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Abstract In this paper, a fractional 3-dimensional
(3-D) 4-wing quadratic autonomous system (Qi sys-
tem) is analyzed. Time domain approximation method
(Grunwald–Letnikov method) and frequency domain
approximation method are used together to analyze the
behavior of this fractional order chaotic system. It is
found that the decreasing of the system order has great
effect on the dynamics of this nonlinear system. The
fractional Qi system can exhibit chaos when the to-
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tal order less than 3, although the regular one always
shows periodic orbits in the same range of parame-
ters. In some fractional order, the 4 wings are decayed
to a scroll using the frequency domain approximation
method which is different from the result using time
domain approximation method. A surprising finding
is that the phase diagrams display a character of lo-
cal self-similar in the 4-wing attractors of this frac-
tional Qi system using the frequency approximation
method even though the number and the characteris-
tics of equilibria are not changed. The frequency spec-
trums show that there is some shrinking tendency of
the bandwidth with the falling of the system states or-
der. However, the change of fractional order has little
effect on the bandwidth of frequency spectrum using
the time domain approximation method. According to
the bifurcation analysis, the fractional order Qi sys-
tem attractors start from sink, then period bifurcation
to some simple periodic orbits, and chaotic attractors,
finally escape from chaotic attractor to periodic orbits
with the increasing of fractional order α in the inter-
val [0.8,1]. The simulation results revealed that the
time domain approximation method is more accurate
and reliable than the frequency domain approximation
method.

Keywords Chaos · Fractional order · Four-wing
attractor · Bifurcation · Lyapunov exponent
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1 Introduction

The derivative theory of fractional order goes back
to a question raised in the year 1695 by L’ Hopi-
tal to G.W. Leibniz, in which the meaning of deriv-
ative of order of 1/2 was discussed. The subject of
fractional calculus has gained considerable popular-
ity and attention during the past three decades or so,
mainly due to its widespread applications in the fields
of science and engineering [1, 2]. Many systems are
known to display fractional-order dynamics, such as
viscoelastic systems [3–6], dielectric polarization [7],
quantitative finance [8–11], and quantum evolution of
a complex system [12]. The dynamics of the frac-
tional nonlinear system have also been studied exten-
sively during recent years. According to the Poincaré–
Bendixson theorem (for a review, see [13]), chaos can-
not occur in continuous-time autonomous systems of
order less than three, which is based on the usual in-
teger order concepts. However, some fractional-order
nonlinear systems display chaos when the total order
less than three [14–21]. Most of the researches on the
fractional chaos or hyperchaos systems are finding the
lowest total order of some well-known nonlinear sys-
tems, which are chaos or hyperchaos when the sys-
tem orders are integer, and have not paid much atten-
tion to the rich dynamics caused by the fractional or-
der.

Recently, Qi et al. [24] has proposed a new 3-D au-
tonomous system with five equilibria, in which each
equation contains a single quadratic term. The sys-
tem can generate two coexisting single-wing chaotic
attractors and a pair of diagonal double-wing chaotic
attractors. It is amazing to find that a real four-wing
chaotic attractor can be generated when the two diag-
onal double-wing chaotic attractors merge together in
some way which is different from Lorenz systems.

In this paper, we investigate the dynamics of the
fractional four-wing 3-D quadratic autonomous sys-
tem (in this paper, the system is called the Qi system),
and find that the fractional Qi system exhibits chaos
although the normal Qi system is not chaotic using the
same parameters. Time domain approximation method
(Grunwald–Letnikov method) and frequency domain
approximation method are used together to analyze the
behavior of the fractional order chaotic system. The
phase diagrams and frequency analysis show that the
dynamics of fractional Qi system is different from that
of the integer order Qi system.

