;
T is the matrix of Tij.

When T is symmetric, the Lyapunov energy function is given by

J = −1

2

∑
ij

Tijxixj −
∑

i

Iixi + 1

τ

∑
i

∫ xi

0

f −1
i (Z) dZ, (9)

where f −1
i is the inverse of the gain function fi . There is a significant limiting case of this function

when T has no diagonal elements and the input–output relation becomes a step, going from 0 to
a maximum firing rate (for convenience, scaled to 1). The third term of this Lyapunov function is
then zero or infinite. With no diagonal elements in T , the minima of J are all located at corners
of the hypercube 0 ≤ xi ≤ 1. In this limit, the states of the continuous variable system are stable.
This property of the HNN is discussed and incorporated into the CPSO in the remainder of this
article.

In order to approach Pg and Pi , the HNN model should include at least two neurons. For
simplicity, each particle position component has two neurons whose outputs are x

j

i (t) and x
j

ip(t).
In order to transform the problem into variables such that the desired optimization corresponds
to the minimization of the energy function, the objective function should first be determined. As
x

j

i (t) and x
j

ip(t) should approach p
j
g and p

j

i , respectively, (xj

i (t) − p
j
g)

2 and (x
j

ip(t) − p
j

i )
2 can be

chosen as two parts of the energy function. The third part of the energy function, (xj

i (t) − x
j

ip(t))
2,

accompanies (x
j

ip(t) − p
j

i )
2 to cause x

j

i (t) to tend towards p
j

i . The proposed HNN energy function
is therefore given by

J
j

i (t) = A(x
j

i (t) − pj
g)

2 + B(x
j

ip(t) − p
j

i )
2 + C(x

j

i (t) − x
j

ip(t))
2, (10)

where A, B and C are positive constants.
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24 Y. Sun et al.

According to Figure 1, PSO applies random weights R1 and R2 to simulate birds flocking
or fish searching for food. An intelligent particle by implication exhibits chaos-like behaviour.
Aihara et al. (1990) proposed a kind of chaotic neuron, which includes relative refractoriness in
the model to simulate chaos in a biological brain. Wang et al. (1997) presented a convergence
theorem for the HNN with arbitrary energy functions and discrete-time dynamics for discrete
neuronal input–output functions. The theorem states that if one has a network of neurons with
discrete input–output neuronal response functions, then for any change of state in any neuron i

the energy is guaranteed to decrease �J
j

i < 0, if f (·) is a monotonically increasing function and
the network is updated according to the following rules:

(1) the network is updated asynchronously, and
(2) the equations

xi + �xi(t) = f (ui(t) + �ui(t)) (11)

�ui(t) = −w�Ji(t)

�xi(t)
(12)

have non-zero solutions for �x
j

i and �u
j

i when the state of neuron i is updated and remains
unchanged otherwise. Here ui(t) is the input of the neurons, xi(t) is the state of the neurons,
and ω > 0 is the updating rate. In this article ω is set to 1. With Equations (11) and (12)
satisfied, the convergence of the energy function Equation (10) is guaranteed.

For simplicity, the neuron input–output function is chosen as a linear saturation function,
given by Equations (13) and (16). Equations (14) and (17) are the Euler approximation of the
input of the continuous Hopfield neural network (Wang et al. 1998). Equations (15) and (18)
are obtained by simultaneously solving Equations (10), (12), (13) and (16). The self-coupling
terms z(t)(x

j

i (t) − I0) and z(t)(x
j

ip
(t) − I0) are added to Equations (14) and (17) to cause chaotic

dynamics. The dynamics of component j of particle i is described by

x
j

i (t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ku
j

i (t + 1) > 1

ku
j

i (t + 1) if ku
j

i (t + 1) ∈ [−1, 1]
−1 if ku

j

i (t + 1) < −1,

(13)

u
j

i (t + 1) = u
j

i (t) + �u
j

i (t + 1) − z(t)(x
j

i (t) − I0), (14)

�u
j

i (t + 1) = −[2A(x
j

i (t) − p
j
g) + 2C(x

j

i (t) − x
j

ip
(t))]

