
Combined Permutation Codes for Synchronization

R. Heymann, H. C. Ferreira, T. G. Swart
Department of Electrical and Electronic Engineering Science

University of Johannesburg
P.O. Box 524

Auckland Park, 2006
South Africa

E-mail: rheymann@uj.ac.za, hcferreira@uj.ac.za. tgswart@uj.ac.za

Abstract—A combined code is a code that combines two or
more characteristics of other codes. A construction is presented
in this paper of permutation codes that are self-synchronizing and
able to correct a number of deletion errors per codeword, thus a
combined permutation code. Synchronization errors, modelled
as deletion(s) and/or insertion(s) of bits or symbols, can be
catastrophic if not detected and corrected. Some classes of codes
have been proposed that are synchronizable, i.e. they can be
used to regain synchronization although the error leading to
the loss of synchronization is not corrected. Typically, different
classes of codes are needed to correct deletion and/or insertion
errors after codeword boundaries have been detected. The
codebooks presented in this paper consist of codewords divided
into segments. By imposing restrictions on the segments, the
codewords are synchronizable. One deletion error can be detected
and corrected per segment.

I. INTRODUCTION

Establishing and maintaining synchronization is important

in communication systems. A loss of synchronization, even if

it is just for a short period, can lead to bursts of errors that

may be catastrophic. Synchronization errors can be modelled

as deletion(s) and/or insertion(s) of bits or symbols.

The simplest solution to ensure that a sequence can be

resynchronized is by using markers (also known as commas).

A marker is a known sequence that is periodically placed in

the transmitted sequence. No other codeword in the codebook

should include this sequence. At the receiver the positions of

the markers are used to determine if synchronization has been

lost and to resynchronize. Markers for binary codes have been

studied in [1] and [2]. In [3] a construction for markers used

with permutation codes is given.

A disadvantage of markers is that they add additional

redundancy to the sequence. Markers can detect the loss of

synchronization and help with recovery, but cannot correct the

specific deletion or insertion errors.

The use of watermarks have been proposed as an alternative

to markers [4], [5].

Another approach is to construct comma-free codebooks

[6]. In a comma-free codebook the codewords are constructed

in such a way that the overlap between two codewords does

not result in a valid codeword. These constructions are valid

for binary and M-ary communication. A formal definition of

comma-free codebooks is given in Section II. In [6] an upper-

bound for the cardinality of comma-free codes is also given.

A construction for maximal comma-free codes is given in [7].

In [8] a suffix construction method is proposed to construct

variable length codes with synchronization capability.

Comma-free codebooks can also be used to regain syn-

chronization but cannot correct information bits lost due to

synchronization errors.

Prefix codes, a subclass of comma-free codes, have also

been suggested to regain synchronization [9], [10]. Every

codeword in a codebook starts with a predefined prefix. The

prefix does not appear anywhere else in the codeword and can

thus be used to determine the start of every codeword.

Many synchronization error correcting techniques have also

been investigated. These schemes assume that the boundaries

of the codewords are determined by using markers. In [11]

constructions for codebooks consisting of M-ary codewords

able to correct single deletions are given. A construction to

correct two or more deletions using design theory is given in

[12].

A permutation code is a code where every symbol of the

alphabet occurs exactly once in every codeword (see Section

II for more detail). Permutation codes are applied in power

line communications (PLC) [13] and flash memory [14].

The use of permutation codes combined with M-ary FSK

modulation has been shown to be able to combat different

types of noise present in PLC, especially for narrowband PLC

[13] in the CENELEC A band. Applications include automatic

meter reading and demand side management. Impulse noise,

background noise and permanent frequency disturbances can

occur in the PLC channel. Combining permutation codes and

convolution decoding to correct these errors was proposed in

[15].

The problem of synchronization errors when using per-

mutation codes in conjunction with M-FSK modulation has

been investigated in [16]. An error-correcting scheme was

proposed that could correct a single insertion or deletion error.

This scheme was improved on in [17]. A method to correct

synchronization errors using tree structures was proposed in

[18].

