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Abstract— In this paper, we present a fast synchronization
coding scheme, which uses single insertion/deletion error cor-
recting permutation codes. A possible application to M-ary FSK
for the CENELEC A band power-line communications (PLC) is
considered. Compared to conventional timing recovery schemes,
no redundancies for preamble sequences and no processing delays
from decision devices are needed.

I. INTRODUCTION

Synchronization is an important issue for the design of a
reliable communication system. Most of the investigations on
error correcting codes only consider additive errors. Neverthe-
less, when messages are transmitted through an asynchronous
channel, the message received may have a different size
compared to that of the message sent. Thus, insertion and
deletion errors are defined for a channel having synchroniza-
tion problems. An insertion is the transform whereby one
symbol is added at an unknown index in the message during
transmission, which results in the increase of the message
size by 1. A deletion is the transform whereby one symbol
is dropped off the message during transmission, which results
in the decrease of the message size by 1.

Taking a pulse amplitude modulation (PAM) system into
consideration, the signal arriving at the receiver can be pre-
sented as

r(t) =
∑

i

aih(t− iT − τi) + n(t), (1)

where ai ∈ {+1,−1} is the i-th bit and h(·) is the pulse
shape. In (1), τi is the uncertainty in the timing at the i-th
bit, and n(·) is the additive noise. Clearly, if the estimation of
the timing at the receiver is not precise, insertion or deletion
errors are introduced. It is important to mention that, usually
before the received sequence is resynchronized, the message
is corrupted by the error propagation due to insertion/deletion
errors and is totally useless to the receiver.

Most of the conventional communications systems are de-
signed to work under very low signal-to-noise-ratios (SNR)
and at high transmission rates, which demand more reliable
timing recovery techniques to cooperate. In practice, nearly
all existing synchronization schemes are based on phase-
locked loops (PLL), which requires processing delay and
depends on the reliability of the decision devices. Clearly,

without efficient coding techniques, it is almost impossible
for the traditional synchronization schemes based on PLL
to work under very low SNR. It prompts more state-of-the-
art synchronization schemes, e.g. turbo-like approaches and
iterative timing-recovery schemes [1], to be investigated.

Permutation codes combined with M-ary FSK modulation
are considered to combat additive noise, impulse noise and
permanent frequency disturbances. In [2] and [3] the authors
show that they are good candidates for narrow-band PLC.
Some performance simulations for these codes can be found
in [4]. In this paper, the insertion/deletion error correcting
capability of the permutation codes is investigated. A real-time
synchronization scheme is designed, based on the permutation
codes, which can correct single insertion/deletion errors in
each code word. This limits the error propagation and reduces
the delays of the resynchronization process.

The paper is organized as follows: A brief introduction
to the permutation codes and Tenengolts’ non-binary sin-
gle insertion/deletion error correcting codes are presented
in Section II. The construction of single insertion/deletion
permutation codes is introduced in Section III. An approach
to alleviate the known-boundary limitation of this coding
scheme is presented in Section IV. We present a modified
dynamic information inference (decoding) algorithm to correct
insertion/deletion/substitution errors by using the new type of
single insertion/deletion permutation codes in Section V. We
also provide computer simulation results to demonstrate the
performance. We conclude the paper in Section VI.

It is worth mentioning that M-ary FSK modulation is
preferred for narrow-band PLC in the CENELEC A band in
our case, however the results will also be applicable to other
M-ary schemes such as PAM. Much research has been done
in the field of broadband PLC, but little documentation can
be found in the low frequency range (below 100 kHz). In this
range communication is considered with a low rate that can
provide very high accuracy, for applications such as automatic
meter reading and demand side management.

II. PRELIMINARIES

A. Permutation Trellis Codes and M-ary FSK

The definition for a permutation code is as follows:



Definition 1: A permutation code C consists of |C| code
words of length M , where every code word contains the M
different integers 1, 2, . . . ,M as symbols.

