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Abstract—Balancing of q-ary sequences, using a generalization
of Knuth’s efficient parallel balancing scheme, is considered. It
is shown that the new general scheme is as simple as the original
binary scheme, which lends itself to parallel decoding of the
balanced sequences.

I. INTRODUCTION

Balanced codes have found applications in various systems,
such as optical and magnetic recording, cable transmissions,
detection of unidirectional errors and reducing noise in VLSI
systems. In many of these systems it is advantageous to have
an efficient encoding and decoding method. Fast, parallel
decoding is also an advantage in optical systems where very
high communication speeds are encountered.

Knuth [1] presented such efficient methods for binary
sequences. It was shown that any binary sequence can be
balanced by complementing the bits up to a certain point.
In the parallel method, the balanced sequence can then be
transmitted, as well as information regarding the position of
the balancing point. Based on this information, the receiver
can recover the original sequence. A serial method was also
presented, that used this balancing in a different manner. Since
then various results based on this idea and others have been
presented for the binary case [2]–[6].

In the design of q-ary immutable codes [7] it was found
that the maximum size code was obtained when balanced
sequences were used. All the q-ary sequences are partitioned
into disjoint chains and then using two functions, that must
satisfy certain properties, any q-ary sequence can be encoded
into a sequence that is balanced. Knuth’s idea has also been
extended to balancing of q-ary sequences in [8]. Sequences
that are close to being balanced are encoded with single or
double maps. These maps make use of a generalization of
Knuth’s serial method. The other sequences are compressed
with a uniquely decodable variable length code [5] and bal-
anced using the saved space.

Work closely related to q-ary balancing includes balancing
codes over the mth roots of unity [9], [10] and balancing codes
that are invariant under symbol permutation [11].

In this paper we will present a generalization of Knuth’s
parallel method, resulting in a q-ary scheme that is much
simpler in decoding than previous ones.

A q-ary sequence x = x0x1 . . . xn−1, xi ∈ {0, 1, . . . , q−1},
of length n is balanced if

n−1∑
i=0

xi = n(q − 1)/2.

Let β denote this balancing value. This holds for all q and n,
except when q is even and n is odd. For the rest of the paper
we will not consider sequences with q even and n odd, so that
n(q − 1)/2 is an integer.

An alternative view is to consider a q-ary sequence x =
x0x1 . . . xn−1 of length n with positive and negative compo-
nents,

xi ∈ {−(q − 1)/2, . . . ,−2,−1, 0,+1,+2, . . . ,+(q − 1)/2} ,

if q is odd and

xi ∈ {−(q − 1), . . . ,−3,−1,+1,+3, . . . ,+(q − 1)},

if q is even. Then balancing is achieved whenever the compo-
nents sum to zero,

n−1∑
i=0

xi = 0.

The conversion between the two representations is easily
accomplished using a mapping

{0, 1, . . . , q − 1} →
{−(q − 1)/2, . . . ,−2,−1, 0,+1,+2, . . . ,+(q − 1)/2},

for q odd and

{0, 1, . . . , q − 1} →
{−(q − 1), . . . ,−3,−1,+1,+3, . . . ,+(q − 1)},

for q even. For simplicity in presentation, we will only use the
former representation in this paper.

In Section II we generalize Knuth’s balancing of binary
sequences to balancing of q-ary sequences, in Section III we
investigate the redundancy and complexity of the new scheme
as well as comparing it to previous ones, and finally we
conclude with Section IV.



II. BALANCING OF q-ARY SEQUENCES

Knuth’s method was based on the fact that any binary
sequence can be balanced by inverting the bits up to a certain
point, or equivalently, adding a binary sequence modulo two.
The sequences being added to the original sequence will be
called balancing sequences. We illustrate this by an example.