2 Introduction to fractional calculus

Fractional calculus is a generalization of integration
and differentiation to noninteger order fundamental
operator aD

α
t , where a and t are the limits of the op-

eration. The continuous integro-differential operator is
defined as [17]:

aD
α
t =

⎧
⎪⎨

⎪⎩

dα

dtα
, α > 0,

1, α = 0,
∫ t

a
(dτ )−α, α < 0.

There are several definitions for fractional deriv-
atives. The most commonly used definitions are the
Grunwald–Letnikov, Riemann–Liouville and Caputo
definitions [29]. The Grunwald–Letnikov is given as

aD
α
t f (t) = lim

x→0
h−α

[ t−a
h

]
∑

j=0

(−1)j
(

α

j

)

f (t − jh), (1)

where [·] means the integer part and h is the time step.
The Riemann–Liouville definition is

aD
α
t f (t) = 1

�(n − α)

dn

dtn

∫ t

a

f (τ

(t − τ)α−n+1
dτ, (2)

where n− 1 < α < n and �(·) is the Gamma function.
Another definition is the Caputo definition whose

properties are similar to the Riemann–Liouville [1].
Caputo’s derivative of order α and with the lower limit
0 can be viewed as regularization of the Riemann–
Liouville derivative and is defined as

0D
α
t f (t) = dα

dtα
f (t)

= 1

�(n − α)

∫ t

0

f (n)(τ )

(t − τ)α−n+1
dτ, (3)

where �(·) is the Gamma function and n − 1 ≤ α < n.
The main advantage of the Caputo fractional derivative
(3) is a formal generalization of the integer derivative
under Laplace transformation [1]. Considering all the
initial conditions to be zero, the Laplace transforma-
tion of (3) becomes the more expected and conforming
form,

L

(
dαf (x)

dtα

)

= sαL
(
f (t)

)
. (4)

Thus, the fractional integral operator of order α can
be represented by the transfer function F(s) = 1/sα
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in the frequency domain. The standard definition of
the fractional differ-integral does not allow direct im-
plementation of the fractional operators in the time-
domain. An efficient method to solve this problem
is to approximate fractional operators by using stan-
dard integer order operators [22]. The approximation
of 1/s0.95 with error about an 1 dB is given in [21] by

1

s0.95
≈ 1.2831s2 + 18.6004s + 2.0833

s3 + 18.4738s2 + 2.6754s + 0.003
, (5)

and the approximations of 1/s0.8 and 1/s0.9 are given
in [14], as shown in the following:

1

s0.9
≈ 1.766s2 + 38.27s + 4.914

s3 + 36.15s2 + 7.789s + 0.01
, (6)

1

s0.8
≈ 5.235s3 + 1453s2 + 5306s + 254.9

s4 + 658.1s3 + 5700s2 + 658.2s + 1
. (7)

In the following simulations, we will use these ap-
proximations as a frequency domain approximation
method.

However, the frequency domain approximation
methods are not always reliable, especially in detect-
ing chaotic behavior in nonlinear systems [30–32]. Al-
though the time domain methods are complicated and
require long simulation time, the time domain methods
are more accurate and more reliable than the frequency
based approximation [30]. Therefore, it is necessary
to use the time domain method to get the solution of
fractional differential equation. There are several time
domain methods such as the predictor–corrector based
methods [33, 34], FIR form method [17], and so on.
In this paper, the Grunwald–Letnikov method [17] is
used. The formula is derived from (1). The details for
Grunwald–Letnikov method will be given in next sec-
tion.

To analyze the character of the equilibria of frac-
tional order system, the preliminary knowledge is
about the stability of the linear time invariant fractional-
order systems. A fractional-order linear time invariant
system can be represented in the following state-space
form:
{

Dαx = Ax + Bu,

y = Cx,
(8)

where x ∈ Rn, u ∈ Rr , y ∈ Rp are states and input and
output vectors of the system and A ∈ Rn×n, B ∈ Rn×r ,

C ∈ Rp×n, and α is the fractional commensurate or-
der. It has been shown that the autonomous system
Dαx = Ax, x(0) = x0 is asymptotically stable if the
following conditions is satisfied [36]:
∣
∣arg

(
eig(A)

)∣
∣ > απ/2, (9)

where 0 < α < 1 and eig(A) represents the eigenval-
ues of matrix A.