In the M-ary FSK system every symbol corresponds
uniquely to a frequency from an M-FSK modulator and the M-
ary symbols are then transmitted in time as the corresponding
frequencies. A more detailed explanation of the system and
how different types of noise on the power-line affects it,
can be found in [2] and [3]. In this paper we will focus on
insertion/deletion errors.

Since decoding of permutation codes can be difficult in this
scenario, an approach is used whereby the convolutional code’s
error correcting capabilities are mapped to the permutation
codes. In [3] it is described how permutation trellis codes can
be created by using distance-preserving mappings. Briefly, the
outputs of a binary convolutional encoder are mapped to the
code words from a permutation code. A mapping consists of
choosing an ordered subset of 2n M -tuples, from the full
set of permutation M -tuples, to map to the corresponding
convolutional base code’s n-tuples. The subset is chosen such
that the Hamming distance between any two permutation
M -tuples is at least as large as the distance between the
corresponding convolutional code’s output n-tuples which are
mapped to them. This results in a permutation trellis that can
be decoded using the Viterbi algorithm.

Using some of the properties that we will discuss shortly,
permutation trellis codes can be designed that have inser-
tion/deletion correcting capabilities as well.

B. Tenengolts’ non-binary single insertion/deletion correcting
codes

In [5], Tenengolts presented a class of non-binary single
insertion or deletion error correcting codes, which we will in
short refer to as Tenengolts codes. In the construction of the
Tenengolts code, the relation rule,

αi =

{
1, if xi+1 ≥ xi,

0, if xi+1 < xi.
(2)

is first applied to convert the non-binary codeword to a binary
sequence, which has the same length as that of the non-binary
code word.

Provided that the corresponding binary sequence satisfies
the selection (partition) criterion of the binary one inser-
tion/deletion error correcting code studied by Levenshtein [6],
it can correct one insertion or deletion error. The first-order
moment function used to construct the single insertion/deletion
error correcting can be presented as follows

σ =
n∑

i=1

iαi ≡ γ (mod m), (3)

where γ and m are fixed nonnegative integers. If m ≥ n + 1,
this code is a single insertion or deletion error correcting
code. Note that the first-order moment function was first
investigated by Varshamov and Tenengolts in [7] for cor-
recting asymmetric errors. Later, Levenshtein [8] found that

the Varshamov-Tenengolts codes could be used to correct
single insertion/deletion error. For a non-binary one insertion
or deletion error correcting code word x = x1x2 . . . xn, where
xi ∈ {0, 1, . . . , q − 1} and q is the alphabet size, the second
selection criterion is stipulated for each codeword as

n∑
i=1

xi ≡ β (mod q). (4)

When a symbol is deleted or inserted, a bit in the corre-
sponding binary sequence is also deleted or inserted. Based
on the first criterion, the insertion/deletion error is corrected
in this binary sequence. By using an inverse process of the
relation rule in (2), the position of the symbol deleted or
inserted in the non-binary codeword is located. Then the value
of the non-binary symbol inserted or deleted is retrieved by
using the second selection criterion.

III. SINGLE INSERTION/DELETION ERROR CORRECTING
PERMUTATION CODES

It follows naturally that a permutation code satisfies the
second criterion of the Tenengolts code.

Theorem 1: For a permutation code word x = x1x2 . . . xn,
we have

n∑
i=1

xi =
M(M + 1)

2
, (5)

where xi ∈ {1, 2, . . . ,M}.
When applying the first selection criterion of the Tenengolts

code (3), we can obtain the permutation code that can correct a
single insertion/deletion error. Let |Pγ | denote the cardinality
of a permutation code P , which satisfies (3) for γ and m =
n + 1. By observation, we find

|P0| = |P1| = . . . = |Pγ | = . . . = |PM−1| = (M − 1)!. (6)

This result has been found by Levenshtein [9], however he did
not consider it as a subset of the Tenengolts codes.