Example 1 Consider a binary sequence 11101011, with the
sum of components equal to 6. If the first two bits are inverted,
we have the sequence 00101011, which is balanced with the
sum of components equal to β = 4. Balancing can also
be achieved after inverting four bits (00011011) and six bits
(00010111). This is equivalent to adding a sequence modulo
two to the original sequence, as follows

11101011⊕ 11000000 = 00101011,
11101011⊕ 11110000 = 00011011,
11101011⊕ 11111100 = 00010111.

Using this method, the receiver only needs to know up to
which position the bits were inverted.

Balancing can also be achieved by inverting the bits from
the opposite side, as in

11101011⊕ 00000011 = 11101000,
11101011⊕ 00001111 = 11100100,
11101011⊕ 00111111 = 11010100.

For reasons that will become clear shortly, we will use
22222211, 22221111 and 22111111 instead for these latter
balancing sequences. This does not affect the final result since
0 ≡ 2 (mod 2). 2

By generalizing Knuth’s method, we will balance a q-ary
sequence by adding modulo q an appropriate (q + 1)-ary
balancing sequence, as shown in the next example.

Example 2 Consider a 4-ary sequence 02333132, with the
sum of components equal to 17. By adding the sequence
22222221, we can obtain a balanced sequence 20111313 with
the sum of components equal to β = 12. The following
sequences can be obtained that balance the sequence,

02333132⊕4 22222221 = 20111313,
02333132⊕4 33322222 = 31211310,
02333132⊕4 33333332 = 31222020,
02333132⊕4 44433333 = 02322021,

where ⊕4 is used to denote modulo 4 addition. 2

We will now formally define the balancing sequence.

Definition 1 A (q + 1)-ary balancing sequence of length n,
denoted by b(s, p) where 0 ≤ s ≤ q − 1 and 0 ≤ p ≤ n− 1,
is of the form b(s, p) = b0b1 . . . bn−1 with

bi =

{
s, i ≥ p,
s+ 1, otherwise.

2

Using the balancing sequences from the previous example,
we have

b(1, 7) = 22222221, b(2, 3) = 33322222,
b(2, 7) = 33333332, b(3, 3) = 44433333.

Remark 1 A (q + 1)-ary balancing sequence is used for
simplicity in presentation, but for ease of understanding one
can see it as two sequences, consisting of a q-ary sequence
(the all-s sequence) and a “binary” sequence (indicating the
position). Then,

b(s, p) = sss . . . s⊕q

p︷ ︸︸ ︷
1 . . . 1 0 . . . 0. 2

Let y be the sequence after a balancing sequence is added,
i.e. y = x ⊕q b(s, p), and let σ =

∑n−1
i=0 yi. Note there are

qn possible balancing sequences. To see how the balancing
sequences affect σ, let z denote the z-th balancing sequence,
with

z = sn+ p, 0 ≤ z ≤ qn− 1

and let σ(z) denote the sum of components when adding
the z-th balancing sequence to the original sequence. Then,
the original sequence’s sum of components is given by σ(0)
when the all-zeros sequence is added. Since the next sequence
after qqq . . . q(q − 1) would be qqq . . . qq, and 000 . . . 00 ≡
qqq . . . qq under modulo q addition, we have that σ(0) =
σ(qn). Thus, for z ≥ qn the balancing sequences would start
repeating. By abuse of notation, b(z) will also be used to
denote the z-th balancing sequence and y(z) will denote the z-
th sequence obtained after adding b(z), i.e. y(z) = x⊕q b(z).

We use the following example to illustrate how sequences
are balanced using the balancing sequences.

