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Abstract In this paper, several smooth canonical 3-D
continuous autonomous systems are proposed in terms
of the coefficients of nonlinear terms. These systems
are derived from the existing 3-D four-wing smooth
continuous autonomous chaotic systems. These new
systems are the simplest chaotic attractor systems
which can exhibit four wings. They have the basic
structure of the existing 3-D four-wing systems, which
means they can be extended to the existing 3-D four-
wing chaotic systems by adding some linear and/or
quadratic terms. Two of these systems are analyzed.
Although the two systems are similar to each other in
structure, they are different in dynamics. One is sen-
sitive to the initializations and sampling time, but an-
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other is not, which is shown by comparing Lyapunov
exponents, bifurcation diagrams, and Poincaré maps.
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1 Introduction

Recently, it has been found that chaos is very useful
in many application fields such as engineering, medi-
cine, secure communications, and so on. Creating a
chaotic system with a more complicated topological
structure such as a multi-scroll or multi-wing attrac-
tor, therefore, becomes a desirable task and some-
times a key issue for many engineering applications.
In this endeavor, there are two major thrusts: general-
izing Chua’s circuits with multi-scroll attractors and
generalizing the Lorenz system with multi-wing at-
tractors. Firstly, in the efforts of generalizing Chua’s
circuit [1] to produce multi-scroll attractors, several
effective techniques have been developed, including
some generalized Chua’s circuits and cellular neural
networks [2, 3]. In [1, 2, 4], the piecewise-linear
(PWL) function method was utilized, which can in-
crease the number of equilibria by adding breakpoints.
A sine-function approach was then proposed for cre-
ating multi-scroll chaotic attractors [5]. Later, a stair
function was used for generating 3D-grid-scroll at-
tractors [6, 7]. More recently, several different nonlin-
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ear functions including switching, hysteresis, and sat-
urated functions were utilized for creating chaotic at-
tractors with multi-merged basins of attraction, or with
multi-scroll attractors [8–11]. Note that the aforemen-
tioned methods for generating multi-scroll attractors
have some common characteristics [12, 13]:

(i) The nonlinearities of these systems are usually
not smooth functions; they are either piecewise-
linear continuous functions or discontinuous ones
such as the stair function, switching function, and
hysteresis-series function.

(ii) The basic techniques either increase the number
of equilibria via PWL functions with more break-
points, or use stair or hysteresis functions to real-
ize equilibrium jumping.

(iii) The number of scrolls equals to that of the equi-
libria.

(iv) The basic shape of the attractors is cyclic, called
scroll.

Secondly, another major thrust has been the gener-
alization of the Lorenz system [14]. Recently, some
new chaotic systems were proposed, including the
Chen system, the generalized Lorenz system family,
and the hyperbolic-type of generalized Lorenz canoni-
cal form [15–17]. Some four-dimensional chaotic sys-
tems were also presented, which have more com-
plicated dynamic properties than three-dimensional
chaotic systems, such as the system proposed in [18,
19]. It can be seen that the characteristics of gener-
alized Chua’s circuits are different from the gener-
alized Lorenz systems. For example, the nonlineari-
ties of these systems are usually smooth functions, the
number of wings is not equal to the number of equilib-
ria, and the basic shape of the attractors is a butterfly,
called a ‘wing’ [12, 20].

In fact, most of the multi-scroll attractors were gen-
erated by increasing the breakpoints in the nonlin-
earity. Recently, a four-wing or a three-wing butter-
fly attractor was generated from a three-dimensional
system [21] by relying on two embedded state-
controlled binary switches. However, these systems
are usually not smooth systems and the multi-wing or
multi-scroll attractors might be viewed as the combi-
nation of several single scroll attractors by the varieties
of parameters. It is desirable for a smooth quadratic
autonomous system which produces multi-wing at-
tractors and has a simple algebraic structure.

Since the discovery of the famous Lorenz chaotic
system [29], continuous efforts have been devoted

to seeking a unified theory and canonical forms for
continuous-time 3-D autonomous quadratic chaotic
systems [31]. Čelikovský and Vanéčk classified a gen-
eralized Lorenz system family using a condition as-
sociated with its linear part A = [aij ] [30, 31]; that
is, the classic Lorenz system satisfies a12a21 > 0, the
Chen system [15] satisfies a12a21 < 0 and the Lü sys-
tem, which bridge the gap between the Lorenz sys-
tem and the Chen system [32], satisfies a12a21 = 0. It
should be noted that such a simple algebraic classifica-
tion does not indicate the holistic geometric structures
of chaotic attractors and the formation mechanisms
of chaos since the linear part of a dynamical system
merely affects local properties of dynamical behaviors
(e.g. the stability of equilibria) whereas chaos mainly
results from the effect of its nonlinear parts. It would
be better using nonlinear terms to classify chaotic sys-
tems, especially complex chaotic systems, such as the
four wings chaotic systems.