We consider the following commensurate fractional
order system:

Dαx = f (x), (10)

where 0 < α < 1 and x ∈ Rn. The equilibrium points
of system (10) are calculated by the following equa-
tion:

f (x) = 0. (11)

These equilibria are locally asymptotically stable if
all the eigenvalues of the Jacobian matrix J = ∂f/∂x

evaluated at these equilibria satisfy [36]:
∣
∣arg

(
eig(J )

)∣
∣ > απ/2. (12)

3 A fractional Qi system

Qi et al. [24] has proposed a 3-D quadratic au-
tonomous system, which can generate a four-wing
chaotic attractor with very complicated topological
structures over a large range of parameters. This non-
linear system is described by a system of first-order
ordinary differential equations:

ẋ = a(y − x) + eyz,

ẏ = cx + dy − xy, (13)

ż = −bz + xy,

where a, b, c, e ∈ R+ and c ∈ R are constant parame-
ters of the system. To study the effect of fractional
derivatives on the dynamics of the Qi system, the inte-
ger derivative is replaced by a fractional derivative, as
follows:

dαx

dtα
= a(y − x) + eyz,

dαy

dtα
= cx + dy − xz, (14)

dαz

dtα
= −bz + xy,
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where α is the fractional order. When α = 1, (14)
is equivalent to the classical integer-order Qi equa-
tion (13).

To compute the states of the fractional system us-
ing frequency domain approximation method, the frac-
tional derivatives are transformed into frequency do-
main, then the fractional operators are approximated
by using standard integer order operators [22]; finally,
the standard integer order operators are transformed
back to time domain. For example, when α = 0.95,
the system (14) becomes

d0.95x

dt0.95
= a(y − x) + eyz,

d0.95y

dt0.95
= cx + dy − xz, (15)

d0.95z

dt0.95
= −bz + xy.

The approximation of 1/s0.95 is (5). Finally, we can
get the approximation system in the form of first-order
ordinary differential equations:

ẋ = x2,

ẋ2 = x3,

ẋ3 = −18.4738x3 − 2.6574x2 − 0.003x

+ 1.2831
[
a(y3 − x3)

+ e(y3z + 2y2z2 + yz3)
] + 18.6004

[
a(y2 − x2)

+ e(y2z + yz2)
] + 2.0833

[
a(y − x) + eyz

]
,

ẏ = y2,

ẏ2 = y3,

ẏ3 = −18.4738y3 − 2.6574y2 − 0.003y

+ 1.2831[cx3 + dy3 − x3z − 2x2z2 − xz3]
+ 18.6004(cx2 + dy2 − x2z − xz2)

+ 2.0833(cx + dy − xz),

ż = z2,

ż2 = z3,

ż3 = −18.4738z3 − 2.6574z2 − 0.003z

+ 1.2831(−bz3 + x3y + 2x2y2 + xy3)

+ 18.6004(−bz2 + x2y + xy2)

+ 2.0833(−bz + xy).

(16)

For the time domain approximation method, we use
the Grunwald–Letnikov method [17] to get the numer-
ical solution of the fractional order Qi system (14).