1 + kA + kC
, (15)

x
j

ip
(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ku
j

ip
(t + 1) > 1

ku
j

ip
(t + 1) if ku

j

ip
(t + 1) ∈ [−1, 1]

−1 if ku
j

ip
(t + 1) < −1,

(16)

u
j

ip
(t + 1) = u

j

ip
(t) + �u

j

ip
(t + 1) − z(t)(x

j

ip
(t) − I0), (17)

�u
j

ip
(t + 1) = −[2B(x

j

i (t) − p
j

i ) − 2C(x
j

i (t) − x
j

ip
(t))]

1 + kB + kC
, (18)

z(t + 1) = (1 − β)z(t). (19)
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Engineering Optimization 25

Figure 3. Structure of CPSO, where M1 = 1 + kB + kC, M2 = 1 + kA + kC.

Here:

k is a positive constant;
z(t) is self-feedback connection weight (the refractory strength);

β is the damping factor of the time-dependent z(t), (0 ≤ β ≤ 1);
I0 is a positive parameter.

According to Equations (13) and (19), the structure of the CPSO is provided as Figure 3.
Here, the asynchronous updating arrangement is used for the particle dynamic model, implying

that the updating time of Equations (13) and (14) and Equations (16) and (17) is different. They
use the same time indices because the particle does not distinguish between asynchronous update
sequences.

According to Equations (13)–(19), the following procedure can be used to implement CPSO.

(1) Initialize the parameters of CPSO and swarm by assigning a random position in the problem
hyperspace to each particle.

(2) Evaluate the fitness function for each particle.
(3) For each individual particle, compare the particle’s fitness value with its p

j

i . If the current
value is better than the p

j

i value, then set this value as the pi and the current particle’s position,
xi , as pi .

(4) Identify the particle that has the best fitness value. The value of its fitness function is identified
as p

j
g and its position as pi . When iterations are less than a certain value, reset z = z(0) to

keep the particles chaotic to prevent premature convergence.
(5) Asynchronously update the positions of all the particles using Equations (13)–(19) and change

only one of the two states at each iteration.
(6) Repeat steps (2)–(5) until a stopping criterion is met (e.g. maximum number of iterations or

a sufficiently good fitness value).

As can be seen from Equations (13) and (16), the particle position component x
j

i is located
in the interval [−1, 1]. The optimization problem variable interval must therefore be mapped to
[−1, 1] and vice versa using

xj = −1 + 2(xj − aj )

bj − aj

, j = 1, 2, . . . , n (20)

and

xj = aj + 1

2
(xj + 1)(bj − aj ), j = 1, 2, . . . , n. (21)
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26 Y. Sun et al.

Here, aj and bj are the lower boundary and the upper boundary of xj (t), respectively, and only
one particle is analysed for simplicity.

5. Dynamics of CPSO

5.1. Convergence of the particle swarm

According to Equation (10), the interaction among particles in a swarm is derived from the best
previous position amongst all particles. By applying asynchronous updating to analyse the particle
model, the following theorem is derived.

Theorem 5.1 When using the energy function Equation (10), and the dynamics given by
Equations (13)–(19), the particles converge on an equilibrium.

Proof According to Equation (12),

�x
j

i (t + 1)�u
j

i (t + 1) = −ω�J
j

i (t + 1). (22)

Moreover, �x
j

i (t + 1)�u
j

i (t + 1) > 0 since the neuron input–output function f monotonically
increases. When �x

j

i (t + 1) �= 0, the energy function J monotonically decreases. When the
particle state finally becomes steady, then

u
j

i (t + 1) = u
j

i (t), u
j

ip
(t + 1) = u

j

ip
(t). (23)

As t → ∞,

z(t + 1) = 0. (24)

By substituting Equations (23) and (24) into Equations (14) and (17),

�u
j

i (t + 1) = 0, �u
j

ip
(t + 1) = 0. (25)

With Equations (15), (18) and (25) satisfied, the final convergence equilibria of the particle are

x
j

ie
(t + 1) = (AB + AC)p

j
g + BCp

j

i

AB + BC + AC
, (26)

x
j

ipe
(t + 1) = (AB + BC)p

j
g + ACp

j

i

AB + BC + AC
. (27)

Theorem 5.1 is therefore verified. �

Theorem 5.2 The particles converge to the sphere with centre point p
j
g and radius

R = BC

AB + BC + AC
(max ‖pj

g − p
j

i ‖)

(if it is in a two-dimensional plane, the particles are finally in a circle).