In this paper, we firstly analyze several proposed
smooth quadratic autonomous 4-wing chaos systems.
Secondly, two canonical 3-D smooth continuous au-
tonomous systems are proposed and analyzed which
are derived from the existing 3-D four-wing smooth
continuous autonomous chaotic systems. These new
systems are the simplest chaotic attractor systems
which can exhibit four wings. They have the basic
structure of the existing 3-D four-wing systems, which
means they can be extended to existing 3-D four-
wing chaotic systems by adding some linear and/or
quadratic terms. Although the two systems are simi-
lar to each other in structure, they are different in dy-
namics. Their differences are shown by the compari-
son of Lyapunov exponents, bifurcation diagrams, and
Poincaré maps.

2 3-D four-wing smooth autonomous chaotic
systems

In [22, 23], a three-dimensional smooth quadratic au-
tonomous system which seemed to produce a four-
wing attractor was proposed. At the beginning, it was
believed that this system could produce a four-wing
chaotic attractor, termed a “four-scroll attractor”, but
this was then later shown by the same authors to be a
numerical artifact. It was not a real four-wing chaotic
attractor but consisted of two co-existing and closely
located double-wing attractors [24]. In [25], a 3-D au-
tonomous quadratic system was reported, which can
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generate a single four-scroll attractor. For the simplic-
ity of comparison, the system is parameterized as

ẋ1 = a1x1 − y1z1 + a2,

ẏ1 = b1y1 + x1z1, (1)

ż1 = c1z1 + x1y1,

where a1, a2, b1, c1 are real constants. If
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1c1 > 0,

a1 �= 0,

a1
√

b1c1 < min(−a2, a2) if b1 > 0,

a1
√

b1c1 > max(−a2, a2) if b1 < 0,

there are five equilibria in this system, given by

S0 =
(

−a2

a1
,0,0

)

,

S1,2 =
(

p,±
√

(−a2 − a1p)b1

p
p,

±
√

(−a2 − a1p)b1

p

)

,

S3,4 =
(

−p,∓
√

(a2 − a1p)b1

p
p,

±
√

(a2 − a1p)b1

p

)

,

where p = √
b1c1. As can be seen from the equilibria,

there is no trivial equilibrium caused by the constant
input of the first equation in (1). Consider the follow-
ing transformation of variables:

x1 = x2 − a2

a1
.

The system (1) can be reformulated as

ẋ2 = a1x2 − y1z1,

ẏ1 = b1y1 − a2

a1
z1 + x2z1, (2)

ż1 = cz1 − a2

a1
y1 + x2y1,

which has a trivial equilibrium and is equivalent to sys-
tem (1).

Another example is given by

ẋ1 = a1x1 + a2y1 + y1z1,

ẏ1 = b2y1 − x1z1 + b23y1z1, (3)

ż1 = c3z1 − x1y1.

When a1 = 0.5, a2 = 0.15; b2 = −12.2, b23 = 1.0,
c3 = −8.79, the system has a real four-scroll attractor
with eight cross product terms on the right [26].

Qi [12] introduced a 3-D quadratic autonomous
system

ẋ1 = a1(y1 − x1) + e1y1z1,

ẏ1 = c1x1 + d1y1 − x1z1, (4)

ż1 = −b1z1 + x1y1,

called the Qi 3-D four-wing system, which can gener-
ate two co-existing single-wing chaotic attractors and
a pair of diagonal double-wing chaotic attractors. The
system can also generate a four-wing chaotic attrac-
tor with very complicated topological structures over
a large range of parameters.

Chen [27] presented a three-dimensional smooth
quadratic autonomous chaotic system,

ẋ1 = a1x1 + ky1 − y1z1,

ẏ1 = −b1y1 − z1 + x1z1, (5)

ż1 = −x1 − c1z1 + x1y1,

which can evolve into periodic and chaotic orbits in
case of different parameters. When proper parameters
are chosen, a single four-wing attractor and a single
three-wing attractor appears.

