
Decoding Distance-preserving Permutation Codes
for Power-line Communications

Theo G. Swart and Hendrik C. Ferreira
Department of Electrical and Electronic Engineering Science,

University of Johannesburg, PO Box 524,
Auckland Park, 2006, South Africa

Email: ts@ing.rau.ac.za, hcferreira@uj.ac.za

Abstract— A new decoding method is presented for permu-
tation codes obtained from distance-preserving mapping algo-
rithms, used in conjunction with M -ary FSK for use on power-
line channels. The new approach makes it possible for the
permutation code to be used as an inner code with any other
error correction code used as an outer code. The memory and
number of computations necessary for this method is lower than
when using a minimum distance decoding method.

I. INTRODUCTION

Renewed interest in permutation codes was inspired by
Vinck [1] who suggested using these codes for power-line
communications, see also [2]. Frequencies in an M -ary FSK
system are used in certain time slots to represent the per-
mutation symbols, providing time- and frequency-diversity to
overcome background noise, impulse noise and permanent
frequency disturbances that are common on power-lines. This
approach is used to keep the demodulator/decoder as simple
as possible to keep costs and complexity down.

The construction of long permutation block codes is a diffi-
cult mathematical problem and a general decoding algorithm
is not known for this application. Therefore, permutation trellis
codes were introduced by Ferreira and Vinck [3] and Ferreira
et al. [4], making use of a distance-preserving mapping (DPM)
to map the binary output symbols of a convolutional code to
permutation symbols.

The main advantage of using permutation trellis codes is
that an alternative decoding algorithm is not needed as the
well-known Viterbi algorithm is used. Also, the added error
correcting capabilities of the convolutional code in addition
to that of the permutation code results in good performance
on very bad channels [4], [5]. Since this performance can be
obtained with relatively short permutation codes, there was no
need to go to longer codes when using trellis codes. However,
these codes have an overall low rate, and to use higher rate
convolutional codes forces one to use longer permutation
codes, increasing the complexity of the trellis and decoding.

In recent times research has focused on the distance-
preserving mappings themselves, with several new algorithms
being proposed by Chang et al. [6], Lee [7]–[9] and Chang
[10]. Swart et al. [11] considered the error correcting capabil-
ities of these mappings and showed that an upper bound exists
on the sum of the Hamming distance in such mappings. Sub-
sequently, Swart and Ferreira [12] proposed a new multilevel

algorithm, resulting in mappings that attain this upper bound
for certain cases, and improves over previous mappings in all
other cases. Swart et al. [13] showed how graphs could be
used to analyze and construct permutation distance-preserving
algorithms.

We propose a new decoding algorithm for permutation
codes that are obtained from distance-preserving mapping
algorithms and are used in conjunction with an M -ary FSK
system. Although performance is sub-optimum, compared
to similar permutation trellis codes, this approach is much
simpler and results in a demodulator/decoder that would be
cheaper and less complex.

Section II and III cover the relevant previous work in more
detail, as foundation for our new work, and Section IV presents
a brief motivation for using this new method. In Section V we
present and illustrate our new decoding algorithm. Memory
and computation comparisons as well as performance results
are presented in Section VI and the conclusion is in Sec-
tion VII.

II. DISTANCE-PRESERVING MAPPINGS

Let a binary code, Cb, consist of |Cb| sequences of length
n, where every sequence contains 0s and 1s as symbols.
Similarly, let a permutation code, Cp, consist of |Cp| sequences
of length M , where every sequence contains the M different
integers 1, 2, . . . ,M as symbols. The symmetric permutation
group, SM , consists of the sequences obtained by permuting
the symbols 1, 2, . . . ,M in all the possible ways, with |SM | =
M !.

Mappings are considered where Cb consists of all the
possible binary sequences with |Cb| = 2n, and Cp ⊆ SM with
|Cp| = |Cb|. In addition, the distances between sequences for
one set are preserved amongst the sequences of the other set.

Let xi be the i-th binary sequence in Cb. The Hamming
distance dH(xi,xj) is defined as the number of positions
in which the two sequences xi and xj differ. Construct a
distance matrix D whose entries are the distances between
binary sequences in Cb, where

D = [dij] with dij = dH(xi,xj). (1)

Similarly, let yi be the i-th permutation sequence in Cp.
The Hamming distance dH(yi,yj) is defined as the number
of positions in which the two sequences yi and yj differ.