Proof According Theorem 5.1, the ith particle converges to the only equilibrium Xie(x
j

ie
(t +

1), x
j

ipe
(t + 1)). From Equations (15) and (18), it is easy to see p

j
g and p

j

i determine the particle

D
ow

nl
oa

de
d 

by
 [

B
ro

ug
ht

 to
 y

ou
 b

y 
U

ni
sa

 L
ib

ra
ry

] 
at

 0
5:

32
 2

1 
N

ov
em

be
r 

20
14

 



Engineering Optimization 27

final states. The distance from p
j
g to the final equilibrium Xie is ‖pj

g − x
j

ie
(t + 1)‖. By substituting

Equation (25) into ‖pj
g − x

j

ie
(t + 1)‖, then

‖pj
g − x

j

ie‖ =
∥∥∥∥∥pj

g − (AB + AC)p
j
g + BCp

j

i

AB + BC + AC

∥∥∥∥∥
= BC

AB + BC + AC
‖pj

g − p
j

i ‖. (28)

Theorem 5.2 is therefore verified. �

It is easy to show that the particle model given by Equations (10) and (13)–(19) has only
one equilibrium as t → ∞, i.e. z(t) = 0. Hence, as t → ∞, Xi belongs to the hyper-sphere
whose origin is Pg and the radius is R. As can be seen from Equations (26) and (27), x

j

ie ≈ p
j
g if

A � B, A � C or (AB + AC) � C.

5.2. Dynamics of the simplest chaotic particle swarm

In this section, the dynamics of the simplest particle swarm model is analysed. Equations (10)
and (13)–(19) describe the dynamical model of a single particle with subscript j ignored.

According to Equation (28) andTheorem 5.2, parametersA,B andC control the final convergent
radius. According to trial and error, the parameters A, B and C can be chosen in the range
[0.005, 0.05]. The parameter z(0) controls the time of the chaotic period. If z(0) is too small, the
system will quickly escape from chaos and the performance will degrade. The parameter I0 = 0.2
is standard in the literature on chaotic neural networks. The simulation shows that the model is
not sensitive to the parameters. The values of the parameters in Equations (10) and (13)–(19) are
set to

A = 0.02, B = C = 0.01, z(0) = 0.7, I0 = 0.2, pi = 0.5, pg = 0.5. (29)

All the parameters are fixed except z(t) which is varied. Figure 4 shows the time evolution of
xi(t), z(t) and the Lyapunov exponent λ of xi(t). The Lyapunov exponent λ characterizes the rate

Figure 4. Time evolutions of xi(t), z(t) and the Lyapunov exponent λ.
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28 Y. Sun et al.

of separation of infinitesimally close trajectories. A positive Lyapunov exponent is usually taken
as an indication that the system is chaotic. Here, λ is defined as

λ = lim
n→+∞

1

n

n−1∑
t=0

ln

∣∣∣∣dxi(t + 1)

dxi(t)

∣∣∣∣. (30)

The asynchronous updating arrangement should be changed to synchronous updating to calculate
the Lyapunov exponent. At about 2000 steps, z(t) decays to a small value and xi(t) departs from
chaos which corresponds with the change of λ from positive to negative. From Figure 4, the
convergence process of a simple particle position follows a nonlinear bifurcation making the
particle converge to a stable fixed point from a strange attractor. For the proposed CPSO model
and parameters, the particle position approaches 0.5 as seen in Figure 4(a) which meets the result
of Theorem 5.1.

Proposition 5.1 Since the energy function change �J (whether it is positive or negative) is
not monotonic, the proposed chaotic particle swarm optimization model can escape from a local
extremum.

