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Abstract 

This paper applies the center manifold theorem to reduce the 

dimensions of the Qi three-dimensional system. Local bifurcation 

phenomena are analyzed, including the pitchfork and Hopf bifurcations 

of the chaotic system. The Poincaré map is also investigated. The 

analyses demonstrate the rich dynamics of the Qi chaotic system. 

Finally, the frequency spectral analysis shows that the system has a 

broad frequency bandwidth, which is desirable for engineering 

applications such as secure communications. 
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1. Introduction 

With the advancement of chaos research, more and more chaos 
phenomena have been discovered in the mathematics, engineering and 

other fields. Many researchers have focused on the demonstration of 
chaos phenomena using simulation. The theoretical analyses of local and 

global characteristics and phenomena significantly have contributed to 
our understanding of the essence of chaos. 

Qi et al. [7] proposed a three-dimensional nonlinear chaotic system 

which exhibited a rich dynamics. This system is quite different from 
previous systems such as the Lorenz [6], Alligood et al. [1], Rossler [10], 

Chen [3] and series Lorenz systems [5]. Every equation of the Qi system 
has a nonlinear term, making it more complex in dynamics than the 

former systems. 

In this paper, two types of bifurcations are analyzed for the original 
Qi system, i.e., the pitchfork and Hopf bifurcations. The conditions of 
their existences are developed in detail by using the center manifold 

theorem and bifurcation theory. The Poincaré map and power spectrum 
exhibit the rich dynamic character of the Qi system [7]. 

2. Qi Three-dimensional Chaotic System and 

its Equilibrium Properties 

The Qi system [7] is a three-dimensional continuous system described 
by 

( ) ,yzxyax +−=  

,xzycxy −−=  

,bzxyz −=  (1) 

where ba,  and c are all real constant parameters. This system has five 

equilibria. Note that system (1) is invariant under the coordinate 

transformation ( ) ( ),,,,, zyxzyx −−→  i.e., the system is symmetrical 

about z-axis. 

Figure 1 shows the spectrum of Lyapunov exponents of system (1) 
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with respect to parameter c. The largest Lyapunov exponent can reach a 

value of 10, which is big different from those of the Lorenz system and 
the Chen system with 0.9 and 2, respectively. As can be seen from Figure 
1, the nonlinear system displays chaos, and the positive Lyapunov 

exponents are high in a large range of parameters. 

 

Figure 1. Spectrum of Lyapunov exponents of system (1) with ,35=a  

.38=b  
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the following five equilibria are found: 

[ ] ( ) ( ),,,,,,,0,0,0 111
3

111
21 zyxSzyxSS −−===  

( ) ( ).,,,,, 222
5

222
4 zyxSzyxS −−==  (4) 
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It can easily be verified that when 22,,0 yxed <−  are complex. So only 

21, SS  and 3S  are the equilibria of the system. By linearizing system (1) 

at ,1S  one obtains the Jacobian 

 .
00

01
0

















−
−

−

b

c

aa

 (5) 

And its characteristic equation, 

 ( ) ( ) ( ( ) ) .012 =−+λ++λ+λ=λ acaabf  (6) 

It is obvious that b−  is one of the roots of (6), and the other two roots do 

not always have negative real parts according to the Routh-Hurwitz 
condition. 

3. Bifurcations of Origin 

3.1. Pitchfork bifurcation of 1S  

From (6) with ,1=c  we have ( ) ,0,01,0 321 <−=λ<+−=λ=λ ba  

and the corresponding eigenvectors are 

 [ ] [ ] [ ] .1,0,0,0,1,,0,1,1 321
TTT vavv =−==  (7) 

According to the center manifold theorem [12], the topological structure 
of system (1) will change and generate pitchfork bifurcation because of 

,01 =λ  where c is the local bifurcation parameter at 1. 