1-4244-0987-X/07/$25.00 ©2007 IEEE.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43600797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Construct a distance matrix E whose entries are the distances
between permutation sequences in Cp, where

E = [eij] with eij = dH(yi,yj). (2)

A DPM is created if eij ≥ dij + δ, ∀i 6= j, with
equality achieved at least once. Depending on the value of
δ, three different types of DPMs can be obtained. Distance-
conserving mappings (DCMs) are obtained when δ = 0,
distance-increasing mapping (DIMs) when δ > 0 and distance-
reducing mappings (DRMs) when δ < 0. The term distance-
preserving mappings is thus used to describe all three types
of mappings. See [4] for more detail.

Example 1 A possible DIM with n = 2 and M = 3 is

{00, 01, 10, 11} → {123, 132, 213, 231}.

Using (1) and (2), for this mapping we obtain

D =


0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 and E =


0 2 2 3
2 0 3 2
2 3 0 2
3 2 2 0

 .

In this case all entries had an increase in distance, i.e. eij ≥
dij + 1, for i 6= j. 2

Note that from here forth we drop the subscript denoting
the position of the sequence in the code. A binary sequence,
x = x1x2 . . . xM , is used as input to an algorithm, which
then outputs the permutation sequence, y = y1y2 . . . yM . This
algorithm generally takes the following form

Input: (x1, x2, . . . , xM)
Output: (y1, y2, . . . , yM)
begin

(y1, y2, . . . , yM)← (1, 2, . . . ,M)
for i from 1 to M

if xi = 1 then swap(yf(i), yg(i))
end,

where swap(a, b) denotes the transposition of symbols in
positions a and b, and the functions f(i) and g(i) determine
the positions of the symbols to be swapped.

In [13] it is shown how these algorithms can be represented
by graphs. All the M symbol positions, yi, are represented by
placing them on a graph. Transpositions of symbols are then
represented by a connecting line, xi, between the two symbols’
positions to be transposed. When xi = 1, the symbols in the
positions connected to the corresponding line in the graph is
transposed, and this is done in the order i = 1, 2, . . . ,M .
When xi = 0, the symbols are left unchanged. Initially the
symbols are placed in the positions with the corresponding
index, i.e. yi = i, 1 ≤ i ≤M .

Example 2 The binary sequence x1x2x3x4 is mapped to a
permutation sequence y1y2y3y4, according to the following

1

2

3

4

x1

x2

x3

x4

y1

y2

y3

y4

Fig. 1. DPM graph for M = 4

algorithm:

Mapping algorithm for M = 4
Input: (x1, x2, x3, x4)
Output: (y1, y2, y3, y4)
begin

(y1, y2, y3, y4)← (1, 2, 3, 4)
if x1 = 1 then swap(y1, y2)
if x2 = 1 then swap(y3, y4)
if x3 = 1 then swap(y1, y3)
if x4 = 1 then swap(y2, y4)

end.

The graph in Fig. 1 is used to graphically represent this
algorithm, where the following binary to permutation mapping
is obtained:

0000, 0001, 0010, 0011
0100, 0101, 0110, 0111
1000, 1001, 1010, 1011
1100, 1101, 1110, 1111

→


1234, 1432, 3214, 3412
1243, 1342, 4213, 4312
2134, 2431, 3124, 3421
2143, 2341, 4123, 4321

 .

2

All DPM algorithms can be represented with such a graph.
In Section V we will show how these graphs can be used for
decoding.

III. M -ARY FSK FOR POWER-LINE COMMUNICATION

Every permutation symbol in y corresponds uniquely to a
frequency from an M-FSK modulator. The M -ary symbols are
transmitted in time as the corresponding frequencies, thus the
transmitted signal has a constant envelope.

The demodulator consists of a modified envelope detector
for each frequency, that outputs a one if the signal envelope is
above a certain threshold and outputs a zero otherwise. Thus
for each symbol transmitted, M outputs are obtained from the
demodulator. These result in an M ×M binary matrix that is
used for decoding, where the rows represent the frequencies
used and the columns represent the position or time in the
sequences.

A PLC channel may have an unpredictable and widely
varying mixture of noise components, including additive
background noise, impulse noise, and permanent frequency
disturbers [14]. These three types of noise affect the received
matrix in different ways, as will be illustrated in the following
example.