Recently, Wang [28] presented a new three-
dimensional smooth quadratic autonomous chaotic
system,

ẋ1 = a1(x1 − y1) − y1z1,

ẏ1 = −b1 + x1z1, (6)

ż1 = −c1z1 + d1x1,

which can also show a single four-wing attractor and a
single three-wing attractor.

As can be seen from systems (2), (3), (4), (5),
and (6), these chaotic systems have similar features in
common:
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(1) There is at least one quadratic term in every equa-
tion, which means there is at least three quadratic
terms in one system.

(2) There are five equilibria when these chaotic sys-
tems display four wings.

(3) There are at least three linear terms, and there is
at least one linear term in every equation of these
system.

The logical question is whether there is any system
exhibiting similar behavior, however, it is simpler than
these systems.

Based on the above features, a basic chaotic sys-
tem1

ẋ = ax + cyz,

ẏ = dy − xz, (7)

ż = ez + f xy,

is proposed which is likely to produce a four-wing
chaotic attractor. Here, a, c, d, e, f ∈ R are all con-
stants, cf �= 0 and x, y, z are the state variables. There
are five equilibria in some places of the parameters
space, e.g. a = −14, c = 1, d = 16, e = −43, f = 1.
However, the following theorem shows that system (7)
cannot exhibit a four-wing chaotic attractor.

Theorem 1 System (7) cannot generate a four-wing
chaotic attractor.

Proof This theorem can be proved using different pa-
rameter space cases:
Case 1: f < 0

Consider the second and the third equations of (7),
i.e.

ẏ = dy − xz, (8)

ż = ez + f xy. (9)

By multiplying both sides of (8) and (9) by fy and z,
respectively, the two equations become

f ẏy = dfy2 − f xyz, (10)

żz = ez2 + f xyz. (11)

1Other kind of structure can convert into this system by simple
linear transformation.

By adding both sides of (10) and (11), one obtains

f ẏy + żz = dfy2 + ez2. (12)

Equation (12) is equivalent to

d(fy2 + z2)

dt
= 2d

(
fy2 + z2) + (2e − 2d)z2. (13)

Solving the above equation yields

fy2 + z2 = e2dt

(∫ t

0
e−2dt (2e − 2d)z2 dτ

+ (fy2
0 + z2

0)

)

, (14)

where y0 and z0 are the initial state of system (7).
If e > d and

√−f |y0| < |z0|, according to (14), one
obtains

fy2 + z2 > 0 ⇒ √−f |y| < |z|. (15)

If
√−f |y0| < |z0| and x0 �= 0, then for any time t > 0,

the system trajectory in the y–z plane will never travel
from one domain z > 0 to another, z < 0, or vice versa.
That is, if z0 > 0, then there will always be z(t) > 0 for
t > 0; if z0 < 0, then there will always be z(t) < 0 for
t > 0. The same is for e < d and

√−f |y0| > |z0|.
If the system can generate a four-wing attractor,

then the attractor is ergodic and does not depend on the
initial state, that is, the initial state value can be cho-
sen arbitrarily, such as

√−f |y0| < |z0| or
√−f |y0| >

|z0|. It conflicts with the above analysis, so it is impos-
sible to be a four-wing attractor when f < 0.
Case 2: f > 0

If c > 0, the same result can be got according to the
first and third equations of system (7).

If c < 0, the same result can also be got according
to the first and second equations of system (7).

The proof is thus complete. �

From Theorem 1, it is clear that if two or more
quadratic term coefficients are either negative or pos-
itive at the same time then system (7) cannot gen-
erate a four wing chaotic attractor. Therefore, some
linear or quadratic terms can be added to (7) which
might cause it to exhibit a four-wing chaotic attractor
if the added terms destroy the property proved by The-
orem 1. Quadratic terms are very important in creating
four-wing chaotic attractor and can be used to classify
four-wing chaotic systems. In the following section,
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several canonical four-wing chaotic attractors are pro-
posed in 3-D quadratic autonomous systems according
to the quadratic terms’ coefficients.

3 3-D four-wing smooth autonomous canonical
chaotic systems

Similar to the proof of Theorem 1, several systems,
which might exhibit four-wing chaotic attractors, can
be derived from system (7) by adding one or two linear
terms.

If f < 0 and c > 0, the simplest way to break the
condition which causes system (7) not to generate a
four-wing chaotic attractor, is by adding a linear term
to the second equation of system (7), e.g.

ẋ = ax + cyz,

ẏ = bx + dy − xz, (16)

ż = ez + f xy.

