
A new adaptive colorization filter for Video

decompression
Vaughan H. Lee*, Yuko Roodt

Ϯ
 and Willem A. Clarke

ϯ

Hypervision Research lab

School of Electrical Engineering

University of Johannesburg, P. O Box 524, Auckland Park, South Africa

vaughan.h.lee@gmail.com*, {yukor
Ϯ
, willemc

ϯ
}@uj.ac.za

Abstract—HD content is more in demand and requires a lot of

bandwidth. In this paper, a new real-time adaptive colorization

filter for HD videos is presented. This approach reduces the

required bandwidth by reducing non-key frames in the HD video

sequence to grayscale and colourizing these frames at the

decompression stage. Additionally this technique determines the

frame status based on the image information.

Index Terms: HD video compression, adaptive colorization,

graphics processing unit (GPU)

I. INTRODUCTION

The multimedia industry requires elaborate compression
schemes to reduce the massive volume of data representing
multimedia content, in particular video streams. In video
streams, there is a significant amount of redundant data which
is removed. The reduction achieved is not sufficient to
successively merge high definition (HD) graphic content into
more consumer applications. However, there is a demand for
HD multimedia content [1]. HD multimedia content caters for
better realism, by providing a sharper more clear image. The
consumer demand for HD content can therefore be expected to
continue to increase. The growing demand for HD video
content present challenges such as transmission latencies due to
the volume of data. The large volumes of data unnecessarily
burden networks. HD video content has significantly more
data than standard definition (SD) and enhanced definition
(ED) content. The volume of video data in particular should be
further compressed to better align to consumer trends. Some
high bandwidth applications stimulating the HD trend are
digital television (HDTV), digital video by satellite (DVS), 3D-
Video games and 3D blue-ray DVDs.

HD video sequences require significant processing power
to decode [3]. The graphics processing units (GPUs) are
increasingly becoming available in every personal computer.
Modern GPUs have a parallel architecture, specifically
designed for image processing. The modern GPU is
programmable, presenting itself as additional processing
hardware for applications. To this end, the GPU is used as a
work horse for a growing amount of applications that suit
single instruction multiple data (SIMD) paradigm.

The most relevant research is briefly discussed. Shen et al.
implement motion compensation for a video decoder using
GPU [2]. In this work, the video decoding tasks are divided
such that a portion of tasks are executed on the CPU and the
remainder on the GPU in a cascading manner. The
implementation achieved real-time decoding at 720𝑝, which is

1280 by 720. The GPU tasks were motion compensation (MC)
from precomputed motion vectors, colour space conversion
(CSC) and finally rendering the frame. The experimental
results showed that the trap video sequence at 720𝑝 video
sequence achieved 31.3𝑓𝑝𝑠. Other experimental results given
showed that lower quality video sequences with lower quality
achieved a faster frame rate.

The entire motion compensation algorithm, as well as the
motion estimation architecture cannot be offloaded to the GPU.
Appropriately, motion vector estimators are computed on the
CPU, while the GPU refines the pre-calculated predictors. In
this research, Schwalb et al. report the latency is reduced [6].
Their contribution has two interesting outcomes, a small
diamond search mapped to a parallel implementation for
execution on the fragment processing unit. The second
contribution asserts that CPU and GPU could be used together
simultaneously. The theoretical performance gain anticipated
was not achieved due to the high number of random memory
accesses.

In work more closely related Kumar and Mitra made
considerable effort to explore a new approach to improving
compression of video sequences [10]. In this work, a video
sequence is compressed by dropping the chrominance channels
of certain frames. A full colour frame consists of three 2-𝐷
matrices, where the matrices represent pixel intensity. The
compression achieved by dropping two of these channels every
so often achieves additional compression. At the decoder side,
the luminance only frames are colorized. Their approach using
colorization to further compress a video sequence is integrated
into MPEG-2 as a module, making their work interesting. A
penalty noted by Kumar in this approach is the processing
latency, which is considerable.