Example 3 The M = 4 permutation code word 2341 is sent.
If received correctly, the output of the demodulator would be

f1 0 0 0 1
f2 1 0 0 0
f3 0 1 0 0
f4 0 0 1 0

t1 t2 t3 t4

,

where fi represents the output for the detector at frequency i
and tj represents the time interval j in which it occurs, for
1 ≤ i, j ≤ 4.

Channel noise causes errors in the received matrix, which
can be represented by the following matrices.

• Background noise: a one becomes a zero, or vice versa.

0 0 0 1
1 0 0 1
0 0 0 0
0 0 1 0

• Impulse noise: a complete column is received as ones.

0 0 1 1
1 0 1 0
0 1 1 0
0 0 1 0

• Permanent frequency disturbance: a complete row is
received as ones.

0 0 0 1
1 0 0 0
0 1 0 0
1 1 1 1

2

IV. MOTIVATION

Although permutation trellis codes provide very good per-
formance, the trellis for high rate codes can become very
complex. When using high-rate punctured convolutional codes
the simplicity of decoding is lost since several time intervals
of the trellis must be combined into a single time interval.

As example, choose an R = 1/2 convolutional code of
which one bit is punctured in every second interval to obtain an
R = 2/3 punctured convolutional code. Furthermore, choose
M = 6 for the permutation code, then four time intervals
of the punctured convolutional code must be used to achieve
n = 6, which can be mapped to M = 6. However, the four
time intervals must be combined into a single time interval,
thereby creating an R = 4/6 convolutional code, since the
M = 6 permutation code cannot be broken down into four
time intervals again. The R = 4/6 trellis of the combined time
intervals is much more complex than the equivalent R = 2/3
trellis of the punctured convolutional code.

By returning to a block decoder for the permutation code,
codes with an overall high rate will be possible with lower
complexity and the two codes are independent from each other.
In fact, the permutation code is used as an inner code while

any other error correcting code, such as convolutional codes,
can be used as an outer code.

In addition, our new decoding algorithm uses less memory
and fewer computations than traditional minimum distance
decoding [2]. In this case the decoder compares the received
matrix with all the possible codewords that could have been
sent and the one with the minimum distance as chosen as
output.

V. DECODING ALGORITHM

We illustrate the decoding with the following examples,
thereafter we formalize the decoding in an algorithm.

Example 4 We return to the algorithm of Example 2. Since a
symbol in the graph is only swapped when the input bit on the
corresponding branch is equal to 1, one is able to deduce from
the positions which symbols are received in, which input bits
would have produced such a sequence. As example, should
symbol 1 be received in position 1, then from the graph it is
obvious that x1 = 0 and x3 = 0, nothing can be deduced for
the other input bits. Thus, receiving symbol 1 in position 1
tells us that the sequence could have been 0×0×, where ×
denotes a position where the input bit is unknown.

In a similar manner, any symbol in any position is associated
with a partial input sequence. Let the partial input sequence
for symbol s in position p be denoted by x̂sp. Then for this
algorithm, we have

Symbol 1 Symbol 2 Symbol 3 Symbol 4
x̂11 = 0×0× x̂21 = 1×0× x̂31 = ×01× x̂41 = ×11×
x̂12 = 1××0 x̂22 = 0××0 x̂32 = ×1×1 x̂42 = ×0×1
x̂13 = 0×1× x̂23 = 1×1× x̂33 = ×00× x̂43 = ×10×
x̂14 = 1××1 x̂24 = 0××1 x̂34 = ×1×0 x̂44 = ×0×0

Each received symbol (correct or in error) contributes to
determining the input sequence by way of each partial input
sequence. For instance, should we receive 3124 as in the
following matrix

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

,

then the partial input sequences for x̂31, x̂12, x̂23 and x̂44

would be ×01×, 1××0, 1×1× and ×0×0 respectively. By
using majority logic on the partial sequences we can calculate
what the binary sequence was.

Let pi be the estimate of input bit xi, 1 ≤ i ≤ 4, equal
to zero initially. Let the contribution for a 1 be +1 and for
a 0 be −1, then if pi > 0 then xi = 1, if pi < 0 then
xi = 0 and if pi = 0 then xi = ε, where ε represents an
erasure. Using the partial sequences for the symbols received,
we obtain (p1, p2, p3, p4) = (+2,−2,+2,−2), resulting in a
binary input sequence of 1010. 2

When errors occur in the matrix, it will contribute to
errors in the decoding, as incorrect partial sequences will be
considered. Also, in the majority logic it is possible for a tie to
occur, in which case a random bit must be chosen. In the case

where an outer code is used in addition to the permutation
code, it is beneficial to let a tie result in an erasure. We will
call this method partial permutation decoding (PPD).