Example 3 Consider the binary sequence 11101011 from
Example 1, with σ(0) = 6. Fig. 1 shows the σ(z)-values
graphed against z, the dashed line indicates when balancing
is achieved with β = 4. As was seen in that example, there
are six balancing sequences that achieve balancing. 2

For the binary case, we know from [1] that the minimum
and maximum values of σ(z) will always be such that
min{σ(z)} ≤ β ≤ max{σ(z)}. The increase and decrease
in σ in the graph will always be one, and therefore it must
pass through β at some stage. A graph or path of this nature
is called a random walk, and this formed the basis of Knuth’s
proof. For q-ary balancing in [8], Tallini and Vaccaro construct
single or double maps in such a way that random walks are
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Fig. 1. (1,1)-random walk for 11101011



also achieved, with σ changing by −1, 0 or +1 for each step,
thereby ensuring that σ(z) will pass through a certain value.
Our approach does not need these single or double maps, and
is as simple as Knuth’s method.

The new scheme also results in random walks, but the value
of σ does not change by ±1. To generalize, define an (γ, τ)-
random walk as a path with increases of γ and decreases of
τ . The previous random walks would then be considered as
(1, 1)-random walks.

The next example is used to understand the similarities and
differences between the binary and non-binary cases.

Example 4 Consider the 4-ary sequence 02333132 from Ex-
ample 2, with σ(0) = 17 and Fig. 2 showing the σ(z)-values
with the dashed line indicating balancing when β = 12.

As determined in that example, there are four possible
balancing sequences. From the figure we see that increases are
always in increments of one, while decreases are in increments
of 3. 2

The path always starts at σ(0) and returns to that value at
σ(qn), with several increments and decrements in between.
If we can prove that σ(z) is a (1, q − 1)-random walk and
that min{σ(z)} ≤ β ≤ max{σ(z)}, then β must be reached
at some stage by one of the upward segments of the walk
(possibly by downward segments as well).

Lemma 1 When adding b(z) to x, σ(z) forms a (1, q − 1)-
random walk for 0 ≤ z ≤ qn− 1. 2

Proof: The difference between b(z) and b(z + 1) is the
symbol in position p, with bp(z+1)−bp(z) = 1. Thus, σ(z+
1)−σ(z) depends on the result when one is added to the value
of yp(z), since

yp(z + 1) = xp ⊕q bp(z + 1)
= xp ⊕q bp(z)⊕q 1
= yp(z)⊕q 1.

If yp(z) < q − 1 then yp(z + 1) = yp(z) + 1 and σ(z + 1)−
σ(z) = 1. If yp(z) = q− 1 then yp(z + 1) = yp(z)− (q− 1),
since q − 1⊕q 1 = 0 and σ(z + 1)− σ(z) = −(q − 1).

Therefore, σ(z) forms a (1, q−1)-random walk, with either
increases of one or decreases of q − 1, when z increases by
one.

Calculating an exact minimum and maximum value for σ(z)
is difficult since it is sequence dependent, but in the next

10

15

σ
(z

)

0 5 10 15 20 25 30
z

Fig. 2. (1,3)-random walk for 02333132

lemma we will show that a bound exists on these values for
all sequences.

Lemma 2 The (1, q−1)-random walk σ(z) has min{σ(z)} ≤
β and max{σ(z)} ≥ β. 2

Proof: Consider adding an all-s sequence, b(s, 0) to the
original starting sequence x and calculate the real sum of

σ(x⊕q b(0, 0)) + σ(x⊕q b(1, 0)) + · · ·
+ σ(x⊕q b(q − 1, 0)).

This sum can be calculated by taking into account the symbols
that can occur in each position in all these sequences. In any
coordinate position, all the symbols 0, 1, . . . , q−1 will appear
exactly once, and since

0 + 1 + · · ·+ q − 1 = q(q − 1)/2,

we find that
q−1∑
s=0

σ(x⊕q b(s, 0)) = nq(q − 1)/2.

The average σ-value for all the q sequences is

σavg = n(q − 1)/2 = β.

Hence, of the sequences x ⊕q b(s, 0), at least one has a
σ-value of at least β and at least one has a σ-value of at most
β. Even though the sequences b(s, 0) forms a subset of our
balancing sequences, we can still conclude that min{σ(z)} ≤
β ≤ max{σ(z)}.

