View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by University of Johannesburg Institutional Repository

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

Correcting Adjacent Errors Using Permutation Code
Trees

R. Heymann, T.G. Swart and H.C. Ferreira
Department of Electrical and Electronic Engineering Science
University of Johannesburg
P.O. Box 524
Aucklandpark, 2006
South Africa
E-mail: rheymann@uj.ac.za, tgswart@uj.ac.za, hcferreira@uj.ac.za

Abstract—Permutation codes are M-ary codes which can be
used, in combination with M-ary FSK, to correct errors in
Power Line Communications (PLC). It has been shown in [1]
that permutation code trees can be used to correct a single
substitution or synchronization error per codeword, without the
use of markers. In this paper, we show that, due to the structure of
the permutation code tree, adjacent errors can also be corrected
if the codebook is adapted.

I. INTRODUCTION

It has been shown in [1] that permutation code trees can be
used to correct a single substitution or synchronization error
per codeword, without the use of markers. The codewords used
are permutation codes, which can be defined as follows:

Definition 1: A permutation code C consists of |C| code-
words of length M, where every codeword contains M dif-
ferent integers 1,2,..., M as symbols.

Permutation codes can be used, combined with M-ary
FSK modulation, for error correction in Power Line Com-
munications (PLC) [2] where every symbol in the codeword
is mapped to a particular frequency. Distance preserving
techniques for mapping binary codewords to permutation
codewords were investigated in [3]. Mappings can be made
to preserve the distance but also to increase or decrease
the distance from the binary codewords to the permutation
codewords. A permutation trellis is then used to decode the
permutation codewords and correct errors caused by impulsive
noise, background noise and permanent frequency disturbers.

Synchronization errors, modelled as insertion(s) or dele-
tion(s) of symbols, were investigated in [4]. The error correc-
tion capability of the proposed scheme is one synchronization
error per codeword, which was improved on in [5].

The problem of adjacent deletion errors is motivated in [6]
and correction schemes are proposed. Burst of errors, in par-
ticular adjacent errors, occur more frequently than substitution
errors or single synchronization errors in, for example, internet
applications.

In this paper, it will be shown that the permutation code
tree in [1] can correct more that one error per codeword, if
the errors are adjacent. The codebooks from [1] should also
be adjusted. It is important to note that this scheme does not
make use of markers to aid the resynchronization process.

The paper is organised as follows: The basic structure of
the permutation code tree used in [1], is presented in Section
IT so that the paper can be read independently. The error
correction procedure is given in Section III and it is shown
how the structure described in Section II enables the correction
of adjacent errors. The permutation codebooks need to be
adjusted to support the correction of adjacent errors. The
codebooks are given in Section IV. Computer simulations are
used to show that the system is capable of correcting adjacent
errors. The results of the simulations are given in Section V,
followed by final conclusions in Section VI.

II. PERMUTATION CODE TREES

Permutation codes can be represented with a tree structure,
called a permutation code tree. The permutation code tree is
a form of a decision tree and has a very specific structure in
order for it to be used in error correction.

The tree has a root node that does not contain an element.
All the other nodes in the tree each contains an element that
corresponds to a symbol in a codeword. A path from the
root node to an external or leaf node represents a complete
codeword in the codebook. The root node has a number of
children nodes, n,, which forms the first level of the tree, and
is bounded as follows:

1<n, <M. (D

Every node on the first level is also the root node of a
subtree. The number of children nodes that a node on the first
level can have is bounded as:

1<ng<M-1. 2)

All the nodes from the second level onwards may only have
one child node.

A node cannot have the same symbol as any of its ancestors
or descendants, i.e. a symbol can only appear once in any path
through the tree, due to the definition of a permutation code.

A symbol can also only occur once on every level in a
specific subtree.

978-1-61284-993-5/11/$26.00 ©2011 IEEE


https://core.ac.uk/display/43600578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

III. ERROR CORRECTION ALGORITHM

The algorithm will first be explained by looking at an
example where only one substitution error occurs.

Codebook (6) is a permutation codebook, with M = 6,
that works effectively with the permutation code tree method
of error correction. More information on the codebooks that
can be used with this error correction method will be given in
the next section.

123456 132564 145623 213654

Q(6) = 241536 264351 362415 354126 3)
316524 463152 435216 452631
543162 536421 624513 615432

The following figure represents the partial permutation code
tree based on the codebook.

®

o

Partial permutation tree

®

0

@@@@
OaOROR0OR0

OaOROR0

Fig. 1.

It will be assumed for now that only substitution errors can
occur, in order to simplify the explanation. The first step of the
algorithm 1is to extract the codeword that needs to be decoded
from the received sequence. Let the transmitted codeword be
Cr = {1,2,3,4,5,6} and the received codeword be Cr =
{1,2,3,3,5,6}.