Furthermore, since an error-free matrix have a single one
in each row and column, we conclude that when this property
is violated, the symbols involved are less reliable. In such
a case, a lower weight is assigned in the majority logic
to such symbols. We will call this method weighted partial
permutation decoding (WPPD).

Example 5 We again use the partial input sequences from
the previous example for the algorithm of Example 2. Let the
received matrix from the demodulator be

1 1 0 0
0 0 1 0
1 0 0 0
0 0 1 1

.

The partial sequences are x̂11, x̂31, x̂12, x̂23, x̂43 and x̂44

which correspond to 0×0×, ×01×, 1××0, 1×1×, ×10× and
×0×0. Using PPD this would be decoded as 10ε0.

For WPPD we count the number of ones in the same
row and column as the symbol being considered. Thus, when
considering x̂11, there are 2 ones in the first row and 2 ones in
the first column. We subtract this from the maximum possible
value for rows and columns combined, which is 8. The weight
associated with x̂11 and 0×0× is therefore 4. If the partial
sequence shows a zero then the weight is subtracted from the
estimate, if it is a one then we add the weight to the estimate.
After considering the partial input for first symbol we obtain
(p1, p2, p3, p4) = (−4, 0,−4, 0).

Following the same procedure, the following estimates are
obtained after considering the partial input for each received
symbol:

p1 p2 p3 p4

x̂11 = 0×0× −4 0 −4 0
x̂31 = ×01× −4 −5 +1 0
x̂12 = 1××0 +1 −5 +1 −5
x̂23 = 1×1× +6 −5 +6 −5
x̂43 = ×10× +6 −1 +2 −5
x̂44 = ×0×0 +6 −6 +2 −10

Thus, the input sequence in this case was 1010. 2

Note that a symbol positioned where impulse noise and a
permanent frequency disturbance meet, as in

0 1 0 0
0 1 1 0
1 1 1 1
0 1 0 1

would have zero weight associated with it, since there are 4
ones in the third row and 4 ones in the second column. This
is the case for symbol 3 in position 2.

We now formalize these methods in the following algo-
rithms.

Let b denote the binary received matrix from the demod-
ulator and x̂ denote the partial input sequences for symbols

received in certain positions. Let the k-th symbol in the partial
input sequence x̂sp be denoted by x̂

(k)
sp .

PPD algorithm
Input: b, x̂
Output: (x1, x2, . . . , xn)
begin

(p1, p2, . . . , pM)← (0, 0, . . . , 0)
for i from 1 to M
for j from 1 to M
if bij = 1 then
for k from 1 to n

if x̂
(k)
ij = 1 then pk ← pk + 1

elseif x̂
(k)
ij = 0 then pk ← pk − 1

for k from 1 to n
if pk > 0 then xk = 1
elseif pk < 0 then xk = 0
else xk = ε

end.

Additionally, for WPPD the number of symbols in each row
and column is needed. Let ri denote the number of ones in
row i and let cj denote the number of ones in column j.

WPPD algorithm
Input: b, x̂
Output: (x1, x2, . . . , xn)
begin

(p1, p2, . . . , pM)← (0, 0, . . . , 0)
for i from 1 to M

ri ← b1i + b2i + · · ·+ bMi

ci ← bi1 + bi2 + · · ·+ biM

for i from 1 to M
for j from 1 to M
if bij = 1 then
for k from 1 to n

if x̂
(k)
ij = 1 then

pk ← pk + (2M − ri − cj)
elseif x̂

(k)
ij = 0 then

pk ← pk − (2M − ri − cj)
for k from 1 to n
if pk > 0 then xk = 1
elseif pk < 0 then xk = 0
else xk = ε

end.

VI. COMPARISON AND PERFORMANCE

Here we consider the memory and computation require-
ments of MDD, PPD and WPPD. For the memory require-
ments we do not consider memory that is necessary to do the
computations. Only the information that is needed prior to the
computations starting.

MDD requires the decoder to have all the possible code-
words to compare with. Each codeword is a binary matrix of
size M×M and if we map from all binary sequences of length
n then there are 2n possible codewords. Hence the memory
requirements for MDD is o(22nM2

).