The iterative formula is

x(k) = (
a
(
y(k − 1) − x(k − 1)

)

+ ey(k − 1)z(k − 1)
)
hα −

k∑

j=1

c
(α)
j x(k − j),

y(k) = (
cx(k) + dy(k − 1) − x(k)z(k − 1)

)
hα (17)

−
k∑

j=1

c
(α)
j y(k − j),

z(k) = (−bz(k − 1) + x(k)y(k)
)
hα

−
k∑

j=1

c
(α)
j z(k − j),

where Tsim is the simulation time, h is the time
step, N = [Tsim/h], k = 1,2,3, . . . ,N , and (x(0),

y(0), z(0)) is the initial conditions. The binomial co-
efficients c

(α)
j are calculated according to

c
(α)
0 = 1, c

(α)
j =

(

1 − 1 + α

j

)

c
(α)
j−1. (18)

3.1 Fractional order α = 0.95

For chaotic systems, it is proved that wings (or scrolls)
are generated only around the saddle points of index 2.
Moreover, saddle points of index 1 are responsible
only for connecting wings [26–28]. A necessary sta-
bility condition for the fractional order system (14) to
remain chaotic is keeping at least one eigenvalue λ

of the Jacobian matrix of (14), which is evaluated at
the equilibrium, in the unstable region [17, 32]. This
means

α >
2

π
arctan

( |Im(λ)|
Re(λ)

)

, (19)

which can be derived from (12). The number of saddle
points and eigenvalues for one-scroll, double-scroll,
and multiscroll attractors was described in [30].

When the fractional order α = 0.95 and the system
parameters a = 14, b = 43, c = −4, d = 16, e = 4,
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the equilibria of this fractional order Qi system (14)
are

S0 = (0,0,0),

S1 = (−32.6840,14.7844,−11.2375),

S2 = (32.6840,−14.7844,−11.2375),

S3 = (18.2299,8.8159,3.7375),

S4 = (−18.2299,−8.8159,3.7375),

(20)

which are same with the equilibria of the original Qi
system. The Jacobian matrix of system (14), evaluated
at (x∗, y∗, z∗), is

J =
⎡

⎣

−14 14 + 4z∗ 4y∗

−4 − z∗ 16 −x∗

y∗ x∗ x∗

⎤

⎦ . (21)

For the given parameters, the eigenvalues correspond-
ing to different equilibria are

S0 : λ1 = −12, λ2 = 14, λ3 = −43,

S1,2 : λ1 = −56.9522, λ2,3 = 7.9761 ± j30.8679,

S3,4 : λ1 = −49.9942, λ2,3 = 4.497 ± j19.1020.

According to (19), α > 0.8528 is the necessary con-
dition for the fractional order Qi system (14) when
a = 14, b = 43, c = −4, d = 16 and e = 4. There-
fore, it is possible that the fractional order Qi system
(14) shows chaotic dynamics when α = 0.95, a = 14,
b = 43, c = −4, d = 16 and e = 4.

From the system equation (14), it is seen that the
total order is 2.85 when α = 0.95. If the frequency do-
main method is used, which means that (16) is used,
the phase portrait is shown in Fig. 1(a) with para-
meters a = 14, b = 43, c = −4, d = 16, and e = 4.
The frequency domain approximated system displays
chaos with the largest Lyapunov exponent 5.6. In this
paper, we used the Wolf algorithm to calculate the
Lyapunov exponents [23]. For the time domain ap-
proximation method, the time step h = 0.0005s and
run time Tsim = 50s in this paper. If time domain ap-
proximation method is used, the 3-D phase diagram is
shown in Fig. 1(b) which reveals 4-wing chaotic dy-
namics. However, the regular Qi system shows peri-
odic orbits as can be seen from Fig. 1(c). Compar-
ing the subdiagrams in Fig. 1, it is easy to find that
the decreasing of the system order has great effect on
the dynamics of the nonlinear systems and the dynam-
ical behaviors using the time-domain approximation

(a) Projection on the x–y plane with α = 0.95 using
frequency domain approximation method

(b) 3-D view in the x–y–z space with α = 0.95 using
time domain approximation method

(c) 3-D view in the x–y–z space with α = 1

Fig. 1 The phase diagram of the Qi system, with a = 14,
b = 43, c = −4, d = 16, and e = 4

method are different from the result using frequency-
domain approximation method. The fractional Qi sys-
tem can exhibit chaos when the total order less than 3,
although the regular one always shows periodic or-
bits in the same range of parameters. It means that
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(a) Projection on the x–y plane with α = 0.95

(b) Projection on the x–y plane with α = 1

Fig. 2 The phase diagram of the Qi system, with a = 14,
b = 43, c = 0, d = 16, and e = 4

although the system total order decreases, the system
dynamics maybe become more sensitive which is con-
trary to the result in [20].