In flash memory, permutation codes are combined with rank

modulation [14]. Flash memory consist of floating gate cells

which have a discrete number of levels. Every level represents

a symbol. It is much more time consuming to erase cells than

writing to cells. It is thus important not to overshoot when

ISITA2012, Honolulu, Hawaii, USA, October 28-31, 2012

Copyright 2012 IEICE 230

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/43600562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

charging a cell to a certain level. Using permutation codes

with rank modulation eliminates overshoot errors.

In the rest of this paper we focus on permutation codes.

This paper is organised as follows: in Section II formal

definitions are given of the most important concepts used

in the paper, as well as notations. A construction for self-

synchronizing, deletion correcting codebooks is given in Sec-

tion III. Section IV focuses on the resynchronization and

decoding procedure. The work is concluded in Section V.

II. DEFINITIONS AND NOTATIONS

Let M be the length of the codewords. Let SM denote the

set of all M ! permutations.

Definition 1: A permutation code C of length M is a subset

of SM , where every codeword in C contains M different

integers {1, 2, . . . ,M} as symbols.

Definition 2: A codebook C is synchronizable if an overlap

between any two codewords in the codebook does not result

in a valid codeword.

Thus, let X = x1x2 . . . xM and Y = y1y2 . . . yM be

two, not necessarily unique, permutation codewords from

the permutation codebook C. An overlap between these two

codewords,

xj+1xj+2 . . . xMy1y2 . . . yj (1)

should not be a valid codeword if C is synchronizable.

If j in (1) can be any value, j = 1, 2, ...,M − 1, without

producing a codeword from C, then the code is called comma-

free.

In [6] the upperbound of the cardinality of a comma-

free codebook of words with length n, constructed from an

alphabet containing the letters 0, 1, . . . , σ − 1 is given as:

f(σ, n) ≤ 1

n

∑

d|n
μ(d)σn/d (2)

where the summation is extended over all divisors d of n,

and μ(d) is the Möbius function. A good approximation of

this upperbound is given by f(σ, n) ≤ σn/n [10].

In this paper only the occurrence of deletion errors will

be considered. XT = x1x2 . . . xM is transmitted over a

channel prone to deletion errors. A deletion error occurs if a

transmitted symbol is not received at the receiver, i.e. suppose

symbol xi is deleted then the received codeword will be

XR = x1x2 . . . xi−1xi+1 . . . xM . The received codeword’s

length will thus be shorter and all the symbols after symbol

xi will move one position to the left.

Deletion errors usually occur with low probability. However,

it is important to detect and correct them since they cause

a shift in the received sequence and the results can be

catastrophic. A more common error is substitution errors,

where one symbol is turned into another due to channel

noise. This paper will not focus on substitution errors, but

since they are much more probable than deletion errors, their

effect on the code’s ability to synchronize correctly will be

taken into account. Since permutation codes are applied in

flash memories, only unidirectional substitution errors will be

considered to dominate, i.e. symbol values can only decrease

due to charge leakage.

III. CODEBOOK CONSTRUCTION

If a symbol is deleted from a codeword, then the resulting

codeword of length M − 1 is known as a subword. Every

possible such subword for every codeword in C should be

unique for it to be able to correct a single deletion error.

In [11], the complete permutation set SM is divided into

M partitions, each consisting of (M − 1)! codewords. Each

such partition forms a codebook able to correct one deletion

per codeword.

The partitions for M = 4 from [11] is given in Table I.

TABLE I
S4 PARTITIONED INTO 4 CODEBOOKS EACH ABLE TO CORRECT ONE

DELETION ERROR

1234 2134 1324 2341
2143 3124 1423 1243
3142 4123 2413 1342
4132 1432 2314 4312
3241 2431 3412 4213
4231 3421 4321 3214

The proposed codebook will consist of codewords divided

into segments. The different segments will be constructed

using the method in [11] to ensure that a deletion can be

corrected in every segment. Every sequence in segment 1 will

then be combined with every sequence in segment 2 to form

the combined permutation codebook.

The construction can be explained step by step as follows:

1) Choose the lengths of each segment. Let l1 denote the

length of segment 1 and l2 the length of segment 2;

l1 + l2 = M .