In our work, a new adaptive compression scheme is
presented and a process illustration is given in Figure 1. The
proposed scheme reduces the required HD video bandwidth
while maintaining acceptable colour. The video sequences
considered in this work are full HD video sequences, that is
1920 by 1080. Here the encoder adaptively encodes frames in
sub-sampled colour or grayscale, a decision based on the image
entropy of the current frame.

 Our proposed scheme ensures that maximal compression
is achieved when frames contain minor differences. However
rapidly changing scenes will likely be more frequently coded in

Telkom SA is acknowledged for their role as sponsor to this research.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43600917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

colour, making the approach robust to video content. The
primary contribution of this research is at the decoder side.
The grayscale frames are colorized at the decoder side, without
use of any particular group of pictures scheme. A new
colorization filter is used to colourise the frames, enhanced
with adaptive filter updates. The colorization filter
enhancement is received through motion compensation (MC).
The MC is used to update the filter, allowing the filter to
change to the content of the video. Finally, the approach
makes optimal use of the CPU and the GPU for better
utilisation of system resources. The paper is organised as
follows. The theory section briefly introduces video
compression. The colorization framework is discussed
followed by the adaptive colorization algorithm. The proposed
compression and decompression scheme is implemented, a
discussion details the operation thereof. The experimental
results are closely examined followed by concluding remarks.

II. THEORY

A. Overview to Video Compression

Video compression is the reduction in the volume of data
representing the video information of interest. There are
various types of compression schemes, primarily lossy or
lossless compression. Lossy compression is usually more
practical as better compression ratios are achieved, however
information that is discarded cannot be reconstructed. While in
lossless compression the original information can be exactly
reconstructed from the compressed sequence. There are
temporal and spatial redundancies in video, which are removed
in compression schemes. Temporal refers to those
redundancies which exist between consecutive frames, while
spatial redundancies exist within a frame. The combined use
of several techniques are employed to remove these
redundancies achieve good results.

One compression approach is to apply a transform to a
macroblock, with the desired effect of removing the correlation
between the pixels. The coefficients which emerge after
applying the transform can then be quantised and encoded, thus
discarding data points that contains the least amount
information.

The exploitation of temporal redundancies require the use
of motion compensation techniques, or 3𝐷 transforms. The
basic principle of operation is that at the encoder the motion of
pixels are predicted. The exact pixel motion is then compared
to the predicted pixel motion, the resulting error together with
the motion vectors are encoded. As a last example of a
compression technique, sub-sampled formats are used. There
are three components in colour images, intensity and 2 chroma
(colour) components. The human vision system (HVS) cannot
detect the colour differences as easily as intensity changes, thus
some colour is discarded. In sub-sampled video format 4: 2: 2,
there are 4 intensity samples for every 2 samples for both
colour components.

B. Frame Colorization

The estimation and addition of chrominance components to
luminance is a technique known as colorization. Colorization
is interpreted as an image filter which transforms the input
luminance (grayscale) image into a color image. The
operational principle behind image colorization is described as;
image features from the grayscale image are used to assist
estimation of chrominance (chroma) values to be added to the
grayscale image. Identifying image features using statistical
methods are processor intensive, as a result image comparisons
are the suitable alternative for real-time applications. An
image comparison will require an image of the same type to be
colorized, together with the desired output image. Image
features are used to establish a loosely unique pattern between
the input and the desired image. To increase certainty more
features can be considered. This training input and desired
output image are used to initialize the colorization filter,
thereafter, sequential input images to the filter are then
colorized in a similar manner.

III. DESIGN AND IMPLEMENTATION

A. Proposed Systems Process Overview

The process overview of the video compressor and
decompressor developed in this work is depicted below in
Figure 2. In Figure 2, first focusing on the raw video block
depicted on the left is the uncompressed video sequence which
is to be coded. The pixel motion in this video sequence is

Figure 1: Video Colourization Illustration

determined by the first function module on a forward frame
basis, no backward prediction is used. Each frame is divided
into macroblocks, where block motion is then detected. Once
the blocks that are in motion are determined the frame entropy
is calculated.