For PPD and WPPD the decoder requires only the partial
input sequences associated with each possible symbol in the
matrix. There are M ×M possible symbols that can received
and each partial input sequence is of length n. (Remember
that the partial input sequences are ternary sequences as these
also contain the × symbol.) Hence the memory requirements
for PPD and WPPD is o(3nM2

). This is significantly less than
that needed for MDD, especially for large n.

Next, we consider the number of times that a comparison
is performed, as in if...then, as well as the number of
times that a calculation, such as a sum, must be performed
for each decoding type. These values are only approximates
as it will vary depending on the errors that occur in the
received matrix. The computations for MDD is o(2nM2+2n).
The computations for PPD is o(M2 + nM + n) and the
computations for WPPD is o(M2 + nM + n + 2M). For
MDD the number of computations grows exponentially as n
increases, while for PPD and WPPD it only grows linearly.

We use the same simple error model that was used previ-
ously [5] to evaluate different mappings. Errors are generated
in the received matrix according to certain error parameters.
For background noise each symbol in the received matrix has
a probability, pb, of being in error, i.e. a zero is changed to
a one, or vice versa. (The error parameters were assumed to
be equal for all frequency sub-bands.) For impulse noise each
column in the received matrix has a probability, pi, of resulting
in an impulse noise, where the entire column’s symbols are
set to ones. Length restrictions compel us to limit our results
to the following. In Figs. 2–7 we compare the performance for
MDD, PPD and WPPD when background noise and impulse
noise are present, using DCMs for M = 4, M = 5 and M = 6
from [12].

Fig. 2 shows the performance for an M = 4 DCM in the
presence of background noise. The error rate for PPD and
WPPD is better than that of MDD. While the error rates for
PPD and WPPD are the same, the erasure rate for WPPD
is lower than for PPD. Fig. 3 shows the performance for
the same mapping with impulse noise. Again, the error rates
for PPD and WPPD coincide and are better than that for
MDD. However, in this case the erasure rate for WPPD is
significantly lower than for PPD. More importantly, the erasure
rate for WPPD is almost the same as the error rate for MDD.
When combined with an outer code, WPPD will perform much
better than MDD.

Figs. 4 and 5 show the performance for an M = 5 DCM
in the presence of background and impulse noise respectively.
For background noise similar performance patterns can be seen
as for the M = 4 case. An unexpected result appears in the
impulse noise case. While the erasure rates are as expected,
the error rates for PPD and WPPD is worse than the erasure
rates. In this case the problem lies with the mapping: whenever
an impulse noise appears in the fifth time slot, the result
will always be an error. A different mapping algorithm could
possibly solve this problem.

Figs. 6 and 7 show the performance for an M = 6 DCM
in the presence of background and impulse noise respectively.

Again, in the case of background noise similar performance
is observed than for the M = 4 and M = 5 mappings. For
impulse noise the erasure rate for PPD and WPPD coincide,
but the error rates differ substantially. PPD shows a similar
trend to the M = 5 case where the error rate is worse than
the erasure rate, while the error rate for WPPD shows a huge
improvement overall.

VII. CONCLUSION

We presented a new decoding algorithm for permutation
mappings, derived from mapping algorithms, which can be
used independently from an outer code. The memory and com-
putation requirements are also much lower than the previously
used decoding method.

A possible improvement to this algorithm could be to vary
the weighting according to the channel parameters. Further
improvements and refinements might be possible as this algo-
rithm was designed with the emphasis on simplicity. Some of
the results also showed that certain mappings are not suited
to the new decoding algorithm. The design of new mappings
that can make full use of the new decoding algorithm thus
presents a new challenge. Also of interest would be further
performance results with an outer decoder to correct erasures.

REFERENCES

[1] A. J. H. Vinck, “Coded modulation for powerline communications,”
Proc. Int. J. Elec. Commun., vol. 54, no. 1, pp. 45–49, 2000.

[2] A. J. H. Vinck, J. Häring and T. Wadayama, “Coded M-FSK for power
line communications,” in Proc. Int. Symp. on Inform. Theory, Sorrento,
Italy, June 25–30, 2000, p. 137.

[3] H. C. Ferreira and A. J. H. Vinck, “Interference cancellation with
permutation trellis codes,” in Proc. IEEE Veh. Technol. Conf. Fall 2000,
Boston, MA, Sep. 2000, pp. 2401–2407.