Within the neighborhood of ,1=c  let ξ+= 1c  with ξ sufficiently 

small. Then we have 
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where Taylor expansion is used. By utilizing the eigenvectors to construct 

a new vector space, we obtain the following transformation: 

 .
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ua
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x

 (9) 

Thus the system is transformed into the form 

 ( ) ,
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 (10) 

where 

(( ) ( ) )
,

1
11 2

1 +
+−−

=
a

uvauva
g  

( )( )
,

1
12

2 +
−+

=
a

vwauw
g  

( ) .122
3 uvaavug −+−=  

Since ,0,,0 321 <λλ=λ  there exists a center manifold which is tangent 

to the u axis. The center manifold is expressed as 

( ) {( ) ( ) ( ) ,,, 21
3

1 δ<==|∈= uuhwuhvRwvuSW c  

( ) ( ) }.2,1,00,00 === iDhh ii  (11) 

Here δ is sufficiently small. To seek the center manifold ( ),1SW c  we 

assume that ( )uh1  and ( )uh2  have the forms: 

( ) ,4
1

3
1

2
11 +++== ucubuauhv  

( ) .4
2

3
2

2
22 +++== ucubuauhw  (12) 

Substituting (12) into the second and third equations of (10), respectively, 

and comparing the coefficients of ,,, 432 uuu  we have two sets of 
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equations. The first set of equations is 
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The second set of equations is 
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Solving equations (13) and (14) simultaneously, we have 

( )
,0,

1

2
,0 1211 =

+
== c

ba
ba  

 
( )

( )
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12
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1
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2

222
ba

baba
cb

b
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Thus the following center manifold equations are obtained: 

( )
( )

( ),0
1

2 53
21 uu
ba

uhv +
+

==  

( ) ( )
( )

( ).0
1

121 54
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2
2

2 uu
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u

b
uhw +

+

−−+
+==  (16) 

Finally, substituting (16) into (10), a one-dimensional (1-D) reduced 

vector field, 

( )
( )

( ) ( )
( ),

1
1

11
1 5353

1 uou
ba

a
u

a
a

uou
ba

a
uu +

+
−

+
+
ξ

=+
+
−

+λ=  (17) 

0=ξ   

is obtained based on the center manifold theory, which can be used to 

investigate the bifurcation. We now can compute the center manifold with 
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an accuracy of order 3, which is sufficient to answer questions of stability. 

Let ( ) ,0, =ξ= ufu  and ignoring the term ( )5uo  in (17), we have 
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According to the theorem [12], the equilibrium point ( ) ( )0,0, =ξu  

undergoes a pitchfork bifurcation at .0=u  Furthermore, let 
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we have 
( )

( ).1,
1

,0 3,21 >
−
ξ

±== a
a
ab

uu  

Hence, about the equilibria of (18), under the condition 1>a  we have 

(1) when ,01 <ξ<−  i.e., ,10 << c  the reduced 1-D system (18)    

has only one equilibrium at origin 01 =u  because 3,2u  are a pair of 

imaginary numbers; 

(2) when ,0>ξ  i.e., 1>c  it has three equilibria at 3,21 ,0 uu =  

( )
( ),1,

1
>

−
ξ

±= a
a
ab

 respectively. 

Furthermore, we have 
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+
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a

a
u
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uu
 (19) 

 ( ) .0,0
1

2,

3,2

>ξ<
+
ξ−=

∂
ξ∂

= a
a

u
uf

uu
 (20) 

Therefore, when ,01 <ξ<−  the only one equilibrium 1u  of system (18) is 

a sink. At ,0=ξ  i.e., ,1=c  system (18) undergoes pitchfork bifurcation 

from one equilibrium into three equilibria. When ,0>ξ  the equilibrium 
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1u  becomes a source, and another two equilibria 3,2u  come out and are 

sinks. From (18), with the parameter changing of the system, the range of 

ξ accordingly changes. 

The diagram of the pitchfork bifurcation of equation (18) is shown in 

Figure 2. The blue lines denote the trajectories of stable equilibrium with 

parameter ξ increasing, and the red line denotes the trajectory of the 

unstable equilibrium. It is notable that in the neighborhood of 0,1 =ξS  

corresponds to the bifurcation parameter .1=c  Therefore, system (1) 

undergoes a pitchfork bifurcation at .1=c  Correspondingly, the system 

has only one globally stable equilibrium when .01 <ξ<−  It has three 

equilibria in which the origin is stable, while another two non-zero 

equilibria are unstable when .0>ξ  The diagram of pitchfork bifurcation 

of system (1) with parameter changing is shown in Figure 3 where the 

curves with arrows show that although the two orbits of system (1) start 

from the neighborhood of the origin (a saddle) are attracted into the non-

zero equilibria, respectively. 