Proof Since the states of a single particle update asynchronously, only the state x
j

i (t) can be
considered without loss of generality. Referring to Equation (10),

�J
j

i (t + 1) = J
j

i (t + 1) − J
j

i (t)

= A[xj

i (t + 1) − pj
g]2 + B[xj

ip(t) − p
j

i ]2 + C[xj

i (t + 1) − x
j

ip(t)]2

− A[xj

i (t) − pj
g]2 + B[xj

ip(t) − p
j

i ]2 + C[xj

i (t) − x
j

ip(t)]2

= �x
j

i (t + 1)[(A + C)x
j

i (t + 1) + (A + C)x
j

i (t) − 2Apj
g − 2Cx

j

ip(t)]. (31)

From Equation (15), one obtains

−2Apj
g − 2Cxj

ip(t) = −(1 + kA + kC)�u
j

i (t + 1) − (2A + 2C)x
j

i (t). (32)

Substituting Equation (32) into �J
j

i (t + 1) yields

�J
j

i (t + 1) = �x
j

i (t + 1)[(A + C)�x
j

i (t + 1) − (1 + kA + kC)�x
j

i (t + 1)�u
j

i (t + 1)]
= �x

j

i (t + 1){(A + C)[k�u
j

i (t + 1)z(t)(x
j

i (t) − I0)] − (1 + kA + kC)�u
j

i (t + 1)}
= −�x

j

i (t + 1)�u
j

i (t + 1) − (kA + kC)z(t)(x
j

i (t) − I0)�x
j

i (t + 1). (33)

From Equation (33), it can be observed that

(1) when z(t) = 0, �J
j

i (t + 1) = −�x
j

i (t + 1)�u
j

i (t + 1) < 0;
(2) when z(t) �= 0 whether �J

j

i (t + 1) is positive or not cannot be determined, implying that
the state can escape from a local extremum, completing the proof.

�

Remark 2 The model is a deterministic HNN-based CPSO which differs from existing PSO
algorithms with stochastic parameters. Its search orbits exhibit an evolutionary process of inverse
period bifurcation from chaos to periodic orbits then to sink. As chaos is ergodic and the particle
is in a chaotic state at the beginning (e.g. in Figure 4), the particle can escape when trapped in
a local extremum. Note from Equation (33) that �J

j

i (t + 1) is not always positive or negative.
The proposed CPSO model will therefore in general not suffer from premature convergence
problems.
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Engineering Optimization 29

6. Numerical simulation

To demonstrate the efficiency of the proposed technique, three famous benchmarks are chosen
as test problems. The proposed CPSO, PSO (Kennedy et al. 1995) with parameters settings
ω = 1, c1 = c2 = 2, and standard PSO (SPSO) (Clerc 2004) with parameters settings ω = 0.729,
c1 = c2 = 1.49445 are applied with a population size of 20 and maximum iteration 15,000. The
CPSO parameters are chosen as

A = 0.02, B = C = 0.01, β = 0.001, z(0) = 0.7,

z(t + 1) = (1 − β)z(t), k = 15, I0 = 0.2.

The position of every particle is initialized with a random value.

6.1. Rastrigin function

The Rastrigin function with two variables is given by

f (X) = x2
1 + x2

2 − cos(18x1) − cos(18x2), −1 < xi < 1, i = 1, 2. (34)

The global minimum is −2 and the minimum point is (0, 0). There are about 20 local minima
arranged in a lattice configuration for this Rastrigin function.

The time evolutions of the Rastrigin function for the proposed CPSO, PSO (Kennedy et al.
1995) and SPSO (Clerc 2004) are shown in Figure 5. The global minimum at −2 is obtained
by the best particle with (x1, x2) = (0, 0) for the proposed CPSO and the SPSO (Clerc 2004). It
is clear in Figure 5 that f (x) using SPSO (Clerc 2004) decays more rapidly than that from the
proposed CPSO. However, there are minor oscillations caused by the stochastic influence (van dan
Bergh 2001) and the main disadvantage of the SPSO is that the particles may follow wider cycles
and may not converge when the individual best performance Pi is far from the neighborhood’s
best performance Pg (two different regions) (del Valle 2008). Since there are two variables in
the Rastrigin function, the final convergent particle states are shown in the plane in Figure 6. In
this article, ‘+’ denotes the best experience of each particle and ‘◦’ denotes the final state of the
particle. The ‘◦’ in Figure 6 correspond to the ‘∗’ for the original PSO in Figure 7. According

Figure 5. Time evolutions of the Rastrigin function for the proposed CPSO, PSO (Kennedy et al. 1995) and SPSO
(Clerc 2004).
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30 Y. Sun et al.