If f > 0 and c > 0 (or c < 0), a linear term can be
appended to the first equation of system (7) to form a
new four-wing chaotic system, e.g.

ẋ = ax + by + cyz,

ẏ = dy − xz, (17)

ż = ez + f xy.

If f < 0 and c < 0, at least two linear terms should
be added to two equations of system (7) to violate the
condition that makes system (7) not generate a four-
wing chaotic attractor. There are many potential sys-
tems in this case. For example,

ẋ = ax + b1y + cyz,

ẏ = b2x + dy − xz, (18)

ż = ez + f xy,

ẋ = ax + b1y + cyz,

ẏ = dy − xz, (19)

ż = b2y + ez + f xy,

and so on.
As can be seen from Sect. 2, the coefficients of non-

linear terms in existing systems (2)–(5), which corre-
spond to c and f in (7), meet condition cf < 0, that is,
systems (2)–(5) can be derived from (16) and (17) by
adding some linear and/or quadratic terms.

In this paper, we only focus on systems (16) and
(17) to find similarities and differences. Systems (16)
and (17) are not equivalent as the one cannot be
changed to the other by a linear transformation if
b �= 0, and they are antithetic in some characteristics.

If systems (16) and (17) are dissipative, ∇V =
∂ẋ
x

+ ∂ẏ
y

+ ∂ż
z

= a + d + e should be less than zero,
that is, a + d + e < 0. It means a volume element
V0 is contracted by the flow into a volume element
V0e

(a+d+e)t in time t . For the dissipation of the two
systems, parameters a, d, e should meet the same con-
dition a + d + e < 0.

For distinction in the following analysis, systems
(16) and (17) are rewritten as

ẋ1 = a1x1 + c1y1z1,

ẏ1 = b1x1 + d1y1 − x1z1, (20)

ż1 = e1z1 + f1x1y1,

and

ẋ2 = a2x2 + b2y2 + c2y2z2,

ẏ2 = d2y2 − x2z2, (21)

ż2 = e2z2 + f2x2y2,

where a1, b1, c1, d1, e1, a2, b2, c2, d2, e2 ∈ R,f1 ∈ R−
and f2 ∈ R+ are all constants and x1, y1, z1, x2, y2,

and z2 are the state variables.

Remark 1 For system (20), the coefficients of quadr-
atic terms are f1 < 0 and c1 > 0, however, for system
(21), they are f2 > 0 and c2 > 0 (or c2 < 0); system
(20) cannot be transformed to system (21).

3.1 Equlibria

The equilibria of system (20) can be easily derived by
solving the three equations ẋ1 = 0, ẏ1 = 0 and ż1 = 0.
There is one trivial equilibrium. Let

y1e =
√

a1e1

c1f1
,

z1
1e =

b1c1 + a1|a1|
√

b2
1c

2
1 − 4a1c1d1

2c1
, (22)

z2
1e =

b1c1 − a1|a1|
√

b2
1c

2
1 − 4a1c1d1

2c1
.
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If a1e1
c1f1

> 0, b2
1c

2
1 − 4a1c1d1 > 0 and c1 �= 0, there are

four nontrivial equilibria:

S1
1,2 =

(

∓ c1

a1
y1ez

1
1e,±y1e, z

1
1e

)

,

S1
3,4 =

(

∓ c1

a1
y1ez

2
1e,±y1e, z

2
1e

)

.

(23)

The equilibria of system (21) can also be derived by
solving the three equations ẋ2 = 0, ẏ2 = 0, and ż2 = 0.
There is one trivial equilibrium.

Let

x2e =
√

−e2d2

f2
,

z1
2e =

−b2 +
√

b2
2 − 4a2c2d2

2c2
, (24)

z2
2e =

−b2 −
√

b2
2 − 4a2c2d2

2c2
.

If e2d2
f2

< 0, b2
2 − 4a2c2d2 > 0, and c2 �= 0, there are

four nontrivial equilibria:

S2
1,2 =

(

±x2e,± 1

d2
x2ez

1
2e, z

1
2e

)

,

S2
3,4 =

(

±x2e,± 1

d2
x2ez

2
2e, z

2
2e

)

.

(25)

In this case, each of the systems has five equi-
libria (including the zero equilibrium). It means sys-
tems (20) and (21) are not topologically equivalent to
the generalized Lorenz canonical form (GLCF) [17]
which have three-equilibria at most.