The path related to the codeword C'g, will now be followed
through the code tree. The algorithm starts at the root node
and proceeds to the node on the first level containing a 1. From
there it continues to the node containing a 2 and then the one
containing a 3. According to the received codeword, the next
symbol should also be a 3, but the only possible symbol in
the code tree is a 4. The algorithm will thus stop at node 3. It
is noted that the third level of the permutation code tree has
been reached.

The error correction algorithm is a forward-backward algo-
rithm and the same procedure is thus followed from the leaf
nodes. All the leaf nodes containing symbol 6 are considered
a starting point to follow the reversed path through the tree.

Fig. 2 shows the permutation code tree with the first subtree
as well as all the paths through the tree ending with a
symbol 6. It is clear that the path corresponding to word
C ={1,2,3,4,5,6} has the most visited nodes and is thus
assumed to be the transmitted codeword.

GROS - GOR
OO @@
OO
OROSOJONON
ONONONOROSO
ORONORORONO

Fig. 2. Partial permutation tree showing one error

The decoding can also be done with a forward and a
reversed permutation code tree. Every path through both the
trees will correspond to a specific codeword. This method is
faster since you only have one starting point in the backwards
algorithm but you need more overhead to link each codeword
to a path in the tree.

A similar method using matrices is given in [1], which can
be implemented on devices with memory constraints.

If a channel is prone to substitution, deletion and insertion
errors, the following procedure will be followed:

o Assume that a substitution error has occurred and extract
the codeword Cr1 = {x1,2,..., 2} from the received
sequence. Follow the procedure explained above and note
the number of nodes visited.

o Assume that a deletion error has occurred and extract
the codeword Cry = {z1,%2,...,2p—1} from the
received sequence. The same procedure can be followed
as explained above and the number of nodes visited is
noted again.

o Assume that an insertion error occurs and follow the
same steps as for the other two errors. The only dif-
ference is that the extracted codeword will be Cr3 =
{z1,22,..., 20141}

o Compare the number of nodes visited under each assump-
tion. The assumption with the highest number of nodes
visited will be assumed to be the correct assumption and
thus the correct decoded word. A tie can be randomly
resolved or, if one has a prior knowledge of the noise in
the channel, the error type with the highest probability
will be assumed to be the correct assumption.

978-1-61284-993-5/11/$26.00 ©2011 IEEE



IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

)

OROSORONOS
ONONOROSO
DR OSOROROR
ONONOROSONO
ONOSONOSOSO

[O3SOFC

Fig. 3. Partial permutation tree showing two errors

Because this method is a forward-backward algorithm, it
does not work if multiple, non-adjacent errors occur in one
codeword. Figure 3 shows the scenario where two errors occur
which are not adjacent.

Because the algorithm immediately stops if it cannot con-
tinue to the next level in the tree, the symbols

between the two errors will not be considered and the
information cannot be used in the decoding process. There is
thus insufficient information to decode the received codeword
correctly. But if the errors are adjacent, as shown in Figure 4,
then the algorithm will be able to correct it.

B

OROS @
OSONORORO
OSOROSOROS
OSONORONOSO
OSORONORO

OFOROSO8

Fig. 4. Partial permutation tree showing two adjacent errors

IV. CODEBOOKS

The codebooks in [1] were constructed using computer
searches. These codebooks will only be adapted in order to

facilitate the correction of adjacent errors.

Table I gives the codebooks for M = 6 and M = 7 used

in [1] and Table II gives the adapted codebooks for these two

M wvalues for the adjacent error correction scheme, which is

a subset of the codebooks in Table 1.

TABLE 1
CODEBOOKS FOR SINGLE ERROR CORRECTION

123456 132564 145623 213654
6) = 241536 264351 362415 354126
Q(6) = 316524 463152 435216 452631
543162 536421 624513 615432
1362574 1427365 1536427 1674253
1745632 2463751 2537614 2714536
2156347 3427516 3514762 3751624
Q) = 3176245 3265471 4527136 4613572
4251367 4375621 4736215 5624713
5163427 5217364 5341276 6735142
6142531 6274351 6451273 6523714
7132546 7216354 7364125 7425631

A computer search is used to identify the codewords in
Table I which are not suitable when adjacent errors can occur.
If two codewords can be confused with one another after
adjacent errors occur, one of the codewords is removed from
the codebook.

For example, consider the codewords {1,2,3,4,5,6} and
{1,4,5,6,2,3}. If an adjacent deletion occurs and the symbols
{2, 3} are deleted from either one of the codewords, it will not
be possible for the decoding algorithm to determine which one
of the codewords were transmitted. To avoid confusion, one
of these words are removed from the codebook.

The codebooks in Table I and II were generated to show
the performance of the decoding algorithms. Codebooks for
higher M values have not been investigated yet.