The entropy gives an indication of the information content
in the image, which is used to determine the status of the
frame. The frame status can either be regarded as a key frame
or a non-key frame. The decision is based on the entropy
difference between the past frame and the current frame, thus
either encoding full color components or simply the luminance
component of that frame only. Upon the decision outcome, the
macroblocks that undergo motion are decorrelated using the
discrete cosine transform (DCT) and then quantized.

The quantization level and the maximum entropy difference
influence the bit rate, however these values are not related.
The entropy is adjusted automatically based on information
content, while the bit rate is specified. These bits are then
variable length encoded, finally ready for transmission or
storage. The decoder is the side that decompresses and finally
renders the video frames is depicted on the right of the encoder
in Figure 2. The decoder has several function modules, the
first determines the inverse variable length codes (IVLC). The
status of the frame is then determined from the header
information. The status of the frame determines which
function module to follow. In the case of key frame status, the
inverse discrete cosine transform (IDCT 3D) is applied for all 3
channels, followed by updating of the colorization filter
database. The colorization filter is reinitialized during this
function. The colorization filter is configured to receive new
non-key frames of similar content to the update.

This approach renders the colorization filter as adaptive,
thus limiting the error associated to pixel drift and feature
movement. In the second case, where the frame is determined
as a non-key frame, color components will need to be
estimated by the colorization filter. The colorization filter
module is written for GPU hardware, in section III.E the filter
is described in detail. Once the non-key frame is colorized, the
image is rendered to the screen.

B. Encoder Architecture

The motion for each macroblock is determined by
comparing the current frame 𝐼𝑡 to the next frame 𝐼𝑡+1 . The
macroblocks are compared by calculating the mean absolute
difference (MAD),

𝑀𝐴𝐷 = 𝑀 𝐼𝑡 − 𝐼𝑡+1 = 𝐼𝑡 − 𝐼𝑡+1 (1)

The macroblocks that do inhabit motion are then replaced
with the updated pixels. Thus only the macroblocks that are in
motion are decorrelated. The decorrelated macroblocks are
then quantised and encoded, effectively a difference update.

The proposed compression scheme intends on delivering a
variable bit rate data stream. The entropy of an image reveals
the average information content per symbol, effectively
entropy is a function of occurrence probabilities of source
symbols. To calculate the entropy, the source symbol count for
each of the 256 quantization levels (seen as source symbols),
where 0 is black and 255 is white. The probability (𝜌) of
occurrences of each of these quantisation levels are then,

𝑝𝑆 𝑘 =
𝑓(𝑘)

𝑀.𝑁
 (2)

where the subscript 𝐼 denotes the image and the information
content per source symbol (𝑄) is,

𝑄𝑓 𝑘 = 𝑙𝑜𝑔2
1

𝑝𝑓 𝑘
 = −𝑙𝑜𝑔2 𝑝𝑓 𝑘 (3)

The entropy (𝐻) is determined using,

𝐻𝑓 𝑘 = 𝑒𝑓 𝑘 =

𝑘𝑚𝑎𝑥

𝑘=1

 𝑝𝑓(𝑘)𝑄𝑓(𝑘)

𝑘𝑚𝑎𝑥

𝑘=1

 (4)

When summing the entropy per quantisation level for a
given image 77% of the total image entropy describes most
significant information [9]. The experimental value used to
determine the entropy threshold is determined experimentally
as 95%, should the entropy change be less than this the
difference will change enough content significantly to effect
the colorization process. This is determined as,

Figure 2: Process Overview

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐾𝑒𝑦 𝑖𝑓 𝐼𝑡−1 > 1.05𝐼𝑡 ∥ 𝐼𝑡−1 < 0.95𝐼𝑡

𝑁𝑜𝑛 − 𝑘𝑒𝑦 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

 The final step is bit stream encoding, traditional run-length
encoding (RLE) was selected. RLE presents an effective yet
quick enough implementation, there are numerous techniques
that are more efficient, however these distract from the scope
of the proposed scheme.