Remark 2 There is no nontrivial equilibrium for both
systems (20) and (21) in some parameter space, e.g.
a1e1
c1f1

> 0 or b2
1c

2
1 − 4a1c1d1 > 0 for system (20), and

e2d2
f2

< 0 or b2
2 − 4a2c2d2 > 0 for system (21).

3.2 Simple property of the trivial equilibrium

By linearizing systems (20) and (21) at the origin (triv-
ial equilibrium), one obtains the Jacobians,

J 1
0 =

⎛

⎝
a1 0 0
b1 d1 0
0 0 e1

⎞

⎠ , (26)

and

J 2
0 =

⎛

⎝
a2 b2 0
0 d2 0
0 0 e2

⎞

⎠ , (27)

respectively. The eigenvalues of matrices J 1
0 and J 2

0
are

λ1
01 = a1, λ1

02 = d1, λ1
03 = e1, (28)

and

λ2
01 = a2, λ2

02 = d2, λ2
03 = e2, (29)

respectively.

Remark 3 As a1, d1, e1, a2, d2, e2 ∈ R, there is no
imaginary eigenvalue in (26) and (27); and a Hopf bi-
furcation does not exist near the trivial equilibrium for
both systems (20) and (21).

3.3 Symmetry and similarity

It is obvious that systems (20) and (21) are sym-
metric about z-axis,which can be easily proven via
the transformation (x1, y1, z1) → (−x2,−y1, z1) and
(x2, y2, z2) → (−x2,−y2, z2), respectively. Equilibria
S1

1 , S1
2 (S2

1 , S2
2 ) are also symmetric with respect to the

z-axis and the same is for S1
3 , S1

4 (S2
3 , S2

4 ).
The dynamics near the neighborhood of S1

1 , S1
2 is

similar to each other in system (20), this also applies
to S1

3 , S1
4 , which is caused by the similarity of the Ja-

cobians of S1
1 and S1

2 (S1
3 and S1

4 ).
To prove this, let J 1

i denote the Jacobian of S1
i , i =

1, . . . ,4, namely

J 1
1 =

⎛

⎜
⎝

a1 c1z
1
1e c1y1e

b1 − z1
1e d1

c1
a1

y1ez
1
1e

f1y1e −f1
c1
a1

y1ez
1
1e e1

⎞

⎟
⎠ ,

J 1
2 =

⎛

⎜
⎝

a1 c1z
1
1e −c1y1e

b1 − z1
1e d1 − c1

a1
y1ez

1
1e

−f1y1e f1
c1
a1

y1ez
1
1e e1

⎞

⎟
⎠ ,

J 1
3 =

⎛

⎜
⎝

a1 c1z
2
1e c1y1e

b1 − z2
1e d1

c1
a1

y1ez
2
1e

f1y1e −f1
c1
a1

y1ez
2
1e e1

⎞

⎟
⎠ ,
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J 1
4 =

⎛

⎜
⎝

a1 c1z
2
1e −c1y1e

b1 − z2
1e d1 − c1

a1
y1ez

2
1e

−f1y1e f1
c1
a1

y1ez
2
1e e1

⎞

⎟
⎠ .

There is a transformation matrix T , such that

T −1J 1
1 T = J 1

2 , T −1J 1
3 T = J 1

4 , (30)

where T = diag(−1 −1 1), and T is an orthogonal
matrix, since

T −1 = T T = T . (31)

Let V 1
i = [v1

i1, v
1
i2, v

1
i3] be the matrix consisting of

eigenvectors of S1
i , i = 1, . . . ,4; the following equa-

tions can then be obtained:

T −1V 1
1 T = V 1

2 , T −1V 1
3 T = V 1

4 . (32)

Remark 4 S1
1,2 and S1

3,4 are two distinct equilibrium-
pairs, and every equilibrium-pair has the same local
stable, unstable, and center manifolds.

The same result can be obtained for system (21).
From the above analysis, the local dynamics of (20)
is similar to that of system (21) in some parameter
spaces. The two canonical systems also have the same
symmetry and similarity.

The spatial distribution and local dynamical lin-
earized characteristics of the equilibria greatly influ-
ence the dynamics of the four wing systems. If the
systems exhibit four wing chaotic attractors, the sys-
tem equilibria Si, i = 1,2,3,4 are located at the cen-
ters of the four wings of the attractors, and the origin is
the center of the whole chaotic attractor. Similar to the
analysis in [12], these four equilibria Si, i = 1,2,3,4
should be symmetric with respect to the origin to some
extent, and hence the effect of the four equilibria is
also relatively balanced in space. It is essential condi-
tion to have five equilibria to ensure the system shows
four wings according to the existing four-wing chaotic
attractors in 3-D quadratic autonomous systems [12,
25–28].