Figure 6. The particle final states and previous best experience using the proposed CPSO for the Rastrigin function (in
this article, ‘+’ denotes the best experience of each particle and ‘◦’ denotes the final state of the particle).

Figure 7. The particle final states achieved from the original PSO (Kennedy et al. 1995) for the Rastrigin function.

to Theorem 5.2 the particles converge on a circle as shown in Figure 6. The centre point is (0,0)
and the radius is 0.0496. The global convergence of the particles is guaranteed for the CPSO.
When the original PSO (Kennedy et al. 1995) is used to optimize the Rastrigin function, the final
particle states are shown in Figure 7. It is easy to find that the particle final states are ruleless.
By comparing the results obtained by the proposed CPSO in Figure 6 with the original PSO
in Figure 7, it can be seen that the particles of the proposed CPSO are finally attracted to the
best experience of all the particles and convergence is guaranteed, which is not the case for the
original PSO.

The average best function value and the deviation of 50 independent runs of the proposed
CPSO for the Rastrigin test function are f (x) = −1.9983 ± 0.0017. By comparing the results
−1.9067 ± 0.0930 from CPSO (Krishna et al. 2006) and −1.9979 ± 0.0021 using CPSO (Tang
et al. 2009), it is seen that the result using the proposed CPSO is better and more stable than
those using the other two CPSO algorithms. Moreover, the proposed CPSO can guarantee the
convergence of the particle final states.
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6.2. The Branin function

The Branin function is

f (x) =
(

x2 − 5.1

4π2
x2

1 + 5

π
− 6

)2

+ 10

(
1 − 1

8π

)
cos x1 + 10, (35)

where

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

The global minimum is approximately 0.398 and it is reached at three points (−3.142,12.275),
(3.142, 2.275) and (9.425,2.425).

The time evolutions of the Branin function for the proposed CPSO, PSO (Kennedy et al. 1985)
and SPSO (Clerc 2004) are shown in Figure 8. The proposed CPSO and SPSO (Clerc 2004) can
achieve good results according to Figure 8.

Figure 9 shows the particle final states and previous best experience using CPSO. The global
minimum is approximately 0.398 at the points (3.137, 2.274), (9.419, 2.495) and (−3.148, 12.283).

Figure 8. Time evolutions of the Branin function for the proposed CPSO, PSO (Kennedy et al. 1995) and SPSO (Clerc
2004).

Figure 9. The particle final states and previous best experience using the proposed CPSO for the Branin function.
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32 Y. Sun et al.

All the ◦’s converge in or on the circle as shown in Figure 9. The centre point is (3.137, 2.274)
and the radius is 4.6751. The global convergence of the particles is guaranteed.

The average best function value and the deviation of 50 independent runs of the pro-
posed CPSO for the Branin test function are f (x) = 0.4006 ± 0.00256. Comparing the results
0.4076 ± 0.0097 from CPSO (Krishna et al. 2006), 0.4019 ± 0.0038 from CPSO (Tang et al.
2009), 0.4960 ± 0.3703 from PSO (Kennedy et al. 2001), and 0.4021 ± 0.0153 from GA
(Goldenberg 1999), the best result from the proposed CPSO is better than those from the other
algorithms.

6.3. The Hartmann function

The Hartmann function when n = 3, 6; q = 4 is given by

f (x) = −
q∑

i=1

ci exp

⎡
⎣−

n∑
j=1

aij(xj − pij)
2

⎤
⎦, (36)

where

S = {x ∈ Rn|0 ≤ xj ≤ 1, 1 ≤ j ≤ n}
and S is the range of the parameter xj . Tables 1 and 2 show the parame-
ter values for the Hartmann function when n = 3, q = 4 and n = 6, q = 4, respec-
tively. When n = 3, Xmin = (0.114, 0.556, 0.882), f (xmin) = −3.86. When n = 6, Xmin =
(0.201, 0.150, 0.477, 0.275, 0.311, 0.657), f (xmin) = −3.32.