 

Figure 2. The diagram of the pitchfork bifurcation based on system (18). 
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Figure 3. The diagram of the pitchfork bifurcation based on system (1). 

We therefore obtain the following theorem: 

Theorem 1. Under condition 1>a  and ξ sufficiently small, on the 

line ,1=c  system (1) undergoes a pitchfork bifurcation at origin 

[ ].0001 =S  For ξ+= 1c  and ,01 <ξ<−  there is one equilibrium 

[ ],0001 =S  and 1S  is a sink. For ξ+= 1c  and ,0>ξ  two new 

equilibria ( )111
2 ,, zyxS =  and ( )111

3 ,, zyxS −−=  emerge and are 

sinks while 1S  becomes a source. 

3.2. Hopf bifurcation of 1S  

In this section, we deal with another kind of bifurcation at origin 

[ ]0001 =S  of system (1) using an analytical method. From (6), we have 

these three eigenvalues at origin. 

 ( ) ( ) iwaacaaa ±σ=++−±−−=λ 21421 2
2,1  and .3 b−=λ  (21) 

The existence of Hopf bifurcation of equilibrium has three following 

conditions [12]: 

(1) The eigenvalues cross the imaginary axis transversely. 

(2) The coefficient 1Λ  in the Poincaré-Andronov-Hopf normal form is 

nonzero. 
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It is easy to get 

 
( )

,
2
1

1 −=
σ

=ρ
da

ad
 (22) 

so the first condition of the Hopf bifurcation is satisfied. Now we 

investigate the second condition. Suppose the characteristic equation (6) 

has pure imaginary roots ( ).02,1 >±=λ wiw  When 10 −== aa  the 

Jacobian matrix of system (1) has a pair of imaginary eigenvalues and 

one negative real eigenvalue, i.e., 

 ( ) bccwawiw −=λ>−==±=λ 30002,1 ,1,1,  (23) 

and the corresponding eigenvectors 
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By utilizing the real generalized eigenvectors as the basis of new 

coordinates, we obtain the transformation 
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System (1) becomes 
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Here 

( ) ,
1
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1 zxy

c
f −ω=  

( ) ,
11

11111
2 zxy

c
zxf −ω

ω
+

ω
−=  

.11
32

1
23 yxxf ω−ω=  
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Thus according to the center manifold theorem, there exists a center 

manifold for (26), which could be represented locally by 

( ) {( ) 1
3

1111 zRzyxSW c |∈=  

( ) ( ) ( ) },00,0,00,0,,,, 1111 ==δ<= Dhhyxyxh  (27) 

where δ is sufficiently small. We assume that 

( )111 , yxhz =  

.3
17

2
1161

2
15

3
14

2
13112

2
11 ydyxdyxdxdydyxdxd ++++++=  (28) 

The center manifold can be approximately computed by substituting (28) 
into (26) and comparing the coefficients, to obtain 

( )
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2
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b
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b

b
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.0,0,0,0 7654 ==== dddd  (29) 

The vector field reduced to the center manifold is therefore given by 
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where 

( ) ( )( ),,,,, 11111111 yxhyxfyxf =  

( ) ( )( ).,,,, 11112112 yxhyxfyxf =  (31) 

The index number 1Λ  can be computed as 

[ ]2211
1 11111111111116

1
yyyyxxyyxxxx ffff +++=Λ  

[ ( ) ( )222111

0 11111111111116
1

yyxxyxyyxxyx ffffff +−+
ω
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11111111 yyyyxxxx ffff +−  
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To meet the condition of index number ,01 ≠Λ  we have 

 .0
22222 3

2
1 ≠−








ω
−

ω
−

ω
+

c
d

d
ccc

d
 (33) 

Therefore, the second condition of Hopf bifurcation is met. From (22) and 

(33), we have the conditions of Hopf bifurcation as follows: 

 .0
22222

,1 3
2

1 ≠−







ω
−

ω
−

ω
+>

c
d

d
ccc

d
c  (34) 