Qi system generates a four-wing chaotic attractor
with parameters a = 14, b = 43, c = 0, d = 16, and
e = 4, whose phase portrait is shown in Fig. 2(b). Four
wings attractor of the Qi system are decayed to one
scroll using the same parameters when the system or-
der α decrease to 0.95 using time domain frequency
approximation method, which is shown in Fig. 2(a).
However, the fractional order Qi system, using the
time domain approximation method, shows four wings
chaotic attractors similar to Fig. 2(b) which means
the dynamical behaviors using the time-domain ap-
proximation method is different from the result using
frequency-domain approximation method.

Now we analyze the effects on the bandwidth of
the frequency spectrum. Figures 3(a), 3(b), and 3(c)
are the frequency spectrums of the fractional Qi sys-

(a) The frequency spectrum when α = 0.95 using fre-
quency domain approximation method

(b) The frequency spectrum when α = 0.95 using time
domain approximation method

(c) The frequency spectrum when α = 1

Fig. 3 The frequency spectrum of the Qi system, with a = 14,
b = 43, c = −1, d = 16, and e = 4
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tem using frequency domain approximation method,
fractional Qi system using time domain approximation
method, and the Qi system, respectively. The spectral
averages are 3, and all the spectra are normalized.

As can be seen from Figs. 3(a) and 3(c), the band-
width of frequency spectrums shrinks with the reduc-
tion of the system order α from 1 to 0.95 using the fre-
quency domain approximation method. However, the
bandwidth of frequency spectrums when fractional or-
der α = 0.95, using the time domain approximation
method, are similar to the original Qi system.

3.2 Fractional order α = 0.9

The system total order is 2.7 according to (14) when
α = 0.9. When the “fractional order Qi system” ex-
hibits chaos with α = 0.9 using frequency domain
approximation method, the phase diagrams are one
scroll, which is similar to that of fractional order
α = 0.95. Figures 4(a) and 4(b) are phase diagrams of
the “fractional order Qi system” with initial conditions
(1,1,1) and (0.1,1.1,1) using frequency domain ap-
proximation method, respectively.

Figure 5(a) and 5(b) are the frequency spectrums of
the fractional Qi system variable x and y using the fre-
quency domain approximation method, respectively.
As can be seen from Fig. 3(a), the frequency spec-
trums of “fractional order Qi system” with α = 0.9
are similar to that with α = 0.95. Figure 6 is the fre-
quency spectrums of fractional order Qi system vari-
able x using time domain approximation method. As
can be seen from Figs. 6, 3(b), and 3(c), the change
of fractional order has little effect on the bandwidth
of frequency spectrum using the time domain approx-
imation method.

3.3 Fractional order α = 0.8

The total order of the Qi system is 2.4 according to
(14) when α = 0.8. With parameters a = 14, b = 43,
c = −4, d = 16, and e = 4, and the frequency domain
approximation method is used, Figs. 7(a)–7(c) show
the observed projections on different phase planes.
Figure 7(d) shows the system states in 3-D space. As
can be seen from Fig. 7, the system displays 4-wing
chaotic attractor when we look at the diagrams as a
whole. However, there are several subattractors in each
of the four wings when the attractors are magnified. If
the top-left subattractor is magnified with x and y be-
ing limited to [−35,−31] and [13,16.5], respectively,