2) For segment 1: Construct sequences as in [11], con-

sisting of symbols (1, 2, . . . , l1), capable of correcting

one deletion error per sequence. The number of possible

sequences is (l1 − 1)!
3) For segment 2: Construct sequences, consisting of sym-

bols (1, 2, . . . , l2), capable of correcting one deletion

error per sequence. Add l1 to every symbol so that the

sequences consist of symbols ranging from (l1+1, l1+
2, . . . ,M). The number of possible sequences is (l2−1)!

4) Concatenate every sequence of segment 1 with every

sequence from segment 2.

Example: Create a synchronizable codebook with M = 6.

1) Let the length of segment 1 be equal to the length of

segment 2, i.e. l1 = l2 = 3.

2) There are (l1 − 1)! = 2! = 2 possible sequences:

{123, 321}.
3) Since segment 1 and 2 have equal lengths, the possi-

ble sequences for segment 2 are also {123, 321}. The

sequences are translated to {456, 654}.
4) The sequences from segment 1 and 2 are combined to

form the codebook {123456, 321456, 123654, 321654}.

231

As further example where l1 �= l2, the codebook for M = 7,

l1 = 3 and l2 = 4 is given in Table II.

TABLE II
EXAMPLE OF A COMMA-FREE CODEBOOK CAPABLE OF CORRECTING 1

DELETION ERROR PER SEGMENT

M = 7
1234567 1235476 1236475
1237465 1236574 1237564
3214567 3215476 3216475
3217465 3216574 3217564

A codebook constructed in this way will be able to resyn-

chronize after a synchronization error, as well as correct one

deletion error per segment. The process for resynchronization

and error correction is given in the next section.

The cardinality for codebooks constructed in this way is

|C| = (l1 − 1)!(l2 − 1)! (3)

The minimum length of a segment is li ≥ 3. A segment

length of 2 will lead to (2 − 1)! = 1 sequence, which would

then result in a prefix code. Using a prefix code, where the

prefix has a length of 1 or 2 symbols, will result in codebooks

with higher cardinalities. However, if errors affect the prefix,

the code’s ability to resynchronize will also be affected.

To maximize the cardinality, one segment should be kept

to a minimum. For example: if M = 8 and l1 = 4, then the

cardinality would be |C| = (4 − 1)!(4 − 1)! = 36. However,

if M = 8 and l1 = 3, then the cardinality increases to |C| =
(3− 1)!(5− 1)! = 48.

IV. RESYNCHRONIZATION AND ERROR CORRECTION

The decoding consists of two steps: Firstly the received se-

quence is resynchronized, i.e. the codeword boundaries will be

determined. Secondly, errors in the codewords are corrected.

These two steps can either be performed sequentially for

every codeword, or the entire sequence can be synchronized

before the errors are corrected in the individual codewords.

The results will be the same. The two steps will be discussed

individually.

A. Resynchronization

Due to the construction of the codebook, it is very easy to

determine the start of each codeword if no errors are present,

i.e. the symbols unique to segment 1 indicate the start of a

codeword. Even if a burst of errors occur, the scheme can

always resynchronize again once the channel becomes error-

free.

If errors are present, it is more difficult to determine the

codeword boundaries. Let l1 = l2 = 3. Suppose the sequence

123456123456 is transmitted and, due to a deletion error, the

sequence 12345613456 is received. An obvious solution will

be to use a sliding window approach and, if at least l1 − 1 of

the symbols of segment 1 are present in l1 symbols, then it

indicates the start of a codeword.

However, resynchronization should still be possible even

if substitution errors occur. (As explained earlier, only unidi-

rectional substitution errors will be considered.) Suppose the

sequence 123654123456 is transmitted, l1 = 3, and due to a

substitution error the received sequence is 123653123456. A

sliding window approach, as described above, will recognize

the sequences 123 and 312 as the start of the two codewords.

A resynchronization procedure will be followed that makes

provision for four scenarios:

1) A deletion error did not occur in a codeword.

2) A deletion error occurred in the first segment of a

codeword.

3) A deletion error occurred in the second segment of a

codeword.

4) A deletion error occurred in the first and second segment

of a codeword.

Assume that XT = x1x2 . . . xnM is the transmitted se-

quence, consisting of n codewords, each of length M . Let l1
and l2 be the lengths of segment 1 and segment 2 respectively.