Theorem 2. If the parameters of system (1) meet condition (34), 

system (1) undergoes a Poincaré-Anddronov-Hopf bifurcation (Hopf 

bifurcation) at origin [ ].0001 =S  A transition from sink to periodic 

motion occurs. Moreover, since ,0
2
1

1 <−=ρ  the periodic solution emerging 

after ,1−>a  is stable if ,01 <Λ  and is unstable if .01 >Λ  

For example, when ,10,1 === cba  we have ,0257.01 −=Λ  =ρ1  

( )
.0

2
1

1
<−=

α

=ada
ad

 According to Theorem 2, the stable periodic orbits 

emerge from zero equilibrium when .1−<a  Select [ ]05.0,05.0,05.0  as 

the initial states in the neighborhood of the origin. When 1−>a  the zero 

equilibrium is stable, and thus the system orbit is attracted to zero as 

shown in Figure 4(a), when ,1−<a  the system orbit is attracted to a 

stable periodic orbit, at the same time, the zero equilibrium becomes 
unstable as shown in Figure 4(b). When 1−<a  the limit circle is shown 

clearly in Figure 5. 

 
(a) 
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(b) 

Figure 4. Hopf bifurcation in system (1) according to Theorem 2. 

(a) ,195.0 −>−=a  (b) .105.1 −<−=a  

 

Figure 5. The limit circle omitting the transient response when =a  

.105.1 −<−  

4. Poincaré Map of the Chaotic Attractor 

As an important analysis technique, the Poincaré map can reveal 

bifurcation and folding properties of chaos. When ,35=a  ,38=b  
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,206=c  one may take the equilibrium value of ,2S  i.e., ,, 11 yyxx ==  

and 1zz =  as crossing planes, respectively, where ,4622.611 =x  

,9314.81 =y  and .8547.2051 =z  Figures 6(a-c) show the Poincaré maps 

on different crossing planes. They indicate that the system has extremely 

rich dynamics. 

 

(a) Poincaré map on the crossing section .1xx =  

 

(b) Poincaré map on the crossing section .1yy =  
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(c) Poincaré map on the crossing section .1zz =  

Figure 6. Poincaré maps on different crossing sections when ,35=a  

.206,38 == cb  

5. Frequency Spectral Analysis 

Many proposed chaos-based encryption schemes have been totally or 

partially broken by different attacks [8, 9, 11]. One of the reasons is that 

the degree of randomness and disorder of simple chaotic signals are not 

high enough as reflected by their narrow bandwidths. Recall that the 

bandwidths of the Lorenz and Chen systems are approximately between 0 

and 5.8Hz and therefore cannot be used to completely mask the messages 

in real communication applications. Once intercepted, there is a high 

possibility that the messages can be extracted. Figures 7(a) and (b) show 

the frequency spectra of the Lorenz and Chen systems, respectively. 

However, the frequency spectrum of the Qi system has very wide 

bandwidth as shown in Figure 8. The bandwidth of signal y is about 

35Hz, which is nearly 10 times wider than that of the Lorenz system, 

which could be advantageous to secure communication applications. 
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(a) The Lorenz system with .28,38,10 === cba  

 

(b) The Chen system with .28,38,35 === cba  

Figure 7. The frequency spectra generated numerically from several 
typical chaotic systems. 



… QI THREE DIMENSIONAL CHAOTIC SYSTEM 93

 

(a) spectrum of y. 

 

(b) spectrum of x. 

Figure 8. The frequency spectra generated numerically from Qi chaotic 

systems with .206,38,35 === cba  
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6. Conclusion 

In this paper, the pitchfork and Hopf bifurcations, the poincaré map 
and frequency spectrums of the Qi three dimensional chaos system have 
been investigated. Based on a rigorous theoretical analysis, the stability 
of the fixed points when the bifurcation parameter passes the pitchfork 
bifurcation point has been analyzed. The bifurcation of the period cycle 
emerging from the zero equilibrium as can be seen from the Hopf 
bifurcation analysis was also investigated. The frequency spectral 
analysis shows that the system has a very wide frequency bandwidth, 
which is very desirable for engineering applications such as secure 
communications. 
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