(a) Projection on the x–y plane, c = −4

(b) Projection on the x–y plane, c = −3

Fig. 4 The phase diagrams of the “fractional order Qi sys-
tem” using the frequency domain approximation method, with
a = 14, b = 43, d = 16, and e = 4

there are 3 lower level subattractors as shown in Fig. 8.
If the bottom-right attractor in Fig. 8 is magnified far-
ther with x and y being limited to [−33.3,−32.2] and
[14.2,14.9], respectively, there are 2 lower level sub-
attractors as shown in Fig. 9. As can be seen from
Figs. 8 and 9, there are 4 subattractors in the top-left
wing when the running time is 1100 s. If other wings
are also magnified, it can be found that there are about
13 subattractors altogether in the fractional Qi system
with α = 0.8, a = 14, b = 43, c = −4, d = 16, and
e = 4 when the running time is 1100 s. Seen from
these phase diagrams, the “fractional order Qi system”
exhibits a character of self-similar in the local, which
differs from the integer Qi systems. This kind of dia-
gram is similar to some fractal images (for example,
Julia sets) [25]. However, most of the fractal images
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(a) The frequency spectrum of x

(b) The frequency spectrum of y

Fig. 5 The frequency spectrum of the Qi system, with α = 0.9,
a = 14, b = 43, c = −1, d = 16, and e = 4

are created by two of the most important well-known
methods which are iterated function systems and Ju-
lia sets, and both of them are discrete methods. The
Qi system is a determinate continuous nonlinear sys-
tem with fractional order, which is different from the
fractal images that we have ever seen.

There is a logical question that whether the char-
acter of local self-similar is same with the global 4
scrolls. For chaotic systems, it is proved that wings (or
scrolls) are generated only around the saddle points
of index 2. Moreover, saddle points of index 1 are
responsible only for connecting wings [26–28]. It is
necessary to analyze the equilibria of the original Qi
system and the “fractional order Qi system” using the
frequency approximation method. For the original Qi
system, there are five equilibria when a = 14, b = 43,
c = −4, d = 16, and e = 4. They are (20). For the

Fig. 6 The frequency spectrum of the Qi system using the time
domain approximation method, with α = 0.9, a = 14, b = 43,
c = −1, d = 16, and e = 4

“fractional order Qi system” using frequency approxi-
mation method, the equilibria are

S̄0 = (0,0,0),

S̄1 = (32.6814,−14.7871,−11.2376),

S̄2 = (−32.6814,14.7871,−11.2376),

S̄3 = (−18.2287,−8.8176,3.7376),

S̄4 = (18.2287,8.8176,3.7376).

(22)

It is easy to find that S0 is a saddle point of index 1;
and S1, S2, S3, and S4 are the saddle points of index 2
using the Jacobian matrix of the original Qi system
at its equilibria. We can also get that S̄0 is a saddle
point of index 1; and S̄1, S̄2, S̄3, and S̄4 are the sad-
dle points of index 2 using the Jacobian matrix of the
“fractional order Qi system,” which uses frequency ap-
proximated method, at its equilibria. According to the
analysis, the number of these equilibria is the same and
the locations of these equilibria of the “fractional order
Qi system” are near the equilibria of the original inte-
gral chaotic system. For the original integral chaotic
system, each of four saddle points is connected with
one wing which is similar to the global four wings of
the “fractional order Qi system.” Therefore, the local
self-similar is not same as the global 4-scroll, but they
should be caused by the collective dynamics of these
four equilibria “fractional order Qi system.”

Figures 10(a) and 10(b) are the frequency spec-
trums of the fractional Qi system states x and y using



The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor 147

(a) Projection on the x–y plane (b) Projection on the x − z plane

(c) Projection on the y–z plane
(d) 3-D view by ‘.’ in the x–y–z space

Fig. 7 Fractional Qi system chaotic attractor, with α = 0.8, a = 14, b = 43, c = −4, d = 16, and e = 4

the frequency domain approximation method, respec-
tively. The spectral averages are 3, and all the spectra
are normalized. As can be seen from Figs. 2, 4, and 7,
the decreasing of the system order has a great effect
on the orbits of the Qi system using frequency domain
approximation method. It can make the system exhibit
chaos although the regular Qi system is periodic and
becomes one scroll from 4-wing attractors. The “frac-
tional order Qi system”, using the frequency domain
approximation method, displays self- similar charac-
ter which is different from the integer Qi system. Ac-
cording to Figs. 3, 5, and 10, the frequency spectrums
show that there are shrinking tendencies of the band-
width with the falling of the system states order.