4 The four-wing chaotic attractors

When a1 = 0.2, b1 = −0.01, c1 = 1, d1 = −0.4, e1 =
−1 and f1 = −1, there are five equilibria in system
(20):

S1
0 = (0,0,0),

S1
1 = (−0.6214,0.4472,0.2779),

S1
2 = (0.6214,−0.4472,0.2779),

S1
3 = (0.6437,0.4472,−0.2879),

S1
4 = (0.6214,−0.4472,−0.2879).

When a2 = −14, b2 = 5, c2 = 1, d2 = 16, e2 =
−43 and f2 = 1, there are also five equilibria in system
(21):

S2
0 = (0,0,0),

S2
1 = (26.2298,20.7772,12.6740),

S2
2 = (−26.2298,−20.7772,12.6740),

S2
3 = (26.2298,−28.9740,−17.6740),

S2
4 = (−26.2298,28.9740,−17.6740).

As ∇V1 = ∂ẋ1
x1

+ ∂ẏ1
y1

+ ∂ż1
z1

= a1 + d1 + e1 =
−1.2 < 0 and ∇V2 = ∂ẋ2

x2
+ ∂ẏ2

y2
+ ∂ż2

z2
= a2 +d2 +e2 =

−41 < 0, both systems (20) and (21) are dissipative.
In order to investigate the stability of all the equilib-
ria, we consider the Jacobian matrix with respect to
each equilibrium and calculate their eigenvalues. The
results are shown in Tables 1 and 2 for (20) and (21),
respectively. Based on the eigenvalues, we know that
the equilibria of systems (20) and (21) are all saddle-
focus nodes implying that all the five equilibria are un-
stable.

With these parameter values, the corresponding
Lyapunov exponents are λ1 = 0.064, λ2 = 0 and λ3 =
−1.262 for system (20); the fractional dimension is
2.05; and the system exhibits four-wing chaotic dy-
namics. The chaotic attractor is shown in Fig. 1. The
projections of the phase portrait on the x1–y1, x1–z1,

and y1–z1 planes are shown in Figs. 1(a)–1(c), respec-
tively. The 3-D chaotic attractor is shown in Fig. 1(d).

When a2 = −14, b2 = 5, c2 = 1, d2 = 16, e2 =
−43, and f2 = 1, the corresponding Lyapunov expo-
nents are λ1 = 5.65, λ2 = 0, and λ3 = −46.6 for sys-
tem (21); the fractional dimension is 2.12; and the sys-
tem exhibits four-wing chaotic dynamics. The chaotic
attractor is shown in Fig. 2. The projections of the
phase portrait on the x2–y2, x2–z2 and y2–z2 planes
are shown in Figs. 1(a)–1(c), respectively. The 3-D
chaotic attractor is shown in Fig. 1(d).

The systems’ equilibria S1
i or S2

i , i = 1, . . . ,4,
which are denoted by red ‘*’, are located at the cen-
ters of the four wings of the attractor, and the origin
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Table 1 Eigenvalues of Jacobian matrices for all equilibria in system (20)

S1
0 S1

1 S1
2 S1

3 S1
4

λ1 = −0.4 λ1 = −1.36 λ1 = −1.36 λ1 = −1.38 λ1 = −1.38

λ2 = 0.2 λ2,3 = 0.08 ± 0.47i λ2,3 = 0.08 ± 0.47i λ2,3 = 0.09 ± 0.48i λ2,3 = 0.09 ± 0.48i

λ3 = −1

Table 2 Eigenvalues of Jacobian matrices for all equilibria in system (21)

S2
0 S2

1 S2
2 S2

3 S2
4

λ1 = −14 λ1 = −50.56 λ1 = −50.56 λ1 = −58.52 λ1 = −58.52

λ2 = 16 λ2,3 = 4.78 ± 25.12i λ2,3 = 4.7839 ± 25.12i λ2,3 = 8.76 ± 26.67i λ2,3 = 8.76 ± 26.67i

λ3 = −43

Fig. 1 Four-wing chaotic attractor of (20), with a1 = 0.2, b1 = −0.01, c1 = 1, d1 = −0.4, e1 = −1.0, f1 = −1
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Fig. 2 Four-wing chaotic attractor of system (21), with a2 = −14, b2 = 5, c2 = 1, d2 = 16, e2 = −43, f2 = 1

is drawn as the red symbol ‘o’, which is in the cen-
ter of the whole chaotic attractor shown in Figs. 1
and 2. It can be seen that there exist many orbits not
only around S1

1,2 (S2
1,2), but also around S1

3,4 (S2
3,4),

and even around S1
1,3 and S1

2,4 (S2
1,3 and S2

2,4), which
play an important role in forming the real four-wing
attractor, since they effectively connect the four sub-
attractors, which surround the four equilibria.