C. Decoder Architecture

The decompressor cannot be simplified by determining the
inverse of the compressor techniques. The crucial proposal of
our work is based on the adaptive colorization, which is not
simply the inverse of the compressor. The bit stream is
decoded, in a sense unpacking the data stream. The frame
header contains information to reduce the computational
overhead at the decoder. It should be noted that the header can
contain significant bit representation and cannot be compressed
with ease, only critical information is necessary here. The
frame status is retrieved from the frame header, which directs
the stream to the desired function module. Once the
approximated stream has been recovered through the IDCT, the
stream is prepared for offloading to the GPU. A note worthy
consideration is the time penalty in pushing data between the
CPU and the GPU, effectively nullifying any potential
processing gain. The decompressor is designed with this
consideration, once the correlated difference image data is
prepared, the data is not transferred back the CPU for
additional processing.

The colorization filter should be designed with stream
processors in mind, careful consideration must be given to the
architecture. The GPU program can be simplified to a kernel
function, which is applied to every pixel element. Further
consideration is given to the number of control structures
which severely retard the performance. The use of a
neighborhood does reduce the performance, however the
sacrifice is less than approaching the dimensionality problem.
The neighborhood is constructed by shifting the image, then
performing the quick smallest first match test. The shifting of
the image pixels is structured, all check positions are
predetermined.

D. Proposed Adaptive Colorization Algorithm

The proposed algorithm requires initialization, a process
whereby the image features in the search parameter are updated
as well as the corresponding chroma values. Initialization
occurrence is frequent enough to change with the data stream,
as determined through the image entropy calculation. Our
proposed algorithm is adaptive to the stream content, ensured
by considering a percent shift rather than an experimentally
determined value.

The algorithm proposes two types of updates. The first is a
complete frame for initialization. A complete frame is used
when motion exceeds several blocks, but the primary purpose
is for new scenes. A completely new scene for initialization is
a natural approach to ensure optimal operation of the
colorization filter. The new scene update ensures that
stationary scenes are greatly compressed.

The scenes that contain high motion threaten to undermine
any additional compression gained. The second initialization
approach is utilized to minimize the inefficient complete filter
re-initialization caused through high motion scenes which
require more frequent updates. Here the update container is
accessed through motion detected blocks. The blocks
determined to be in motion are encoded in grayscale as well as
the corresponding chroma values. This approach limits the
neighborhood search.

E. Proposed Algorithm Implementation

The inputs into the filter are 2𝐷 textures, the colorization
filter update content must be contained herein. The frames to
be colorized are naturally 2𝐷 images, requiring no significant
changes. The use of textures greatly simplify the GPU
programming model; adapting the representation of the updates
for the colorization filter presented mapping difficulties. The
primary intention is to reduce the bit rate of video streams,
without excessive computational complexity.

The features used in our colorization filter were the
locations of each pixel in the input image, together with the
intensity values of those pixels. The corresponding
chrominance values for each pixel is also used. The intensity
values are limited to 256 quantization levels only, which
introduces a problem of non-uniqueness between intensity and
the possible corresponding chroma values. Additionally, the
database grows to a very large size. In order to limit searching
through a large database as well as the likelihood of selecting
the incorrect chroma combination an assumption is asserted.
The colorization filter assumes that the images into the filter
are similar to the image set used to train the colorization filter.
This assumption is only valid when the input images are those
sequential images of a video. In asserting the assumption,
certainty about the more probable combination of chroma can
be increased by constructing a neighborhood surrounding each
pixel. The values within this neighborhood are tested when
estimating the chrominance component, thus limiting the
search database. The limited search region reduces the
otherwise unavoidable problem of dimensionality.