As known, Tenengolts codes can correct single inser-
tion/deletion under the assumption that the boundaries of the
code word are known. This assumption makes the implemen-
tation impractical. In the next section, we will introduce an
approach to alleviate this limitation.

IV. ALLEVIATION OF KNOWN-BOUNDARY LIMITATION

Consider two consecutive permutation code words without
knowing the boundaries. If both of the code words are not
affected, and due to one deletion already taking place before
these two code words, both code words shift forward by one
symbol. Clearly, if framing continues at the original indices,
we can immediately detect that one symbol is repeated, except
in the case where the first symbols of both code words are
identical. Thus, we can conclude the alleviation of known-
boundary limitation as follows.

Theorem 2: A single deletion can be detected when two
consecutive code words after the deletion are error-free and
the first symbols of both code words are not identical.

Moreover, we also can conclude the case for insertion errors.



Theorem 3: A single insertion can be detected when the
next code word after this corrupted code word is error-free
and the last symbol of the error-free code word is not identical
to that of the corrupted code word.

Thus, the consequential error propagation after deletion
(insertion) errors can be prevented by using the permutation
code, if this permutation code complies to the constraint
that the first (last) symbols of two adjacent code words are
different. The constraint can be illustrated by a Markov chain
as shown in Fig. 1.

Consider an M -ary codeword. According to Theorem 2 and
Theorem 3, as a valid codeword, the heading (tailing) symbols
of two consecutive code words are not identical. Thus we can
construct an M -state Markov chain. A 4-state Markov chain
is shown in Fig. 1, which can be presented by a transition
probability matrix as follows

Q =


0 1

3
1
3

1
3

1
3 0 1
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1
3

1
3
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3
1
3

1
3

1
3 0


Assume the transition probability from one state to the

other is identical. The transition probability matrix has M −1
nonzero elements on each of its M rows. Each element has
value 1

M−1 . Therefore, the entropy of this Markov information
source is

H{X} =
M∑

k=1

πkHk. (7)

Since
M∑

k=1

πk = 1, (8)

without losing generality, we can write

πk =
1
M

,k ∈ {1, 2, . . . ,M}, (9)

and

Hk = −
M∑
i=1

pi log2 pi = log2 (M − 1). (10)

Combining (7), (9) and (10), we get

H{X} = log2 (M − 1). (11)

This indicates the rate of code is upper bounded by

r ≤ logM (M − 1). (12)

1

3

2

4

Fig. 1. M = 4-state Markov chain

We can furthermore obtain
Theorem 4:

lim
M→∞

r = 1. (13)

Therefore, we can conclude that the known-boundary limi-
tation can be alleviated, and that, as M increases, the redun-
dancies introduced can be negligible.

V. SIMULATIONS AND RESULTS

In this section the insertion/deletion scheme using the
permutation codes is demonstrated by computer simulations.

A. Insertion/deletion/substitution channel model

The Davey-MacKay channel model [10] can be illustrated
by Fig. 2. At interval ti, the sent symbol has a probability of
pd to be deleted. This symbol cannot reach the ti+1 interval.
At interval ti, there is also a probability of pi that a random
symbol is inserted, and a probability of pt that the symbol
is transmitted. However, after the symbol is transmitted, the
probability of error-free transmission is 1− ps. We have

pi + pd + pt = 1, (14)

and thus the probability of error-free transmission from the ti
interval to ti+1 is pt(1− ps).

B. Modified decoding algorithm for channels with three types
of errors

The lattice diagram shown in Fig. 3 is a convenient way to
illustrate a stochastic insertion/deletion/substitution channel. In
such a channel, messages can be corrupted by three types of
errors. To deal with this channel, we need to use the dynamic
algorithm to differentiate these three types of errors. The
computation complexity of this algorithm is O(N2), where
N is the length of the message.