Although the phase diagrams are similar to each
other in Figs. 1 and 2, the details are different. The vis-
ible differences are Figs. 1(c) and 1(c), and Figs. 1(b)
and 2(b). The shape in Fig. 1(c) is caused by adding
b1x to the second equation of (7). If b1 = 0 and
e1 < d1, the trajectory of system (20) will not cross
the plane of y1 = 0 which is the result of the proof
of Theorem 1. As b1 = −0.01 �= 0, the trajectory of

system (20) can across the plane of y1 = 0 as shown
in Fig. 1(c). The same result holds for system (21) in
Fig. 1(b). The sensitivity of the two systems to ini-
tializations and sample time are also different which
can be reflected by the time step used to calculate their
states. For system (20), the time step can be chosen as
0.12 (s). The time step should be selected not larger
than 0.001 (s) for system (21). However, the phase di-
agrams of the two systems are similar to each other as
can be seen from Figs. 1 and 2.

4.1 System orbital bifurcation with respect to
parameter b

As seen from Theorem 1, the parameter b (or b1, b2) is
a very important factor to create a four-wing attractor.
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Fig. 3 The bifurcation diagram of the system (20) with respect
to b1, and with a1 = 0.2, c1 = 1, d1 = −0.4, e1 = −1.0, and
f1 = −1

Fig. 4 The largest two Lyapunov exponent spectrum of the
system (20) with respect to b1, and with a1 = 0.2, c1 = 1,
d1 = −0.4, e1 = −1.0, and f1 = −1

Figure 3 shows the bifurcation diagram of the state
variable x1 of system (20), in which the orbit starts
from (1,1,1). Figure 4 shows the maximum Lyapunov
exponent spectrum, which corresponds directly to the
bifurcation diagram shown in Fig. 3.

Figure 5 shows the bifurcation diagram of the state
variable x2 of system (21), in which the orbit starts
from (1,1,1). Figure 6 shows the maximum Lyapunov
exponent spectrum, which corresponds directly to the
bifurcation diagram shown in Fig. 5.

Comparing Figs. 3 and 5 (or Figs. 4 and 6), system
(21) can generate chaotic attractors over a large range
of parameter b2 which is wider than that of b1 in sys-

Fig. 5 The bifurcation diagram of the system (21) with respect
to b2, and with a2 = −14, c2 = 1, d2 = 16, e2 = −43, and
f2 = 1

Fig. 6 The maximum Lyapunov exponent spectrum of the sys-
tem (21) with respect to b2, and with a2 = −14, c2 = 1, d2 = 16,
e2 = −43, and f2 = 1

tem (20). Most of the largest Lyapunov exponents in
system (20), which is less than 0.1, are smaller than
the largest Lyapunov exponents in system (21) which
are over 3. All of this means that system (21) is more
sensitive than system (20).

There are two kinds of orbital dynamical attractors
in systems (20) and (21), a local one and a global one.
The local attractor relies on the initial region of the or-
bit, which includes a sink, some simple periodic orbits,
and a single-wing chaotic attractor. The global attrac-
tor, which includes some complicated orbits around all
equilibria, a double-wing chaotic attractor, and a four-
wing chaotic attractor, does not rely on the initial re-
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Fig. 7 Double-wing chaotic attractor of (20), with a1 = 0.2, b1 = 0, c1 = 1, d1 = −0.4, e1 = −1.0, and f1 = −1