A single adaptive colorization filter was proposed, with two
types of updates. These updates as discussed ensure a closely
correlated processed output image even in the particularly
difficult scenarios of high motion. The first update type
referred to as database initialization which completely resets
the database. The implementation of this module is given in
pseudocode,

𝑺𝒕𝒂𝒓𝒕 𝒅𝒂𝒕𝒂𝒃𝒂𝒔𝒆_𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒔𝒂𝒕𝒊𝒐𝒏:
 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝐼𝑛𝑝𝑢𝑡
 Υ𝑖,𝑗

𝐴 = 𝑙𝑢𝑚𝑎(𝐼𝑛𝑝𝑢𝑡)

 get f𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑓𝑜𝑟 ∀ 𝜌

 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

𝑬𝒏𝒅 𝒎𝒐𝒅𝒖𝒍𝒆

𝑺𝒕𝒂𝒓𝒕 𝒖𝒑𝒅𝒂𝒕𝒆_𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒆𝒓:
 𝐵 = 𝑟𝑒𝑐𝑖𝑒𝑣𝑒 𝑛𝑜𝑛𝑘𝑒𝑦 𝑓𝑟𝑎𝑚𝑒
 𝐢𝐟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝜌 == 0

 𝑛𝑜 𝜌 𝑢𝑝𝑑𝑎𝑡𝑒

 𝐞𝐥𝐬𝐞 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡𝑖𝑠 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 → 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑢𝑝𝑑𝑎𝑡𝑒

 𝐞𝐧𝐝

𝑬𝒏𝒅 𝒎𝒐𝒅𝒖𝒍𝒆

Figure 3: Type 1 Colorization Update, Database Initialization

Figure 4: Type II Colorization Update, Update Container

The update container which is the motion corrected values
must be updated is shown in Figure 4.

The colorization filter is implemented as a function given in
pseudocode in Figure 5, here the colorization filter has a
training input image 𝐴 and the desired colourful image 𝐴′ . A
neighbourhood 𝒩 is constructed around each pixel 𝜌 to have
chrominance determined. The pixels 𝜌 in an image 𝒮 ,
𝒩 = 𝒩𝑘 ∀ 𝑘 ∈ 𝒮} where 𝒩𝑘 is the set of pixels
neighbouring pixel 𝜌 where 𝜌 in 𝒩𝑘 . The luminance Υ from
the sequential video images 𝐴 is transferred to the output
processed image. The chrominance components, 𝐶𝑟 and 𝐶𝑏 are
estimated as the first smallest match in the neighbourhood.

Finally the proposed algorithm is,

where the sub modules have been discussed and are
separated for the purpose of this discussion.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Overview

The video sequences used in the experiments are from a
standard collection of HD 1920p sequences. The system
specifications are 3GHz Athlon x2550 with 4Gb RAM and a
Nvidia 260 GTX GPU on which the experiments were
performed. The proposed algorithm was used to encode the
video and decode the video. The decoded video was then
compared to the original uncompressed video. The
experimental parameters were the colorization neighborhood
size and the threshold for blocks in motion used by the update
container module. The neighborhood size was set at 2, and
update blocks in motion threshold was set at 2 also. These
values were varied, increasing these values slowed the encoder
speed.

B. Experimental Results

The experiments show that good reconstruction is
achievable. The cross-correlation between the original
sequence and the decoder output is averaged and shown in
Table 1 together with the peak signal to noise ratio (PSNR).
The cross-correlation is desirable near 1, where 1 is exact. The
PSNR should be as large as possible. The sunflower sequence
was not colorized very well, this has been attributed to the
large motion in the first 100 or so frames.

Table 1: Cross-correlation and PSNR of several video sequences

Video
sequence

Cross-correlation mean
𝜌

PSNR mean

Touch Downpass 0.8663 24.5228

Sun Flower 0.5551 15.1920

Crowd Run 0.8749 16.2258

Snow Mountain 0.9574 26.0402

Controlled Burn 0.9628 23.1794

A plot of several frames is shown in Figure 7.