S1 is the set of all the symbols that is allowed in segment

1 and S2 the set of symbols allowed in segment 2. The

received sequence, YR = y1y2 . . . yk, may be shorter than

the transmitted sequence due to deletion errors. The following

steps will be followed in the resynchronization procedure:

1) Let i denote the index in the sequence. Initially i = 1.

2) Assume scenario 1 (no deletions): Extract s1 =
yiyi+1 . . . yi+l1−1 and s2 = yi+l1yi+l1+1 . . . yi+l1+l2−1

from the received sequence. A metric is calculated for

this scenario, where every symbol in s1 that is also in

S1 increases the metric by 1. If a symbol is in s1 and

not S1, then the metric is decreased by 1. Similarly, if a

symbol in s2 is also in S2, then the metric is increased,

otherwise it is decreased.

3) Assume scenario 2 (deletion in segment 1): Extract s1 =
yiyi+1 . . . yi+l1−2 and s2 = yi+l1−1yi+l1 . . . yi+l1+l2−2.

Calculate the metric for this scenario as described above.

4) Assume scenario 3 (deletion in segment 2): Extract s1 =
yiyi+1 . . . yi+l1−1 and s2 = yi+l1yi+l1+1 . . . yi+l1+l2−2.

Calculate the metric.

5) Assume scenario 4 (deletion in segment 1 and seg-

ment 2): Extract s1 = yiyi+1 . . . yi+l1−2 and s2 =
yi+l1−1yi+l1 . . . yi+l1+l2−3. Calculate the metric.

6) The scenario with the highest metric is assumed to be

the correct scenario. If scenario 1 has the highest metric,

then i = i+M . If scenario 2 or 3 have the highest metric,

then i = i+M −1. Lastly, if scenario 4 has the highest

metric, then i = i+M − 2.

7) Repeat the steps until the end of the received sequence

has been reached.

Example: The transmitted sequence is 123456123456 and

the received sequence is 13456123456. Let l1 = l2 = 3, S1 =
{1, 2, 3} and S2 = {4, 5, 6}.

Iteration 1: i = 1
Scenario 1: s1 = 134 and s2 = 561 and the metric, m1, is

thus: m1 = (2 − 1) + (2 − 1) = 2. Scenario 2: s1 = 13 and

232

s2 = 456 and thus m2 = 2 + 3 = 5. Scenario 3: s1 = 134
and s2 = 56, m3 = (2 − 1) + 2 = 3. Scenario 4: s1 = 13
and s2 = 45, m4 = 2 + 2 = 4. Scenario 2 has the highest

metric and a deletion in the first segment is assumed to have

occurred and i = i+5. Thus, the next codeword starts at index

i = i+ 5.

Iteration 2: i = 6
Scenario 1: s1 = 123 and s2 = 456 and the metric is

thus: m1 = 3 + 3 = 6. Scenario 2: s1 = 12 and s2 = 345
and thus m2 = 2 + (2 − 1) = 3. Scenario 3: s1 = 123 and

s2 = 45, m3 = 3 + 2 = 5. Scenario 4: s1 = 12 and s2 = 34,

m4 = 2+ (1− 1) = 2. Scenario 1 has the highest metric and

thus no errors are assumed to have occurred in this codeword.

Simulations have been done with the codebooks from Sec-

tion III to determine the effectiveness of the algorithm. The

number of codewords, n, that was included in the transmitted

sequence was determined by the deletion error probability,

pdel, to ensure that on average 3000 deletions were simulated.

Table III displays the probability of a deletion being detected.

For M = 6, l1 = l2 = 3 and for M = 7, l1 = 3 and l2 = 4.

TABLE III
PROBABILITY OF A DELETION ERROR BEING DETECTED

Deletion Probability M = 6 M = 7
0.09 0.9799 0.9886
0.08 0.9880 0.9928
0.07 0.9920 0.9958
0.06 0.9959 0.9992
0.05 0.9960 0.9993
0.04 0.9973 ≈ 1

≤ 0.03 ≈ 1 ≈ 1

The synchronization scheme can detect, with high probabil-

ity, up to one deletion error per segment. If this is exceeded, the

deletion error will propagate to the next codeword. If the next

codeword is an error-free codeword, the deletion error can be

detected in the next codeword. Suppose a deletion error occurs

in codeword i. Table IV shows the probability of the deletion

error being detected in codeword i, the codeword where the

error occurred, and the probability of it only being detected

in the codeword i+ 1.

