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Abstract

The dynamics of nonlinear system is very complicated
especially the fractional nonlinear system since they can be
found in many areas of engineering and science. The
dynamics of the Lorenz system with fractional derivatives is
analysed based on the frequency approximation. For a given
range of parameters where the non-fractional Lorenz system
has periodic orbits, it is found that the fractional Lorenz
system exhibits chaos and hyperchaos. A striking finding is
that the fractional Lorenz system exhibits hyperchaos,
although the total system order is less than 3, which is
contrary to the well known conclusion that hyperchaos
cannot occur in the integer-order continuous-time
autonomous system of order less than 4. Finally, a
reasonable explanation is offered for this complicated
dynamical phenomenon.
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Introduction

The subject of fractional calculus has gained
considerable popularity and attention during the past
three decades or so, mainly due to its widespread
applications in the fields of science and engineering
(Kilbas et al.,2006). Many systems are well known for
being able to display fractional-order dynamics, such
as viscoelastic systems (Bagley et al. 1991; Koeller,
1984), dielectric polarization (Sun et al.,1984),
quantitative finance (Laskin, 2000; Jensen et al.,2003),
and the quantum evolution of complex system
(Kusnezov et al.,, 1999). The dynamics of the fractional
nonlinear system has also been studied extensively
during recent years. According to the Poincare-
Bendixson theorem (for a review, see (Wiggin, 2003)),
chaos cannot occur in continuous-time autonomous
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systems of order less than three, which is based on the
usual integer order concepts. However, some
fractional-order nonlinear systems display chaos when
the total order is less than three (Hartley et al., 1995;
Ahmad and Sprott, 2003; Grigorenko and Grigorenko,
2003). It is also widely accepted that hyperchaos
integer
autonomous system of order less than four. In the
reference (Li and Chen, 2004), it shows that the
fractional-order Rossler equation of an order as low as

cannot occur in an continuous-time

3.8 can produce hyperchaos. Most of the researches on
fractional chaos or hyperchaotic systems have
focussed on the lowest total order of some well known
nonlinear systems, which are chaos or hyperchaos
when the system orders are integer, and haven't payed
much attention to the rich dynamics caused by the
fractional order.

In this paper, we investigate the dynamics of the
fractional Lorenz system and find that the fractional
Lorenz system exhibits chaos even though the normal
Lorenz system is not chaotic for the same parameters.
Moreover, we find that the fractional Lorenz system of
the total order less than 3 displays hyperchaos.

Fractional Order Nonlinear System

The derivative theory of fractional order goes back to a
question raised in the year 1695 by L' Hopital to G. W.
Leibniz, in which the meaning of derivative of order of
1/2 is discussed. There are several definitions for
fractional derivatives, of which the best known is
probably the Riemann-Liouville formulation. An
alternative is the Caputo definition whose properties
are similar to that of the Riemann-Liouville (Kilbas et
al.,2006). Caputo's derivative of order o and with the
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lower limit 0 can be viewed as a sort of regularization
of the Riemann-Liouville derivative and is defined as

a1 A CO I
0= b T o

where I'(-) is the gamma function and n-1<a<n.

The main advantage of the Caputo fractional
derivative (1) is that there is a formal generalization of
the integer derivative under Laplace transform (Kilbas
et al.,2006). Considered all the initial conditions to be
zero, the Laplace transform of (1) becomes the more
expected and conforming form,

df(¥) | _ e
L( e J—S L(f (1) @)

Thus, the fractional integral operator of order a can be
represented by the transfer function F(s)=1/s“in the

frequency domain. The standard definition of the
fractional differintegral does not allow direct
implementation of the fractional operators in the
timedomain. An efficient method to solve this problem
is to approximate fractional operators by using
standard integer order operators (Charef et al., 1992).

In the following simulations, we will mainly use these

approximations. The approximation of 1/ % with an

error about 1 dB is given in (Li and Chen, 2004) by

1 1.2831s? +18.6004s + 2.0833

$% 53 .418.47385% + 2.67545 +0.003 ®

Analysis of Fractional Order Lorenz System

A famous continuous-time autonomous system is the
Lorenz system which shows rich dynamics. Grigorenk
et al (Grigorenko and Grigorenko, 2003) has analyzed
the fractional Lorenz system and pointed out that the
fractional Lorenz system with a total order of less than
3 can exhibit chaos. Here, we analyze a simple
fractional Lorenz system with only fractional
derivative state given by

d?x
=a(y—-x
e (y—x)
dy
—=CX—XZ-Y, 4
ot y 4)
dz
— =Xxy-—bz
dt y

where a, b and c are parameters of the Lorenz system,
and a is the fractional order. When a = 1, (4) is
equivalent to the classical integer-order Lorenz
equation. We assume that the time derivative is in
Caputo sense. From the system equation (4), it is seen
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that the total order is 2.95 if a = 0.95. The phase plot of
the chaotic attractor is shown in Fig. 1 with parameters
a=0095 a=10, b =28/3 and c = 100. In this letter, we
used the Wolf algorithm to calculate the Lyapunov
exponents (Wolf et al., 1985). The largest Lyapunov
A~3.3, but for the common Lorenz
system A~0, which means that the fractional system
is chaotic and the integer order Lorenz system is not
chaotic. The result differs from that the decrement of
the system total dimension induces the damping of the