In Fig. 3, according to the Davey-MacKay channel model,
the branches having arrows towards the top right corner
represent possible deletions, and the branches having arrows
towards the bottom right corner represent possible insertions.
Meanwhile, the horizontal branches represent a transmitted
symbol (or block). In [11], the authors presented a method
to correct garbled words based on the Levenshtein metric.
The algorithm is designed based on the lattice graph. Inspired
by this work, we found a modified algorithm to correct
the insertion/deletion/substitution errors for permutation code
words.

Deleted

xi xi+1

Inserted

pd

pi

Transmitted ps

pt

Fig. 2. Davey-MacKay insertion/deletion/substitution channel model
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Fig. 3. Lattice diagram for the insertion/deletion/substitution channels

Before presenting the modified algorithm, we first define
a function u(·) to count the number of unique symbols in a
sequence and a function d(·) to measure the minimum distance
for permutation code words. Let x = x1x2 . . . xM be a
permutation code word and let x′ = x′1x

′
2 . . . x′s be a corrupted

sequence of x as a result of substitution, deletion and/or
insertion errors. Define u(x′) as the number of unique symbols
in x′. The minimum distance function d(·) is furthermore
defined as

d(x′) =

{
s− u(x′) for s ≥ M,

M − u(x′) for s < M.
(15)

The modified decoding algorithm can be illustrated by an
example.

Example 1: Consider the message

x = 2341 4312 3421 1243 2431

is sent. As a result of the deletion of symbol 1 at the seventh
index and the substitution 3 → 1 at the ninth index, the
message

x′ = 2341432142112432431

is received.
In the modified decoding algorithm, as shown in Fig 4, the

lattice is truncated according to the number of code words
sent. Each vertex in the graph represents a possible starting
index of a new block (code word). When comparing Fig. 3 to
Fig. 4, notice that the modified algorithm employs additional
vertices only on the horizontal branches. This is due to the fact
that we use block comparisons instead of symbol comparisons.
According to the dynamic indices of the blocks, the received
sequence is framed and allocated to the branches. Then the
minimum distances d(·) of branches are computed. At each
vertex, which has more than one branch flowing in, we set
the minimum value according to the competition results of
the survivor branches. The details can be referred to the add-
compare-select procedure of the Viterbi algorithm [12]. The
final step of this algorithm is to select the vertex, which has
the minimum accumulated distance value and to trace back the
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Fig. 4. Truncated lattice diagram for the insertion/deletion/substitution error
correction

resynchronized sequence. As shown in Fig 4, the algorithm
results in an optimal distance value 1, and the grayed vertices
indicate the trace-back path.

The resynchronized sequence is

2341 4321 421 1243 2431.

It is found that the code word 421 has one deletion, which
can be corrected by the decoding algorithm for the Tenengolts
code. After completing the process, the received sequence
is re-synchronized with two substitution errors remaining.
Clearly, it can be solved by concatenation with an outer burst
error correcting code.

We provide a brief description of the algorithm as follows:
Algorithm 1: Let vt,j denote a vertex in the lattice graph,

where vt,j := (lt,j , et,j). Let lt,j denote the index of the vertex
in the t−1’th interval which gives rise to the least accumulated
errors et,j at vertex vt,j . We assume that the sequence x is
received within T intervals. Clearly, within T intervals, the
number of the symbols sent is TM . Note that, according to
the structural property of the lattice graph, for any vt,j , we
have 0 ≤ j ≤ 2t.

Initialization:

v0,0 = (0, 0)
v1,0 = (0, d(x0x1 . . . xM−2))
v1,1 = (0, d(x0x1 . . . xM−1))
v1,2 = (0, d(x0x1 . . . xM ))

We define functions α(·), β(·) and γ(·) as follows:

α(t, j) = et−1,j−1 + d(x(t−1)(M−1)+j−1 . . . xt(M−1)+j−1)
β(t, j) = et−1,j + d(x(t−1)(M−1)+j . . . xt(M−1)+j−1)
γ(t, j) = et−1,j−2 + d(x(t−1)(M−1)+j−2 . . . xt(M−1)+j−1)

(16)



We furthermore define the functions Λ(·) and ∆(·) as
follows:

Λ(t, j) = min(α(t, j), β(t, j), γ(t, j)). (17)

∆(t, j) =


−1 if Λ(t, j) = α(t, j),
0 if Λ(t, j) = β(t, j),
−2 if Λ(t, j) = γ(t, j).