TABLE IV
PERCENTAGE OF DELETION ERRORS CORRECTED IN THE SAME OR NEXT

CODEWORD

Deletion Probability M = 6 M = 7
i i+ 1 i i+ 1

0.009 0.9940 0.0060 0.9927 0.0073
0.008 0.9942 0.0058 0.9931 0.0069
0.007 0.9956 0.0044 0.9948 0.0052
0.006 0.9966 0.0034 0.9951 0.0049
0.005 0.9971 0.0029 0.9953 0.0047
0.004 0.9989 0.0011 0.9961 0.0039
0.003 0.9990 0.0010 0.9974 0.0026
0.002 0.9993 0.0007 0.9989 0.0011
0.001 ≈ 1 ≈ 0 ≈ 1 ≈ 0

Simulations were also used to determine the effect of unidi-

rectional substitution errors on the resynchronization process.

The value of random symbols were decreased. The number

of codewords transmitted was determined as explained above,

but instead of the deletion probability a substitution probability

was used.

If a substitution error is identified by the synchronization

algorithm as a deletion error, a misclassification error occurred.

Figure 1 shows the probability of misclassification errors.

10−7

10−6

10−5

10−4

10−3

10−2

10−310−2

M
is

cl
as

si
fi

ca
ti

o
n

P
ro

b
ab

il
it

y
Substitution Probability

M=6
M=7

Fig. 1. Probability of misclassification errors

A misclassification error, in this case, is equivalent to

the algorithm introducing an insertion error. The algorithm

needs to be adjusted to correct misclassification errors. A fifth

scenario is introduced: Assume a misclassification error has

occurred. A substitution error does not affect the preceding

codewords. We assume thus that the next codeword is error

free. The algorithm will look at the next codeword. If reversing

the decision that a deletion error has occurred in a codeword

causes the next codeword to be bounded correctly, then it is

assumed that a misclassification error has occurred.

Misclassification errors are more probable for M = 6 than

for M = 7. With a longer segment, more symbols contribute

to the metric and thus less misclassification errors occur.

B. Error Correction

Once the boundaries of the codewords have been detected,

the deletion errors can be corrected. As mentioned earlier, if a

codebook is able to correct deletion errors, every codeword has

unique subwords. Since our codebook is constructed of two

segments, each segment containing sequences able to correct

one deletion, a combination of these sequences form code-

words able to correct a deletion error in every segment. All

possible subwords of every codeword, due to a single deletion,

is inserted into a data structure called a map (or a dictionary).

The subwords, due to deletions in every segment, are also

included. Every subword uniquely maps to one codeword in

our dictionary. This relationship between the subwords and

codewords is used to determine the original codeword before

an error had occurred.

233

The use of a map is similar to a look-up table. However, it

is much faster and more efficient. Maps store a link between a

key (the subword) and a value (the codeword) and uses a hash

function to retrieve the information in an efficient manner.

Simulations have been performed to determine the Block Er-

ror Rate (BER) after the synchronization and error correction

process. The number of codewords transmitted is determined

as explained previously. Simulations are repeated many times

to get good statistical averages. Codebooks for M = 6 and

M = 7 are used. The codebook for M = 6 is used in the

simulations with l1 = l2 = 3. For M = 7 two configurations

are given, the first with l1 = 3 and l2 = 4, and the second

with l1 = 4 and l2 = 3. Substitution errors are not taken into

account. The results are given in Figure 2.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

10−410−310−2

B
E

R

Deletion Probability

M=6
M=7, Configuration 1
M=7, Configuration 2

Fig. 2. Decoding performance with deletion errors

When the deletion error probability is high, the probability

that the correction capability of the system can be exceeded,

is also high. The system is then not able to detect the errors

or only detects it in following codewords.

The BER for M = 7 decreases earlier than for M = 6.

With M = 7 more symbols are used to determine the metric

and it is thus easier to determine which scenario has occurred.

The M = 7 codewords only contain one more symbol than

the M = 6 codewords, so the probability that the correction

capability is exceeded in the M = 7 codebook is not much

higher than the M = 6 codebook.