However, the chaotic dynamics is not the real
dynamics of the fractional order Qi system since

α > 0.8528 is the necessary condition for the frac-
tional order Qi system (14) when a = 14, b = 43,
c = −4, d = 16, and e = 4. Using time domain ap-
proximation method, the orbits of the fractional order
Qi system is convergent as shown in the phase dia-
gram Fig. 11. This means the time domain approxi-
mation method is more accurate and reliable than the
frequency domain approximation method.

3.4 Bifurcation with respect to the fractional order α

It is easily to find that the decreasing of the system or-
der has great effect on the dynamics of the nonlinear
systems. Using the bifurcation diagram with respect
to the fractional order, it would be easy to find the
fractional order effects on the dynamical behaviors of
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Fig. 8 The magnified phase diagram project on x–y plane with
x ∈ [−35,−31] and y ∈ [13,16.5]

Fig. 9 The magnified phase diagram project on x–y plane with
x ∈ [−33.3,−32.2] and y ∈ [14.2,14.9]

fractional order systems. As the time domain approxi-
mation method is more accurate and reliable, only the
time domain approximation method is used to obtain
the bifurcation diagram. When the system parameters
a = 14, b = 43, c = −4, d = 16, and e = 4, Fig. 12 is
the bifurcation diagram of the fractional order Qi sys-
tem state variable x with respect to fractional order α.
As can be seen from Fig. 12, the fractional order Qi
system attractors start from sink, then some simple pe-
riodic orbits and chaotic attractors finally escape from

(a) The frequency spectrum of x

(b) The frequency spectrum of y

Fig. 10 The frequency spectrum of the fractional Qi system,
with α = 0.8, a = 14, b = 43, c = −4, d = 16, and e = 4

Fig. 11 Phase diagram of the fractional order Qi system using
time domain approximation method, and with α = 0.8, a = 14,
b = 43, c = −4, d = 16, and e = 4
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Fig. 12 The bifurcation
diagram of the fractional
order Qi system with
respect to fractional order
α, and with a = 14, b = 43,
c = −4, d = 16, and e = 4

chaotic attractor to periodic orbits with the increasing
of α in the interval [0.8,1].

4 Conclusion

In this work, we analyzed the fractional Qi system. It
is found that the fractional Qi system could exhibit
chaos when the total order less than 3, although the
regular one always shows periodic orbits in the same
range of parameters. This result is different from that
the fractional order differential equations are at least
as stable as their integer order counterparts [35]. An
interesting finding is that the phase diagrams show lo-
cal self- similar in the fractional 4-wing system using
frequency domain approximation method even though
the number and the characteristics of equilibria are not
changed. The fractional Qi system exhibits rich and in-
teresting dynamics which is very different from the re-
sult of the standard integer-order dynamics. According
to analysis of the bifurcation, the fractional order Qi
system attractors start from sink, then some simple pe-
riodic orbits and chaotic attractors finally escape from
chaotic attractor to periodic orbits with the increasing
of α in the interval [0.8,1]. The simulation results re-
vealed that the time domain approximation method is
more accurate and reliable than the frequency domain
approximation method. What is the fundamental rea-
son of the different dynamics? It may come from the

fractional derivative nonlocal character which is dif-
ferent from the integer dynamics. It is important to
systematically develop some methods for the analy-
sis of the fractional system. The rich dynamics caused
by fractional order are also important topics for future
studies.
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