exponent is
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system effectively (Grigorenko and Grigorenko, 2003).
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FIG 1. THE CHAOS DEMONSTRATION OF THE FRACTIONAL
LORENZ SYSTEM WITH PARAMETERS a= 0.95; a = 10;
b =8/3; c=100.
When the parameters a = 0.95, a =10, b =8/3 and ¢ =
150, the two largest Lyapunov exponents of the
system are /4, ~390 and 4,=1.07 ,

respectively, which means that the system exhibits
hyperchaos as shown in Fig. 2. However, the normal
Lorenz system orbit with the same parameters is
periodic as shown in Fig. 3. It is notable that the
fractional nonlinear system exhibits hyperchaos with
total order less than 3, which is contrary to the
conventional knowledge about integer systems i.e.
that the total order should be greater than 3 for
hyperchaos.

fractional

As can be seen from Fig. 4, the integer order Lorenz
system doesn't exhibit chaos, but the fractional order
Lorenz system exhibits chaos and hyperchaos in a
large range of parameter c. It means that although the
system's total order decreases, system dynamics
becomes more sensitive.

What is the fundamental reason for these dynamics,
and is it really contrary to the conclusion that the
order of a continuous autonomous system generating
hyperchaos must be more than 4. It may be easily
understood by going back to the definition of the
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fractional derivative operator and the approximation
by using standard integer order operators in the
frequency domain. According to the approximating
method (Charef et al., 1992), the total number of
singularities should be infinite if the fractional
derivative is exactly represented by the integral
transfer function. Both the orders of the numerator
and denominator of the system transfer function
should be infinite if the fractional system is
represented strictly via using standard integer order
operators. For example, (3) is the approximation of
1/5°% with a 1 dB error, the total order of the
approximation system for (4) is 5 and the
approximation system is given by

dt 2
dx,

—Z =X
dat
dx,

~i = ~18:4738x, ~2.6574x, ~0.003

+1.2831a(cx, — X,z —Cx+ Xz +y—X(xy —bz))  (5)
+18.6004a(cx — xz — y) + 2.0833ay.
—a(1.2831x, +18.6004x, + 2.0833x)
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FIG. 2. THE HYPERCHAOS OF THE FRACTIONAL LORENZ
SYSTEM WITH PARAMETERS « = 0.95, a=10, b =8/3 AND ¢ =150.

It is easy to find the effect on the nonlinear system if
the system orderless than 2. Then, we investigate how
the fractional order influences the famous Van der Pol
equation given by
d’% _
g2

%2 = % +0.2(L—X2)%,
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FIG. 3. THE PERIODIC ORBIT OF THE NORMAL LORENZ
SYSTEM WITH a=0.95, a=10, b =8/3 AND c = 150.

When 3 =1, (6) is the normal Van der Pol equation.

When = 0.9 and initial condition (x,(0), X, (0)) = (-2,3),
the fractional Van der Pol system phase portrait is
shown in Fig. 5. It is known that this phase portrait is
impossible in the normal Van der Pol equation(that is
= 1) because the trajectory appears to intersect itself
in the two coordinate plane. Each point in the plane is
supposed to have a unique flow direction according to
the Poincare-Bendixson theorem. However, a non-
unique flow direction becomes possible for fractional
Van der Pol equation. A quite interesting question
arised to readers, namely how it can exhibit chaos or
hyperchaos in the fractional nonlinear system with
total order less than two.

A possible explanation is that some basic
characteristics of the integer Lorenz system have been
modified. The Lorenz system is symmetrical about the
x-y plane when a = 1, but this is not the case for (1)
and (4). Moreover, the equilibria of the fractional
Lorenz system differs from that of the normal Lorenz
system according to (1) and (4). Changes in the
symmetry of the system orbit and the equilibria
significantly influence on the distribution and
linearized characteristics of equilibria as well as the
manifolds of the system.

Conclusions

In this work, we analyzed the fractional Lorenz
equation. It is found that although both the normal
Lorenz system and fractional Lorenz system have a
similar two swings shape, the fractional Lorenz system
exhibits rich and interesting dynamics which is very
different from the result of the standard integer-order
dynamics. It is found that the fractional Lorenz system
exhibits chaos and hyperchaos with total order less
than 3. What is the fundamental reason of the different
dynamics? It maybe come from the fractional
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derivative nonlocal character which is different from
the integer dynamics. It is important to systematically
develop some methods for the analysis of fractional
system. The rich dynamics caused by fractional order
are also important topics for future studies in the areas
of science and engineering.
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FIG. 4. THE SPECTRUMS OF THE LYAPUNOV EXPONENTS FOR
LORENZ SYSTEM WITH a = 10, b = 8/3 (a)THE NORMAL LORENZ
SYSTEM (b)THE FRACTIONAL LORENZ SYSTEM WITH «a = 0.95,
WHERE ONLY SHOWS THE TWO LARGEST LYAPUNOVE
EXPONENTS

FIG 5. PHASE PLOT WHEN 3 =0.9 FOR VAN DER POL SYSTEM.
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