The decoder frame rate (fps) achieved was not desirable,
shown in Table 2. The frame rate for the decoding modules is
indicated separate from the colorization frame rate. The
decoder implementation was slowed down greatly by the IDCT
module. The IDCT module was not pruned for real-time, thus
negatively effecting the performance of the decoder. The
colorization frame rate is well above real-time with the slowest
rate of 89.2 fps. The desired bit rate was not achieved, shown
in the last column of Table 2, showing the bit rate per second.
The bit rate not being reduced effectively is attributed to the
encoder. The encoder implemented has proven not to be
effective as desired,

Table 2: Frame and bit rate of experimental set

Video
sequence fps

Colourization
fps Mbps

Touch
Downpass

2.271 138.85342 101.19168

Sun Flower 2.414 99.90049 93.69600

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑪𝒐𝒍𝒐𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝒔𝒕𝒂𝒓𝒕:
 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 ,𝑗 = Υ𝑖,𝑗

𝐵

 𝑔𝑖𝑣𝑒𝑛 Υ𝐵 ,𝑓𝑜𝑟 ∀ 𝜌 𝑖𝑛 𝐴 𝑑𝑜:
 𝐢𝐟 𝜌𝑖,𝑗 𝜖 Υ𝐵 == Υ𝑖,𝑗

𝐴

 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 ,𝑗 = → 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

 𝐞𝐥𝐬𝐞 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟𝑜𝑜𝑑,
 𝑓𝑜𝑟 ∀ 𝜌𝑖,𝑗 𝑖𝑛 𝑛𝑒𝑖𝑔𝑏𝑜𝑟𝑜𝑜𝑑 𝒩𝑘 𝑑𝑜:

 𝐢𝐟 𝜌𝑖,𝑗 ≈ 𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟𝑜𝑜𝑑 𝒩𝑚 ,𝑛
𝑘 ,

 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 ,𝑗 = 𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟𝑜𝑜𝑑 𝒩𝑚 ,𝑛
𝑘 → 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑢𝑡𝑝𝑢𝑡

 𝑒𝑙𝑠𝑒 𝑖𝑓 𝜌𝑖,𝑗 ≠ 𝑎𝑛𝑦 𝜌𝑖,𝑗 𝑖𝑛 𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟𝑜𝑜𝑑 𝒩𝑘

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑖𝑥𝑒𝑙 𝑛𝑜𝑡 𝑚𝑎𝑡𝑐𝑒𝑑 → 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑢𝑝𝑑𝑎𝑡𝑒

 𝐞𝐧𝐝

 𝐞𝐧𝐝

𝑬𝒏𝒅 𝑪𝒐𝒍𝒐𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏

𝑺𝒕𝒂𝒓𝒕 𝒑𝒓𝒐𝒑𝒐𝒔𝒆𝒅 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎:
 𝒊𝒇 𝑆𝑡𝑎𝑡𝑢𝑠 ≠ 𝑇𝑅𝑈𝐸
 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒_𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟
 𝐶𝑎𝑙𝑙 𝐶𝑜𝑙𝑜𝑢𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
 𝐞𝐥𝐬𝐞
 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒_𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
 𝐶𝑎𝑙𝑙 𝐶𝑜𝑙𝑜𝑢𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
 𝐞𝐧𝐝
𝐋𝐨𝐨𝐩 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐟𝐨𝐫 ∀ 𝐈𝐢 𝐢𝐧 𝐯𝐢𝐝𝐞𝐨

Figure 5: Colorization Filter

Figure 6: Proposed Algorithm Adaptive Colourisation Filter

Figure 7: Frame cross-correlation for several frames of different sequences

Crowd Run 2.471 101.68966 104.93952
Snow
Mountain

2.079 89.23637 73.05216

Controlled
Burn

2.324 113.96565 86.13888

The bit rate when compared to the uncompressed stream is
sufficiently good.

V. CONCLUSION

In this work an adaptive colorization filter was proposed.
The filter aims to reduce the bit rate (improve compression)
through dropping chroma channels of specific frames
completely. The chroma channels dropped are estimated at the
decoder side by means of image comparisons. Further we
propose that only frames determined to be key frames should
be encoded, instead of using a predetermined pattern. The
information content in each frame was determined through
entropy. The information content determines when a frame is
encoded as a key frame or non-key frame.