Figures 10(a) and 10(b) show the time evolutions of the Hartmann function when n = 3, q = 4
and n = 6, q = 4, respectively, for the proposed CPSO, PSO (Kennedy et al. 1995) and SPSO
(Clerc 2004). From Figure 10, it can be found that the proposed CPSO and SPSO (Clerc 2004)
achieve good performance. All particle final states that are denoted by ‘◦’ are in or on the circle
as shown in Figures 11(a) and 11(b). The centre point is (0.1146, 0.5557, 0.8525) and radius is
0.0821 in Figure 11(a) and the centre point is (0.2015, 0.1498, 0.4769, 0.2752, 0.3118, 0.6484)

and the radius is 0.3466 in Figure 11(b). The particle final states are all in or on the circle.
The average best function value and the deviation result from CPSO, CPSO (Krishna

et al. 2006), CPSO (Tang et al. 2009), PSO (Kennedy et al. 2001) and GA (Goldenberg
1999) are −3.8615 ± 0.0013, −3.7621 ± 0.1000, −3.8589 ± 0.0021, −3.8572 ± 0.0035

Table 1. The parameters of the Hartmann function (when n = 3 and q = 4).

i ai1 ai2 ai3 ci pi1 pi2 pi3

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.03815 0.5473 0.8828

Table 2. The parameters of the Hartmann function (when n = 6 and q = 4).

i ai1 ai2 ai3 ai4 ai5 ai6 ci pi1 pi2 pi3 pi4 pi5 pi6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1619 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6550
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

D
ow

nl
oa

de
d 

by
 [

B
ro

ug
ht

 to
 y

ou
 b

y 
U

ni
sa

 L
ib

ra
ry

] 
at

 0
5:

32
 2

1 
N

ov
em

be
r 

20
14

 



Engineering Optimization 33

Figure 10. Time evolutions of the Hartmann function for the proposed CPSO, PSO (Kennedy et al. 1995), and SPSO
(Clerc 2004): (a) when n = 3 and q = 4; and (b) when n = 6 and q = 4.

Figure 11. The particle final states and previous best experience using the proposed CPSO for the Hartmann function:
(a) when n = 3 and q = 4; and (b) when n = 6 and q = 4.

and −3.8571 ± 0.0070 when n = 3, q = 4, and −3.1798 ± 0.1459, −2.3375 ± 0.8750,
−2.8949 ± 0.4301, −2.8943 ± 0.3995 and −3.0212 ± 0.4291, respectively, with n = 6, q = 4.
By comparing the results from the proposed CPSO, other CPSO, PSO and GA, it is seen that the
best result from the proposed CPSO is more stable than that of the other algorithms.

7. An experiment on the design of a pressure vessel

There are some studies reported in the literature wherein improved PSOs were used for constrained
optimization problems. Various constraint handling techniques were employed to facilitate the
optimization process. The pressure vessel problem described in Dep (1997), Coello (2000) and Hu
et al. (2003) is an example that has both linear and nonlinear constraints and has been solved by
a variety of PSO techniques. The aim is to design a pressure vessel using the proposed approach.
The objective of the problem is to minimize the total cost of the material, forming and welding
of a cylindrical vessel. There are four design variables: x1 (Ts , thickness of the shell), x2 (Th,
thickness of the head), x3 (R, inner radius), and x4 (L, length of the cylindrical section of the
vessel). x1, x2 are formed from plates available only on thickness increments of 0.0625 inch and
R and L are continuous. The problem can be stated as follows.

Minimize

f (X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3, (37)
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34 Y. Sun et al.

subject to

g1(X) = −x1 + 0.0193x3 ≤ 0,

g2(X) = −x2 + 0.00954x3 ≤ 0,

g3(X) = −πx2
3x4 − 4

3
πx3 + 1296000 ≤ 0,

g4(X) = x4 − 240 ≤ 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(38)

The following ranges of variable are used (Coello 2000):

0 < x1 ≤ 99; 0 < x2 ≤ 99; 10 ≤ x3 ≤ 200; 10 ≤ x4 ≤ 200. (39)