[4] H. C. Ferreira, A. J. H. Vinck, T. G. Swart and I. de Beer, “Permutation
trellis codes,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1782–1789,
Nov. 2005.

[5] T. G. Swart, I. de Beer, H. C. Ferreira and A. J. H. Vinck, “Simulation
results for permutation trellis codes using M-ary FSK,” in Proc. Int.
Symp. on Power Line Commun. and its Applications, Vancouver, BC,
Canada, Apr. 6-8, 2005, pp. 317-321.

[6] J.-C. Chang, R.-J. Chen, T. Kløve and S.-C. Tsai, “Distance-preserving
mappings from binary vectors to permutations,” IEEE Trans. Inf. Theory,
vol. 49, no. 4, pp. 1054–1059, Apr. 2003.

[7] K. Lee, “New distance-preserving mappings of odd length,” IEEE Trans.
Inf. Theory, vol. 50, no. 10, pp. 2539–2543, Oct. 2004.

[8] K. Lee, “Cyclic constructions of distance-preserving maps,” IEEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4392–4396, Dec. 2005.

[9] K. Lee, “Distance-increasing mappings of all lengths by simple mapping
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 3344–3348, Jul.
2006.

[10] J.-C. Chang, “Distance-increasing mappings from binary vectors to
permutations,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 359–363,
Jan. 2005.

[11] T. G. Swart, I. de Beer and H. C. Ferreira, “On the optimality of
permutation mappings,” in Proc. Int. Symp. Inf. Theory, Adelaide,
Australia, Sept. 4–9, 2005, pp. 1068–1072.

[12] T. G. Swart and H. C. Ferreira, “A generalized upper bound and a
multilevel construction for distance-preserving mappings,” IEEE Trans.
Inf. Theory, vol. 52, no. 8, pp. 3685–3695, Aug. 2006.

[13] T. G. Swart, H. C. Ferreira and K. Ouahada, “Using graphs for the
analysis and construction of permutation distance-preserving mappings”,
IEEE Trans. Inf. Theory, submitted for publication.

[14] H. C. Ferreira, H. M. Grove, O. Hooijen and A. J. H. Vinck, “Power line
communication,” in Wiley Encyclopedia of Electrical and Electronics
Engineering, J. G. Webster, Ed. New York: Wiley, 1999, vol. 16, pp.
706–716.

10-310-210-11
10-6

10-5

10-4

10-3

10-2

10-1

1

Background noise probability

E
rr

or
/E

ra
su

re
 r

at
e

PPD (Erasures)
PPD (Errors)
WPPD (Erasures)
WPPD (Errors)
MDD

Fig. 2. Performance for M = 4 with background noise

10-210-11
10-5

10-4

10-3

10-2

10-1

1

Impulse noise probability

E
rr

or
/E

ra
su

re
 r

at
e

PPD (Erasures)
PPD (Errors)
WPPD (Erasures)
WPPD (Errors)
MDD

Fig. 3. Performance for M = 4 with impulse noise

10-210-11
10-6

10-5

10-4

10-3

10-2

10-1

1

Background noise probability

E
rr

or
/E

ra
su

re
 r

at
e

PPD (Erasures)
PPD (Errors)
WPPD (Erasures)
WPPD (Errors)
MDD

Fig. 4. Performance for M = 5 with background noise

10-210-11
10-5

10-4

10-3

10-2

10-1

1

Impulse noise probability

E
rr

or
/E

ra
su

re
 r

at
e

PPD (Erasures)
PPD (Errors)
WPPD (Erasures)
WPPD (Errors)
MDD

Fig. 5. Performance for M = 5 with impulse noise

10-210-11
10-6

10-5

10-4

10-3

10-2

10-1

1

Background noise probability

E
rr

or
/E

ra
su

re
 r

at
e

PPD (Erasures)
PPD (Errors)
WPPD (Erasures)
WPPD (Errors)
MDD

Fig. 6. Performance for M = 6 with background noise

10-210-11
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

Impulse noise probability

E
rr

or
/E

ra
su

re
 r

at
e

PPD (Erasures)
PPD (Errors)
WPPD (Erasures)
WPPD (Errors)
MDD

Fig. 7. Performance for M = 6 with impulse noise

Copyright Information

© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,

or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