(18)

Note that if more than one condition in (18) is satisfied, we
can choose one of them randomly.

Iteration: Repeat the following steps for t = 2 to T :
1) lt,0 = 0;
2) et,0 = et−1,0 + d(x(t−1)(M−1) . . . xt(M−1)−1);
3) lt,1 = 1+∆(t, 1), where Λ(t, 1) = min(α(t, 1), β(t, 1));
4) et,1 = Λ(t, 1);
5) lt,2t−1 = 2t − 1 + ∆(t, 2t − 1), where Λ(t, 2t − 1) =

min(α(t, 2t− 1), γ(t, 2t− 1));
6) et,2t−1 = Λ(t, 2t− 1);
7) lt,2t = 2(t− 1);
8) et,2t = et−1,2(t−1) + d(x(t−1)(M+1) . . . xt(M+1)−1);
9) lt,j = j + ∆(t, j), where 2 < j < 2t− 1;

10) et,j = Λ(t, j), where 2 < j < 2t− 1;
Trace-back: At the interval T , we find eT,jmin =

min(eT,0, eT,1, . . . , eT,2T ). According to lT,jmin of the sur-
vivor vertex vT,jmin , trace-back through the lattice and obtain
the shortest path.

Note that if the boundaries of the whole sequence x are
known, we can furthermore treat the vertices in the T ’th
interval before trace-back as follows:

Assume the number of the received sequence x is N .
For j = 0 to 2T , eT,j = eT,j + N − T (M − 1)− j.

C. Performance

For only one type of error, e.g. insertion or deletion errors,
the computation complexity is reduced to O(N). The re-
synchronization process can be real-time. In our simulations,
we use two comparisons to demonstrate the performance of
the permutation codes with insertion/deletion error correction.
The first comparison is according to the synchronization-
loss rate of the system. This factor is defined as the rate
of the number of the synchronized packets over the number
of all the packets sent. In our simulations, for channel with
one type of error, each packet has 6000 symbols. Delay is
another important factor of this system to be evaluated. It is
defined as the number of symbols between the index where
the insertion/deletion error is detected and the index where the
insertion/deletion error exactly appears within the sequence.
Clearly, the delays are required to be small. The performance
of this system in terms of the synchronization-loss rate and
delays are illustrated in Fig. 5 and Fig. 6.

If the channel contains more than one type of error, the
modified dynamic algorithm is an option to deal with it. The
delay, in this case, is not negligible. Considering the com-
plexity and the delay of this algorithm, we only demonstrate
the performance when the packet size is small (600 symbols).
As shown in Fig. 7, the synchronization-loss rate reaches

close to 10−5 when insertion/deletion/substitution error rate is
5×10−3 for M = 6. The new algorithm has space for further
optimization. For example, it is not necessary to consider paths
far away from the current optimal path, thereby reducing the
O(N2) complexity.
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Fig. 5. Synchronization-loss rate performance as a function of the deletion
error rate
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Fig. 6. Delay performance as a function of the deletion error rate
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VI. CONCLUSIONS

In this paper, a new type of single insertion/deletion error
correcting permutation code is investigated. An approach to
alleviate the limitation of the coding scheme is presented.
We also prove the redundancy introduced by this approach
is negligible. Furthermore, we develop a new algorithm to
correct insertion/deletion/substitution errors at the same time.
Computer simulation results are provided. In terms of the
delays of the re-synchronization process, the redundancies, the
insertion/deletion/substitution error correcting capabilities and
the reliabilities of the system, this coding system is superior
to conventional timing recovery schemes.
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