When CPSO is applied to deal with the constraints of this example, the constraint extended method
is applied. Ho et al. (2005) found that there is a relationship between the global and local search
which can improve the searchability of PSO. This result was applied in this article to choose the
parameters A and B and it is proved that parameters chosen in this way can also guarantee global
convergence in theory and simulation. In order to enhance the global searchability of CPSO, set
A = Rand(1), B = 1 − A and C = 0.5 with a population size of 30. During the search process,
10 particles were chosen to search the extended area, given by

g11(X) = −x1 + 0.0193x3 − 3 ≤ 0,

g22(X) = −x2 + 0.00954x3 − 0.2 ≤ 0,

g33(X) = −πx2
3x4 − 4

3
πx3 + 1, 296, 000 − 500 ≤ 0. (40)

during the first 7500 iterations.The maximum iterations were 15,000.After the first 7500 iterations,
these 10 particles were discarded and only the remaining 20 particles were used to search the
constrained space given by Equation (38). Each time the best previous position (pg) of the particle
swarm changed, the refractory strength z(t) was reset to 0.5 to guarantee that the system was
chaotic. The time evolution of the pressure vessel problem for the proposed CPSO and SPSO
(Clerc 2004) is shown in Figure 12. Although SPSO has fast convergence ability, it can not get a
good result as shown in Figure 12. As in Coello (2000), eleven runs were executed to compare the
results. The best solution found by CPSO is better than that previously reported in the literature

Figure 12. Time evolutions of pressure vessel function for the proposed CPSO and SPSO (Clerc 2004).
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Table 3. Comparison of results for the pressure vessel design problem.

Best solutions found
Design
variables This article SPSO (Clerc 2004) Coello (Coello 2000) GeneAS (Deb 1997)

x1(Ts) 0.8125 1.125 0.8125 0.9375
x2(Th) 0.4375 0.625 0.4375 0.5000
x3(R) 42.09845 58.290155 40.3239 48.3290
x4(L) 176.6366 43.692656 200.0000 112.6790
g1(X) 0 −8.5 × 10−9 −0.03424 −0.00475
g2(X) −0.03588 −0.068912 −0.052847 −0.038941
g3(X) −5.8208 × 10−11 −0.030298 −27.105845 −3652.8768
g4(X) −63.3634 −196.3073 −40 −127.321
f (X) 6059.7143 7197.7289 6288.7445 6410.3811

as shown in Table 3. The worst solution found by CPSO is 6480.7, which is also better than any
solution previously reported. For this problem, the standard deviations are 80.418 and 327.188
for the CPSO and PSO (Kennedy et al. 1995), respectively. It is clear that the proposed CPSO is
more stable than PSO (Kennedy et al. 1995).

Remark 3 Although A is a random number, the particle final states can also converge to a sphere
with centre p

j
g and radius max ‖pj

g − p
j

i ‖.

Proof According to Theorem 5.2, the particle final states converge to a sphere with centre point
p

j
g and radius

r ≤ BC

AB + BC + AC
(max ‖pj

g − p
j

i ‖).
Set

f (A) = BC

AB + BC + AC

= 0.5(1 − A)

(A − A2 + 0.5)2

f ′(A) = −0.5[(A − 1)2 + 0.5]
(A − A2 + 0.5)2

< 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)

f (A) therefore decreases monotonically. When A = 0, f (A)max = 1, the max radius is

max ‖pj
g − p

j

i ‖.
The above analysis verifies Remark 3. �

The particle best experiences and final states all overlap at the optimal point
(0.8125, 0.4375, 42.09845, 176.6366) in the simulation which means the particle final states
converge.

8. Conclusion

This article proposed a chaotic particle model for PSO. The ergodic searching capability of chaos
can improve the optimization performance. The decay factor introduced in the particle swarm can
ensure that the searching evolves to convergence to the global optimum after chaotic searching.
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36 Y. Sun et al.

The experimental results from three classic benchmarks and one engineering optimization problem
showed that the proposed CPSO can guarantee the convergence of the particle swarm searching
and can escape from local extrema. As the model was derived from an HNN, it more naturally
describes the character of particles. As this is a general particle model, many techniques that
have been proposed for the original PSO can be used together with the new model. This will be
explored in future work.
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