Fig. 8 Double-wing chaotic attractor of system (21), with a2 = −14, b2 = 0, c2 = 1, d2 = 16, e2 = −43, and f2 = 1

gion of the orbit. An obvious illustration is the phase
figures when b = 0 (or b1 = b2 = 0). When a1 = 0.2,
b1 = 0, c1 = 1, d1 = −0.4, e1 = −1.0, and f1 = −1,
the phase diagrams of (20) are shown in Fig. 7. In
Fig. 7(a), the initial state is (1,1,1) which is different
from Fig. 7(b) with an initial state (−1,−1,1). When
a2 = −14, b2 = 0, c2 = 1, d2 = 16, e2 = −43 and
f2 = 1, the phase diagrams of (21) are shown in Fig. 8.
In Fig. 8(a), the initial state is (1,1,1) which is differ-
ent from Fig. 8(b) with an initial state (−1,−1,1). As
can be seen from Figs. 7 and 8, they cannot generate

four-wing chaotic attractors when b1 = b2 = 0 satisfy-
ing Theorem 1, but create two co-existing double-wing
chaotic attractors.

4.2 Poincaré map of the four-wing chaotic attractor

As an important analysis technique, the Poincaré map
can reflect bifurcation and folding properties of chaos.
When a1 = 0.2, b1 = −0.01, c1 = 1, d1 = −0.4, e1 =
−1.0, and f1 = −1, one may take x1 = −0.62, y1 =
−0.45, z1 = 0.28 and z1 = 0 as crossing planes, re-
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Fig. 9 Four-wing chaotic attractor Poincaré mappings of system (20): with a1 = 0.2, b1 = −0.01, c1 = 1, d1 = −0.4, e1 = −1.0, and
f1 = −1

spectively, where x1 = −0.62, y1 = −0.45 or z1 =
0.28 is near the elements of the equilibrium of sys-
tem (20).

When a2 = −14, b2 = 5, c2 = 1, d2 = 16, e2 =
−43, f2 = 1, one may take x2 = −26.2, y2 = −20.8,
z2 = 12.7 and z = 0 as crossing planes, respectively,
where x2 = −26.2, y2 = −20.8 or z2 = 12.7 is near
the elements of the equilibrium of system (21). Fig-
ures 9 and 10 show the Poincaré mapping on several
sections, with several sheets of the attractors visual-
ized. It is clear that some sheets are folded, which in-
dicates that the systems have extremely rich dynam-
ics.

Although the orientations and some details are dif-
ferent, by comparing Figs. 9 and 10, we can find that
the shape of Fig. 9(a) is similar to Fig. 10(b), Fig. 9(b)
is like Fig. 10(a), and Figs. 9(c) and (c) are similar to
Figs. 10(c) and (d), respectively. These Poincaré maps
reveal that the two canonical four-wing chaotic sys-
tems can generate similar four-wing chaotic attractors
in the geometrical view.

4.3 Frequency spectral analysis

Frequency spectra can be used to analyze chaotic at-
tractors since they can reveal how random signals are.
The frequency spectra of signals, generated numeri-
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Fig. 10 Four-wing chaotic attractor Poincaré mappings of system (21): with a2 = −14, b2 = 5, c2 = 1, d2 = 16, e2 = −43, f2 = 1

cally from the four-wing chaotic systems (20) and (21)

proposed in this paper, are shown in Figs. 11 and 12,

respectively. For calculation, the Runge–Kutta method

was used to solve all systems, with sampling time step

0.01 (s) and 0.001 (s), running time 0–500 (s), the

number of spectral averages 3, and all spectra are nor-

malized. Note that the bandwidths of signals y2 and

z2 are over 22 Hz band, which is wider than the band-

widths of system (20) with a bandwidth of 0.9 Hz. It

shows that system (21) is more random and disorder

than system (20) which also means (21) is more sensi-

tive than (20).

5 Conclusion

Through the analysis of several 3-D four-wing smooth
quadratic autonomous chaotic systems, it was found
that these systems have similar features related to
the creation of four-wing chaotic attractors. Two
canonical 3-D continuous autonomous systems, which
are distinct with each other in dynamics, were con-
sequently introduced and analyzed. Lyapunov ex-
ponents, bifurcation diagrams, and Poincaré maps
showed that the dynamics of these two systems are
different despite of similar geometrical structure. The
two simpler systems are very convenient to investi-
gate the dynamical behavior of multi-wing chaotic
systems.
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Fig. 11 The frequency spectra generated numerically from the proposed four-wing chaotic system (20), with a1 = 0.2, b1 = −0.01,
c1 = 1, d1 = −0.4, e1 = −1.0, and f1 = −1

Fig. 12 The frequency spectra generated numerically from the proposed four-wing chaotic system (21), with a2 = −14, b2 = 5,
c2 = 1, d2 = 16, e2 = −43 and f2 = 1
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