V. CONCLUSION

Applications for permutation codes include flash memories

and PLC. A loss of synchronization, modelled as insertion

and deletion errors, can be catastrophic for a communication

system.

A code construction is presented that can be used to syn-

chronize the received sequence without the use of additional

redundancy, such as markers. Every codeword in the codebook

is divided into two segments. In addition to the ability to self-

synchronize, a deletion error in each segment can be corrected.

VI. ACKNOWLEDGMENT

This material is based upon work supported financially by

the National Research Foundation. Any opinion, findings and

conclusions or recommendations expressed in this material are

those of the author(s) and therefore the NRF does not accept

any liability in regard thereto.

REFERENCES

[1] F. F. Sellers, “Bit loss and gain correction code,” IEEE Trans. Inf.
Theory, vol. 8, no. 1, pp. 35–38, Jan. 1962.

[2] E. N. Gilbert, “Synchronization of binary messages,” IEEE Trans. Inf.
Theory, vol. 6, no. 4, pp. 470–477, Sep. 1960.

[3] T. Shongwe, T. G. Swart, H. C. Ferreira and T. van Trung, “Good syn-
chronization sequences for permutation codes,” IEEE Trans. Commun.,
vol. 60, no. 5, pp. 1204–1208, May 2012.

[4] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions, deletions and substitutions,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.

[5] R. Heymann and H. C. Ferreira, “Regaining synchronization using
neural networks and watermarks,” Int. Symp. Inform. Theory and its
Applic., Auckland, New Zealand, pp. 1–6, Dec. 2008.

[6] S. W. Golomb, B. Gordon and L. R. Welch, “Comma-free codes,”
Canad. J. Mathematics, vol. 10, pp. 202–209, Feb. 1958.

[7] W. L. Eastman, “On the construction of comma-free codes,” IEEE
Trans. Inf. Theory, vol. 11. no. 2, pp. 263–267, Apr. 1965.

[8] R. A. Scholtz, “Codes with synchronization capability,” IEEE Trans.
Inf. Theory, vol. 12, no. 2, pp. 135–142, Apr. 1966.

[9] C. V. Ramamoorthy and D. W. Tufts, “Reinforced prefixed comma-free
codes,” IEEE Trans. Inf. Theory, vol. 13, no. 3, pp. 366–371, Jul. 1967.

[10] H. Morita, A. J. van Wijngaarden and A. J. H. Vinck, “On the
construction of maximal prefix-synchronized codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 2158–2166, Nov. 1996.

[11] V. I. Levenshtein, “On perfect codes in deletion and insertion metric,”
Discrete Math. Appl., vol. 2, no. 3, pp. 241–258, Jan. 1992.

[12] P. A. H. Bours, “On the construction of perfect deletion-correcting
codes using design theory,” Designs, Codes and Cryptography, vol. 6,
no. 1, pp. 5–20, Jul. 1995.

[13] A. J. H. Vinck, “Coded modulation for powerline communications,”
Proc. Int. J. Elec. Commun., vol. 54, no. 1, pp. 45–49, Jan. 2000.

[14] A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation
for flash memories,” Proc. IEEE Int. Symp. Inform. Theory, Toronto,
Canada, pp. 1731–1735, Jul. 2008.

[15] H. C. Ferreira, A. J. H. Vinck, T. G. Swart and I. de Beer, “Permutation
trellis codes,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1782–1789,
Nov. 2005.

[16] L. Cheng, T. G. Swart and H. C. Ferreira, “Synchronization using
insertion/deletion correcting permutation codes,” Proc. Int. Symp. on
Powerline Commun. and its Applic., Jeju Island, Korea, pp. 135–140,
Apr. 2008.

[17] L. Cheng, T. G. Swart and H. C. Ferreira, “Re-synchronization of
permutation codes with Viterbi-like decoding,” Proc. Int. Symp. on
Powerline Commun. and its Applic., Dresden, Germany, pp. 36–40,
Mar. 2009.

[18] R. Heymann and H. C. Ferreira, “Using tree structures to resynchronize
permutation codes”, Proc. Int. Symp. on Powerline Commun. and its
Applic., Rio de Janeiro, Brazil, pp. 108–113, Mar. 2010.

234

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