Theorem 1 Any q-ary sequence of length n can be bal-
anced by adding modulo q an appropriate balancing sequence
b(s, p). 2

Proof: We know from Lemma 2 that min{σ(z)} ≤ β ≤
max{σ(z)} and from Lemma 1 that σ(z) is a (1, q−1)-random
walk with unit increases. Therefore, it follows that σ(z) = β
for at least one z, i.e. at least one of the upward segments for
σ(z) must pass through β. Therefore balancing can always be
achieved by at least one b(s, p).

For n even and q = 2 it is only necessary to use a binary
balancing sequence, instead of a ternary balancing sequence, in
which case it simplifies to Knuth’s method. Note that in Fig. 1
the random walk goes through β six times when sequences
up to 22 . . . 21 are used, compared to the three times when
sequences up to 11 . . . 10 are used. This happens in the binary
case because the second half of the random walk is an exact
mirror image of the first half.

We also find that for certain n and q values a (q + 1)-ary
balancing sequence is not needed, and that a q-ary or even a
(q − 1)-ary balancing sequence can achieve balancing for all
sequences, thereby lowering the redundancy slightly. However,
this is only valid for low n values, such as n = 2 and n = 4
and since we are more interested in long sequences, these few
exceptions will be ignored.



The next example shows why it is necessary to use balanc-
ing sequences up to qqq . . . q(q − 1).

Example 5 Consider the 4-ary sequence 012223 with σ(0) =
10. Fig. 3 shows the (1,3)-random walk for σ(z) of this
sequence.

It can clearly be seen that balancing is only achieved when
the balancing sequence is 444443. 2

III. REDUNDANCY AND COMPLEXITY

Let Sn
q denote the cardinality for the full balanced set of

q-ary sequences of length n. The cardinalities are listed in
Table I. These values correspond to the central binomial coef-
ficients (A001405), central trinomial coefficients (A002426),
central quadrinomial coefficients (A005190) and central pen-
tanomial coefficients (A005191) for sequences with q = 2, 3,
4 and 5 respectively, where the numbers indicate the sequences
from [12].

From [13] and [7] we find that

Sn
q = qn

√
6

πn(q2 − 1)

(
1 +O

(
1
n

))
Taking the logarithm, we obtain the approximation

logq(Sn
q ) ≈ n− 1

2
logq n−

1
2

logq

π

6
− 1

2
logq(q

2 − 1).
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TABLE I
CARDINALITIES OF FULL BALANCED SETS

q = 2 q = 3 q = 4 q = 5
n = 4 6 19 44 85
n = 5 51 381
n = 6 20 141 580 1751
n = 7 393 8135
n = 8 70 1107 8092 38165
n = 9 3139 180325
n = 10 252 8953 116304 856945
n = 11 25653 4091495
n = 12 924 73789 1703636 19611175
n = 13 212941 94309099
n = 14 3432 616227 25288120 454805755
n = 15 1787607 2198649549
n = 16 12870 5196627 379061020 10651488789
n = 17 15134931 51698642405
n = 18 48620 44152809 5724954544 251345549849
n = 19 128996853 1223798004815
n = 20 184756 377379369 86981744944 5966636799745

Hence, the redundancy of the full balanced set is roughly equal
to

1
2n

logq n, n� 1. (1)

In the new scheme, to transmit the balanced codeword
successfully, it is necessary to transmit s and p for the
receiver to recover the original codeword. The sequence used
to communicate these values must also be balanced, thus we
choose sequences from the full balanced set. The cardinality
must be greater than or equal to qn to be able to transmit
this information. A lookup table or enumerative encoding [14]
can be used to encode and decode s and p, however the
memory/complexity necessary to implement this is negligible
in comparison to the memory/complexity when using a lookup
table or enumerative encoding for the entire length n sequence.