The experimental results show that correlation between the
actual video sequence and that decoded can vary quite
significantly. The correlation is acceptable, however the
overall subjective assessment reveals that a deblocking method
should always be implemented. The proposed filter can
partially correct errors associated with IDCT, but a deblocking
filter should still be applied. It was also confirmed that the
proposed method cannot be applied to all types of sequences,
too much scene change would drastically effect the bit rate.

The colorization algorithm performance speed is well
within real-time requirements while our specific encoder
lacking speed. A more efficient decoder would correct for the
slow decoding speed. Future work will aim to improve the
decoder to performance through use of a fast IDCT or other
fast transform. Future work will also use a variety of image
filters together with the colorization filter to improve the image
sharpness and clarity. A super resolution filter would work
well with a database of past images, which can complement the
colorization process.

ACKNOWLEDGEMENTS

V.H.L thanks the researchers at HPCV Lab for weekly
discussions.

REFERENCES

[1] Ali Aghagolzadeh, Saeed Meshgini, Mehdi Nooshyar, Mehdi
Aghagolzadeh, "A Novel Video Compression Technique for Very Low
Bit-Rate Coding by Combining H.264/AVC Standard and 2-D Wavelet
Transform", ICSP2008 Proceedings.

[2] Guobin Shen, Guang-Ping Gao, Shipeng Li, Heung-Yeung Shum, and
Ya-Qin Zhang," Accelerate Video Decoding With Generic GPU", IEEE
Transactions on circuits and systems for video technology, vol. 15, no.
5, may 2005.

[3] Cebrail Taşkin and Serdar Kürşat Sarikoz, "An Overview of Image
Compression Approaches", The Third International Conference on
Digital Telecommunications, 2008.

[4] M.C. Kung, Oscar C. Au, P.H.W. Wong, Chun Hung Liu, "Block Based
Parallel Motion Estimation Using Programmable Graphics Hardware",
ICALIP 2008.

[5] P.C.Shenolikar, S.P.Narote, "Different Approaches for Motion
Estimation", International conference on Control, automation,
communication and energy conservation, 4th-6th June 2009.

[6] Martin Schwalb, Ralph Ewerth, and Bernd Freisleben, Member, IEEE,
"Fast Motion Estimation on Graphics Hardware for H.264 Video
Encoding", IEEE Transactions on multimedia, Vol. 1. No. 1, January
2009.

[7] Mauricio Alvarez, Esther Salam´ı, Alex Ram´ırez and Mateo Valero,
"HD-VideoBench. A Benchmark for Evaluating High Definition Digital
Video Applications", IEEE, 2007.

[8] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless,
David H. Salesin, "Image Analogies", 2001.

[9] Markos Mentzelopoulos and Alexandra Psarrou, "KeyFrame Extraction
Algorithm using Entropy Difference", MIR’04, Oct 15-16, 2004, NY.

[10] Ritwik Kumar, Suman K. Mitra, "Motion Estimation based Color
Transfer and its Application to Color Video Compression", 2008.

[11] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra,
"Overview of the H.264/AVC Video Coding Standard", IEEE
Transactions on circuits and systems for video technology, Vol 13, No.
7, July 2003.

[12] Roberto R. Osorio and Javier D. Bruguera, "High-Throughput
Architecture for H.264/AVC CABAC Compression System", IEEE
Transactions on circuits and systems for video technology, Vol 16, No.
11, Nov 2006.

	Introduction
	Theory
	Overview to Video Compression
	Frame Colorization

	Design and Implementation
	Proposed Systems Process Overview
	Encoder Architecture
	Decoder Architecture
	Proposed Adaptive Colorization Algorithm
	Proposed Algorithm Implementation

	Experimental Results and Discussion
	Experimental Overview
	Experimental Results

	Conclusion
	Acknowledgements
	References