TABLE I
CODEBOOKS FOR ADJACENT ERROR CORRECTION

Q(6) = { 123456 132564 213654 362415 }
316524 452631 536421 615432

1362574 1674253 2463751 2156347

Q) = 3751624 3176245 4613572 4375621

- 4736215 5163427 5217364 6735142

6274351 6523714 7216354 7425631

Using computer searches to determine the codebooks with
this trial-and-error method is time consuming and ineffective.
A method to generate these codebooks more efficiently should
be investigated. Table III also shows the cardinalities and code
rates for the different codebooks. If the codebooks can be
generated more effectively, higher cardinalities can be obtained
and thus better code rates. The code rate is calculated by using
the following equation:

_ log, |C]

R
M

4)

978-1-61284-993-5/11/$26.00 ©2011 IEEE



IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

TABLE III
CODEBOOK CARDINALITIES AND RATES

Single errors | Adjacent errors
L0 A
6 16 0.67 8 0.5
7 32 0.71 16 0.57

V. SIMULATIONS AND RESULTS

The results are obtained by computer simulations. The
channel is simulated to produce adjacent errors in order to
determine if the decoding scheme can correct these errors. A
permutation code tree as discussed previously is used to detect
and correct errors introduced by the channel. The simulation
is repeated a number of times to ensure a good statistical
average. The word error rate (WER) is calculated to measure
the success of the decoding scheme and is displayed in the
figures below.

Figure 5 shows the resulting WER if adjacent deletions of
burst length 2 occur, using the codebooks of Table II. Only
adjacent errors occur in this simulation. The codebook with
M = 7 performs better than the M = 6 codebook. If an
adjacent deletion occurs in a codeword with M = 6 symbols,
then that leaves only 4 intact symbols to decode the received
word. However, with M = 7, the number of correct symbols
after the adjacent deletions is still high enough to make a
decision on what the transmitted codeword is.

M=
M

1073

1077 b
102

Deletion Probability

Fig. 5. Decoding performance with adjacent deletions

In Figure 6, adjacent errors as well as single errors are
simulated and the M = 7 codebook is used. This shows that
the decoding scheme can still correct single errors even though
it has been extended to correct adjacent errors.

The deletion probability in Figure 6 is still the probability
that a deletion error might occur. Approximately a half of these
errors are forced to be adjacent, i.e. a burst of two deletions.

When a combination of single and adjacent errors occur,
a misclassification error can occur. In other words, a single

10-3

o I Adjacent ——+—

S Adjacent and Single ----x----

1077 1
1072 1073
Deletion Probability

Fig. 6. Decoding performance with adjacent and single deletions

deletion can be mistakenly classified as an adjacent error and
vice versa and thus result in a higher WER. The decoding
scheme can recover from this mistake in following codewords.

Figure 7 shows the results if two adjacent substitution errors
occur.

WER

108 Lo o b
1072 1073 104
Substitution Probability
Fig. 7. Decoding performance with adjacent substitution errors

VI. CONCLUSION

The permutation code tree proposed in [1] can be used to
detect and correct synchronization and substitution errors, as
long as the errors are adjacent. The permutation code tree
can also correct a combination of single and adjacent errors.
The codebooks in [1] need to be adjusted to accommodate
adjacent errors. More than one error per codeword can thus
be corrected, as long as the errors are adjacent.

REFERENCES

[1] R. Heymann and H. C. Ferreira, “Using Tree Structures to Resynchro-
nize Permutation Codes”, in Proc. Int. Symp. on Powerline Commun.
and its Applications, Rio de Janeiro, Brazil, March 28-31, 2010.

978-1-61284-993-5/11/$26.00 ©2011 IEEE



[2]
(3]

[4]

IEEE Africon 2011 - The Falls Resort and Conference Centre, Livingstone, Zambia, 13 - 15 September 2011

A. J. H. Vinck, “Coded modulation for powerline communications,” [5] L. Cheng, T. G. Swart and H. C. Ferreira, “Re-Synchronization of
Proc. Int. J. Elec. Commun., vol 54, no. 1, pp. 45-49, 2000. Permutation Codes with Viterbi-Like Decoding,” in Proc. Int. Symp.
H. C. Ferreira, A. J. H. Vinck, T. G. Swart and I. de Beer, “Permutation on Powerline Commun. and its Applications, Dresden, Germany, 29
trellis codes,” IEEE Trans. Commun., vol 53, no. 11, pp. 1782-1789, March - 1 April, 2009, pp. 36-40.

Nov. 2005. [6] L. Cheng, “Coding Techniques for Insertion/Deletion Error Correc-
L. Cheng, T. G. Swart and H. C. Ferreira, “Synchronization using tion”, Doctoral Dissertation, University of Johannesburg, March 2011.

Insertion/Deletion Correcting Permutation Codes,” in Proc. Int. Symp.
on Powerline Commun. and its Applications, Jeju Island, Korea, Apr.
2-4, 2008, pp. 135-140.

978-1-61284-993-5/11/$26.00 ©2011 IEEE