Let k denote the length of the balanced sequence that
will transmit the information regarding the chosen balancing
sequence. We then require that

Sk
q ≥ qn,

and therefore, using a similar argument as above, we have

k − 1
2

logq k −
1
2

logq

π

6
− 1

2
logq(q

2 − 1) ≥ logq n+ 1.

Then, for very long sequences, the length of the added
sequence is roughly

k ≈ logq n, n� 1,

making the redundancy in this case

1
n

logq n, n� 1.

The difference in redundancies between the full balanced
set and the balanced set obtained using the new method is

1
2n

logq n, n� 1. (2)

This is similar to the difference found in the redundancies for
the binary case when using Knuth’s method.

Weber and Immink [6] showed that this difference in
redundancies can be overcome for the binary case, while
still using Knuth’s efficient method. Auxiliary information can
be transmitted by the choice of balancing sequence. As was
shown in Example 2, it is possible in some cases to have
more than one balancing sequence. Additional information can
then be transmitted by assigning information symbols to each
balancing sequence, e.g.

b(1, 7)→ 0, b(2, 3)→ 1,
b(2, 7)→ 2, b(3, 3)→ 3.

Possible further work is to determine if the different balancing
sequences for the q-ary case can also be used to transmit
auxiliary information, thereby reducing (2).



In [7], codes with k redundant symbols can be constructed
such that the length of information symbols is

n ≤ qk − 1
q − 1

. (3)

A similar, but slightly more complex code can be constructed
such that

n ≤ 2
qk − 1
q − 1

− k. (4)

In [8] codes are constructed with

n ≤ 1
1− 2α

qk − 1
q − 1

− c1(q, α)k − c2(q, α),

where c1 and c2 are dependent on q and α, and α ∈ [0, 1
2 ).

Balancing of sequences and compression are used in this con-
struction. However, for comparison purposes we will focus on
the balancing part of the construction, thereby not considering
the compression method. Then the bound on the length of n
simplifies to (4).

Reordering the equations and assuming the minimum num-
ber of redundant symbols, both (3) and (4), for very long
sequences, are approximately

k ≈ logq n, n� 1,

with the redundancy approximately
1
n

logq n, n� 1.

Hence, the redundancies of the previous schemes and our new
scheme are approximately the same for very long sequences.
The redundancies of all these schemes are roughly a factor of
two more than the redundancy of the full balanced set.

As in the binary case of Knuth, our decoding is also fast
and efficient. Once the decoder has established s and p, b can
be reconstructed and subtracted from y to recover x. Since
the entire sequence b is known, and no further calculations
need to be done, all the symbol subtractions to obtain x can
be done simultaneously, hence fast, parallel decoding of the
balanced sequence is possible. In simple terms, decoding in
previous schemes involved starting at a bit and changing it in
a predetermined manner, until a certain weight was achieved.
If this was not possible, the procedure was repeated on the
following bit, and so forth. Thus far no parallel implementation
has been proposed for this method of decoding in stages.

For implementation the previous schemes [7], [8] need
O(qn logq n) digit operations for both encoding and decoding
(as stated in [8]). In the worst case our new scheme needs
O(qn logq n) digit operations for encoding (which is compa-
rable to previous schemes) and only O(n) digit operations for

decoding. Note that this does not take into account the com-
plexity from using a lookup table or enumerative encoding.

Even though the constructions found in [7] and [8] have
better redundancies compared to our new construction, our
new approach allows for a simpler decoding. For the previous
schemes, decoding is achieved by basically reversing the
encoding steps. Our new approach only needs to subtract the
already determined balancing sequence, which can be done in
parallel, as stated previously.

IV. CONCLUSION

A simple construction was presented whereby any q-ary
sequence can be balanced by adding a certain balancing
sequence to it. The construction was shown to have simple
and efficient encoding, as well as fast, parallel decoding.

The redundancies of the balanced codes obtained from this
construction are just over a factor of two away from the
redundancies of the full balanced sets. This can possibly be
lowered by making use of auxiliary information, with only a
slight increase in complexity.
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